Choi_Japanese Combustion Symposium

Embed Size (px)

Citation preview

  • 7/27/2019 Choi_Japanese Combustion Symposium

    1/55

    Sangmin Choi

    KAIST

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    2/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    3/55

    Combustion of solid fuel bed

    Combustion of the single particle + Interaction between the particles

    Major phenomena

    Material flow: Gas Solid Multi le Com onenets

    Reactions : Solid-gas reaction, Gaseous reaction

    Heat transfer : Conduction, Convection, Radiation

    ys ca an geome r ca c anges

    Generation of internal pore, Change of particle size

    Bed structural change : Porosity, height

    Melting, Sintering

    Reactors containing solid bed Iron-making process

    Coke oven, Sintering bed, Blast furnace

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    4/55

    Bed combustion of mixed waste (solid fuel)

    Waste heat boiler

    y

    Rotary kiln

    Thermal Engineering LabTraditional stoker-type inc inerator Advanced incinerator : Stoker-type + Rotary ki ln type

  • 7/27/2019 Choi_Japanese Combustion Symposium

    5/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    6/55

    Iron ore sintering process

    ~90% of inert : Physical changes of inert (iron ore) is important

    Self-sustaining combustion (no external heat source) once ignited

    No pyrolysis, very slow progress of coke combustion

    +COKE, LIME etcPSEUDO-PARTICLES +WATER +COKE, LIME etc+COKE, LIME etcPSEUDO-PARTICLES +WATER

    YARD

    COG BURNERSTACK

    ORE BINREROLLING MIXING YARDYARD

    COG BURNERSTACK

    ORE BINORE BINREROLLING MIXING

    SINTERING BED

    EP

    HEARTH BED

    WIND BOXESSINTERED ORE

    SINTERING BED

    EPEP

    HEARTH BED

    WIND BOXESSINTERED ORE

    HOT CRUSHING

    COOLINGCOLD CRUSHINGSCREENINGRETURN FINE

    FAN HOT CRUSHING

    COOLINGCOLD CRUSHINGSCREENINGRETURN FINE

    FAN

    Thermal Engineering Lab

    BLAST FURNACEBLAST FURNACE

  • 7/27/2019 Choi_Japanese Combustion Symposium

    7/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    8/55

    Each slice Batch type oven

    Charge : 27.8 ton/oven

    CHARGING

    CAR

    Coking t ime : about 20 hours

    QUENCHING

    COAL

    CAR

    16.0m

    Charging

    coal6m . . . .6.7m

    Thermal Engineering Lab

    0.45m fuel air0.70m More than100 slices

  • 7/27/2019 Choi_Japanese Combustion Symposium

    9/55

    Blast Furnace

    Iron ore+ Coke

  • 7/27/2019 Choi_Japanese Combustion Symposium

    10/55

    Phenomena in Blast Furnace

    Stack zone

    Alternate coke/ore layers

    Ore layer is heated up and partially reduced

    Stack zone

    wust te, e .

    Cohesive zone

    Ore layer is softened and agglomerates. Cohesive zone

    Low permeability of ore layer coke slit Wustite is transferred to Fe.

    Dripping zoneDripping

    zone Ore starts to melt and fall down.

    Raceway Reducing gas by coke combustion

    -

    Deadman

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    11/55

    FINEX Process

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    12/55

    Modeling Approach

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    13/55

    Reactors with bed of solid material : Solid flow: batch or continuous

    Common governing mechanism and physical/chemical phenomena but differ

    in the dimension, the boundary conditions and additional physical changes

    Solidmaterial Oxidizer

    Solidmaterial

    Solidmaterial Oxidizer

    Solidmaterial

    Solid

    SolidmaterialSolidSolid

    materialmaterialmaterial

    Fixed bed combustor

    Oxidizer

    Co-current fixed

    Oxidizer

    Count-current fixed

    Oxidizer

    Grate-type incinerator

    Fixed bed combustor

    Oxidizer

    Co-current fixed

    Oxidizer

    Count-current fixed

    Oxidizer

    Grate-type incinerator

    Thermal Engineering Lab

    Direct melting furnace

    Coke oven

    bed gasifier bed gasifier

    Blast furnace

    Iron ore sintering bed Direct melting furnace

    Coke oven

    bed gasifier bed gasifier

    Blast furnace

    Iron ore sintering bed

  • 7/27/2019 Choi_Japanese Combustion Symposium

    14/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    15/55

    Flexibility in computation - In the model, user can define

    Solid components and gaseous species

    Combustion/reaction types and their rates

    Boundary conditions

    Physical and geometric properties

    Numerical Scheme

    Extension of 1-D, transient model to 2-D model

    For moving bed, with constant traveling speed

    yy

    Thermal Engineering Lab

    t=0 tmaxt+ttt=0 tmaxt+tt

  • 7/27/2019 Choi_Japanese Combustion Symposium

    16/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    17/55

    Governing equations

    Solid phase I : Mass, Energy, Component

    ( ) ( ), , , ,,

    s I V I s I s I

    solid gas reactions I Jphase J

    f v

    Mt y

    + = &

    ( )( ) ( ), , , , , , ,, , , , , , , , ,

    1

    V s I s I s I s I s I v I

    V s I s I JI s I s J s I conv g I s I g s I rad

    J

    f h v h T f f k h A T T h A T T q

    t y y y

    + = + + +

    , , , , , ,s s

    s s

    I s I r r s I r p I s I

    r r

    ( ) ( ), , , , , , , ,, , , s

    s

    s I V I s I k s I s I s I k

    s I k r

    r

    f m v mM

    t y

    + =

    &

    Gas phase : Mass, Energy, Species

    g g gs I rv M + = &, , s

    sI rt y

    ( ) ( )( ), , , , , , , , ,(1 ) s s s

    s s

    g g g g

    g conv g I s I s I g I s I r r s I r p I s I

    I r r

    h v h Tk h A T T y M H M C T

    t y y y

    + = + + +

    & &

    Thermal Engineering Lab

    ( ) ( ), ,, , , , ,s g

    s g

    g g k g g g k

    s I k r g k r r I r

    m v m

    M Mt y

    + = + & &

  • 7/27/2019 Choi_Japanese Combustion Symposium

    18/55

    -

    Solid gas reactions & Gaseous reactions

    Solid- as reactions

    solid solid gas gas solid solid gas gas

    solid gas solid gas

    M M M M + +

    Drying : Boling(>373K) and Diffusion(

  • 7/27/2019 Choi_Japanese Combustion Symposium

    19/55

    Iron ore reduction : Fe2O3(s), Fe3O4, FewO, + CO

    2

    2

    ,,

    ,1,4

    6 CO gg CO gi in n m m

    mi i CO CO

    f

    R a Kd W M M

    =

    =

    Solution loss : C+CO2->2CO

    Com etitive reactions : Arrhenius rate + diffusion

    ( ) ( )2 2 2

    11 1

    , film, 5g CO g CO s COR M A k k = +

    Melting ( )1 ,, inflow

    j s face facej melt j

    n

    G AT T

    RT M Vol

    =

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    20/55

    -

    Heat Transfer

    Conduction : Included in the energy equations

    Convections : Wakao and Kaguei(1982)s equation

    or Ranz-Marshall equation

    Radiation : 2-flux model(Shin and Choi, 2000)

    Among solid phases

    ( )

    , , , ,

    , ,,2

    where

    ss IJ IJ s I s J s I

    V I s I s ps g g pgIV JI

    IJ

    V I s V I

    f k C k Cf

    hf t t f

    +

    = +

    Geometrical changes

    , ,

    I

    1/ 33 3

    Generation of the internal pores , , , ,, , ,

    V I ip I s ip I comb i

    ip i ip loss I

    i i

    f v Mf

    t y

    + = +

    &

    &

    p u r

    Thermal Engineering Lab

    Bed structural changes : packing parameter, n

    1 n o

    V s Vf f f=

  • 7/27/2019 Choi_Japanese Combustion Symposium

    21/55

    Waste

    Incinerator

    Iron Ore Sintering

    Bed

    Coke Oven Blast Furnace

    Bed type Moving bed Moving bed Fixed bed Counter-current

    Feeding Continuous Continuous Batch Continuous.

    Solid

    material

    Solid waste Iron ore

    +Limestone

    Coking coal Sintered ore+Coke

    +Coke

    Mode of

    gas/air flow

    Blowing air Suction air Discharge of

    pyrolized gas

    Blowing of

    preheated blast

    Heat source Volatile/Char

    combustion

    Coke combustion External Wall

    Heating, latent

    Heat of Pyrolysis

    Coke &

    PC(pulverized coal)

    combustionPhysical

    change

    Change of bed

    height by

    combustion

    Melting/sintering

    Negligible change

    of bed height

    Swelling,

    shrinkage

    Melting of iron ore,

    coke diameter

    change(combustion)

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    22/55

    Waste Incinerator

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    23/55

    Major phenomena within the bed in waste incinerators

    Ignition by radiation from wall/hot gas

    Drying Pyrolysis Char combustion

    Combined closely with the gas flow in the incinerator

    AIRAIR(1) Raw waste(2) Drying(3) Pyrolysis(4) Char reaction

    AIRAIR(1) Raw waste(2) Drying(3) Pyrolysis(4) Char reaction

    WASTE

    WASTE BED

    COMBUSTION GAS

    WASTE

    WASTE BED

    COMBUSTION GAS

    (1) (2) (3) (4)

    (5) Ash

    WASTE

    WASTE BED

    COMBUSTION GAS

    WASTE

    WASTE BED

    COMBUSTION GAS

    (1) (2) (3) (4)

    (5) Ash

    ASHHOPPER

    PRIMARY AIR

    GRATES ASHHOPPER

    PRIMARY AIR

    GRATES ASHHOPPER

    PRIMARY AIR

    GRATES ASHHOPPER

    PRIMARY AIR

    GRATES

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    24/55

    Single solid phase

    Bed height : 0.68 m

    The particle size and porosity are not changed during the process

    Calculation time : 6000 sec

    Bed height (m) 0.68 Type Air

    Waste incinerator (Moving bed, Continuous feeding)Ignition by radiation

    from hot gas or wall (2)

    Waste incinerator (Moving bed, Continuous feeding)Ignition by radiation

    from hot gas or wall (2)

    x zer o ce s

    tmax (sec) 6000 vave 0.136m/st (sec) 1

    IgnitionType Radiation

    Size 30mm Value CFDresultsa

    Solid waste(30~60%

    combustible)

    gas

    Ash

    Solid waste(30~60%

    combustible)

    gas

    AshSolid

    mat.

    Moisture 45%Pyrolysis

    A 1.5104

    Volatile 39% E 30kcal/kmol

    Char 6% A 2.3

    Time = 0 Time = t1 Time = tmaxAirTime = 0 Time = t1 Time = tmaxAir

    nc u ngmass-basecomposition)

    Ash 10% E 22kcal/kmol

    o 0.54

    Gaseous

    Volatile+O2CO+H2

    LHVa 1790 CO+H2OCO2+H

    Thermal Engineering Lab

    reaction 2n 1 H2+0.5O2H2O

    Shrinkage of grid YES

  • 7/27/2019 Choi_Japanese Combustion Symposium

    25/55

    -

    Model is well describing the physico-chemical process in the waste bed

    Temperature distribution and gas composition

    0.4

    0.6

    m)

    3.73

    130.6

    m)

    3.73

    13

    COMBUSTION GASCOMBUSTION GASCOMBUSTION GAS

    0.3

    n

    O2

    CO2

    H2O CO

    H2

    CxH

    yO

    z

    0.2

    .

    BedHeight

    14

    0.2

    .

    BedHeight

    14

    0.1

    0.2

    2

    H2

    CO2

    2

    MoleFracti

    0 2 4 6 8 10 120.0

    Location on the grate (m)

    4681

    013

    0 2 4 6 8 10 120.0

    Location on the grate (m)

    4681

    013

    0 1000 2000 3000 4000 5000 6000

    0.0

    CO

    Predicted temperature distribution (x100k) Predicted gas composition (x100k)

    me sec

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    26/55

    FURNACE ENCLOSURE

    GAS FLOW FIELD :

    Mass, Energy, Momentum and

    Species Conservation Equations

    Temperature, Heat Transfer

    Velocity, Turbulent Mixing,

    Chemical Species and Reaction

    +Turbulence, Radiation, Reaction Models

    MGAS, TGAS, VGAS

    FUEL BED

    QRAD

    MODEL

    Fuel Components and Temperature

    Gas Species and Temperature

    Bed Height, etc.

    Combustion, Gas Reaction

    Heat Transfers

    Thermal Engineering Lab

    ( t = 0 )PRIMARY AIR(x)

    x =

    (tmax: Fuel Residence Time)

    x =

    (tmax: Fuel Residence Time)

  • 7/27/2019 Choi_Japanese Combustion Symposium

    27/55

    12001300

    TEMPERATURE

    [ UNIT : K ]

    1500 Tgas1100

    [ UNIT : K ]

    700

    1100

    emperature(K)

    0.2

    CO2

    Mole

    1500

    Tgas

    1400 300

    G

    asT

    0.0

    0.1

    CxHyOz+CO+H2

    Frac

    tion

    x=0.8m ( t=6.6 min )

    1200

    700

    1100

    0.2CO2

    1500

    1550

    SECONDARY

    AIR1300

    0.35

    0.70

    Height(m)

    0.35

    0.70

    Height(m)

    0.35

    0.70

    Height(m)

    0.35

    0.70

    Height(m)

    0.35

    0.70

    Height(m)

    300

    0.0

    .CxHyOz+CO+H2

    1500 1500

    1400

    1400

    500

    0

    0.00

    4 8 12

    Bed

    Distance (m)

    0

    0.00

    4 8 12

    Bed

    Distance (m)

    0

    0.00

    4 8 12

    Bed

    Distance (m)

    0.00

    4 8 12

    Bed

    Distance (m)

    4 8 12

    Bed

    Distance (m)0.70

    (m)

    0.70

    (m)

    0.70

    (m)

    0.70

    (m)

    0.70

    (m)

    0.70

    (m)

    Thermal Engineering Lab

    700

    1100

    0

    0.00

    4 8 12

    0.35

    BedHeight

    Distance (m)

    13

    13

    12

    11

    0

    0.00

    4 8 12

    0.35

    BedHeight

    Distance (m)

    0

    0.00

    4 8 12

    0.35

    BedHeight

    Distance (m)

    0

    0.00

    4 8 12

    0.35

    BedHeight

    Distance (m)

    0.00

    4 8 12

    0.35

    BedHeight

    Distance (m)

    4 8 12

    0.35

    BedHeight

    Distance (m)

    13

    13

    12

    11

  • 7/27/2019 Choi_Japanese Combustion Symposium

    28/55

    Iron Ore Sintering

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    29/55

    Major Phenomena in the sintering bed

    SINTERED

    IGNITION

    SINTERED

    IGNITION

    COMBUSTION

    SINTERED

    ZONE

    SINTERINGCOMBUSTION

    SINTERED

    ZONE

    SINTERING

    RAW MIX ZONE

    ZONE ZONEMIX

    Hearth Bed

    RAW MIX ZONE

    ZONE ZONEMIX

    Hearth BedRAW MIX

    ZONE CHAR COMBUSTION

    MOISTURE EVAPORATIONRAW MIX

    ZONE CHAR COMBUSTION

    MOISTURE EVAPORATION

    x

    y

    COMBUSTION GASx

    y

    COMBUSTION GASHEARTH BED

    MOISTURE CONDENSATIO

    HEARTH BED

    MOISTURE CONDENSATIO

    COMBUSTION GASCOMBUSTION GAS

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    30/55

    Iron ore sintering bed (Moving bed, ContinuousIron ore sintering bed (Moving bed, Continuous

    Bed height (m) 0.57Oxidizer

    Type Air

    # of cells 57 T 300K

    tmax(sec) 1500 vave 0.450m/s

    Solidmateriala

    AirIgnition by burner

    Sinteredore

    Solidmateriala

    AirIgnition by burner

    Sinteredore

    t (sec) 1Ignition

    Type Gas burner

    Size(mm) 1.6/3.2 Value 4 m/s, 1400K

    Time = 0 Time = t1 Time = tnaxCombustion as

    Time = 0 Time = t1 Time = tnaxCombustion as

    mat.

    (includingmass-base

    . Pyrol

    ysis

    -

    Coke 3.8% E -Iron ore 83.2%

    CharA 2.3

    Limestona : Iron ore + Coke + Limestone (~4% combustible)a : Iron ore + Coke + Limestone (~4% combustible)on)

    e .

    o 0.4 Gaseousreact

    ion

    CO+0.5O2CO2n 0.6

    Shrinka e of rid No

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    31/55

  • 7/27/2019 Choi_Japanese Combustion Symposium

    32/55

    IRON ORE SINTERING BED COMPARISON WITH SINTERING POT TEST RESULTS

    2000

    Computed

    25

    O2-Computed

    1200

    1400

    1600

    1800y=0.11my=0.30m

    y=0.49m

    ture

    (K)

    Measured

    15

    20

    ition

    (Vol.%)

    CO2-Computed

    CO-Computed

    O2-Measured

    CO2-Measured

    CO-Measured

    600

    800

    1000

    Tempera

    5

    10

    Gascompos

    0 200 400 600 800 1000 1200 1400

    Time (sec)

    0 200 400 600 800 1000 1200 1400

    0

    Time(sec)

    Temperature profile flue gas composition in the sintering bed

    4

    5

    ec

    )

    Extingushed

    m/min) 1600

    2000

    Sintering timeFlame front speed (FFS) and

    Sintering time for various air

    velocities and particle

    2

    3

    SinteringTime(s

    eFrontSpeed(c

    Coke diameter : 1.2mm

    800

    1200

    FFSQuantification of the

    Thermal Engineering Lab0.2 0.3 0.4 0.5 0.6 0.7 0.8

    1

    Fla

    Averaged Air Velocity (m/s)

    Coke diameter : 1.4mm

    Coke diameter : 1.6mm

    0

    400

    (Flame Front Speed,

    Sintering Time)

  • 7/27/2019 Choi_Japanese Combustion Symposium

    33/55

    Flame Front Speed (FFS)

    Combustion Zone Thickness (CZT)

    Melting Zone Thickness (MZT) : for an Iron Ore Sintering BedCZT : Combustion Zone Thickness

    yy35

    40MZT : Melting Zone Thickness

    CZT(AirV=0.26m/s)

    CZT(AirV=0.32m/s)

    CZT(AirV=0.45m/s)

    CZT(AirV=0.52m/s)

    =

    1800

    2000

    )

    MaxT(AirV=0.26m/s)

    MaxT(AirV=0.32m/s)

    MaxT(AirV=0.45m/s)

    MaxT AirV=0.52m/s

    Sintered Zone

    CZT

    Sintered Zone

    CZT

    25

    30

    s(cm)

    .

    MZT(AirV=0.32m/s)

    MZT(AirV=0.45m/s)MZT(AirV=0.52m/s) 1600

    mperature(

    .

    Melt ing Zone

    Combustion Zone

    Melt ing Zone

    Combustion Zone

    10

    15Thickne

    1200

    M

    aximumT

    Raw Mix

    mperature

    MZT

    MaxT

    Raw Mix

    mperature

    MZT

    MaxT

    0 400 800 1200 1600 2000

    0

    5

    800

    1000

    Thermal Engineering Lab

    1373K

    1000K

    T1373K

    1000K

    T

    Time (sec)

    Quanti fied resul ts : CZT, MZT, MaxT (for various air

    supply)

  • 7/27/2019 Choi_Japanese Combustion Symposium

    34/55

    Coke Oven

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    35/55

    Plastic

    (1) Wet Coal

    (

  • 7/27/2019 Choi_Japanese Combustion Symposium

    36/55

    Height (6m) is much longer than width(0.45m)

    1D model

    Bed width (m) 0.22

    Oxidizer

    Type

    No oxidizer# of cells 44 T

    tmax(sec) 54000 vave

    t (sec) 10 Type -

    blend but a single coal

    Input data - Elemental/Proximate analysis

    data

    Solidmat.

    (including

    Size 3mm Value -

    Moisture 7%Pyrolysis

    A 1.5104

    Volatile 24.2% E 30kcal/kmol

    Char 60.5% A -

    Homogeneous porous mediamass-basecomposition)

    Ash 8.3% E -

    o 0.4Gaseousreaction -

    n 1

    Shrinkage of grid No

    Heat

    GasCoke oven (Batch type fixed bed)

    Heat

    GasCoke oven (Batch type fixed bed)

    fromhot wall Raw

    cokingcoal

    Coke

    fromhot wall Raw

    cokingcoal

    Coke

    Thermal Engineering Lab

    Time = 0 Time = t1

    Time = tmax

    Time = 0 Time = t1

    Time = tmax

  • 7/27/2019 Choi_Japanese Combustion Symposium

    37/55

    -

    Experimental data Temperature distribution within the oven

    Time

    700

    800

    900

    1000

    1100

    e(oC)

    300

    350

    400

    450

    re(mmH

    2O)

    #2 charging hole

    #3 charging hole

    1coke plant No. 2, No. 2 ovenMoisture : 5.8%

    200

    300

    400

    500

    600

    Temperatur

    100

    150

    200

    250

    ternalgaspress

    0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19Time (h)

    0

    100

    0

    50 In

    Temperature change at the center Temperature change at the wall

    1000

    1200

    1400

    tu

    re(K)

    LV(0.15)

    MV(0.25)

    HV(0.35)1000

    1200

    tu

    re(K)

    LV(0.15)

    MV(0.25)

    HV(0.35)

    400

    600

    800

    Tempera

    400

    600

    800

    Tempera

    Thermal Engineering Lab

    0 5 10 15 20200

    Time (hour)

    0 5 10 15 20

    200

    Time (hour)

  • 7/27/2019 Choi_Japanese Combustion Symposium

    38/55

    Blast Furnace

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    39/55

    Modeling

    -

    Assumptions

    2 phases - Gas and solid phases

    Layer structure is obtained by Lo/Lc data & solid velocity ape o co es ve zone s e ne y range o so empera ure o ~ o

    Shape of deadman(stagnant zone) is assumed

    Layer properties (Dp, porosity) are function of locations

    Raceway is treated as a boundary condition

    # of cells 24x76 Reduction Rate

    Size 20.0mma

    50.0mmb3Fe2O3+CO

    ->2Fe3O4+CO2

    Sold material : sintered ore + coke + flux(limestone)Blast furnace gas

    ... .

    ... .. .

    Solidmat. [17]

    .

    0.45b

    0.10c

    3 4 ->FeO+CO2FeO+CO->Fe+CO2

    Feeding

    rate(kg/s)

    180.8a

    36.7

    b

    1/4Fe3O4+CO

    ...

    . ... ... .. . . ...

    ... ...

    ..

    . ... . .. .... .

    .. ..

    cokeore.

    ..... .

    -> e+ 2

    Blast air

    T(oC) 1191

    P(MPa) 0.42 Solution-loss Rate

    V(Nm3/min) 6150 C+CO2->2CO [18]

    ...

    . ..... ..

    . .. .. .. . .

    .. ... . ..

    Solid flow

    Thermal Engineering Lab

    PCRd(kg/s) 15.9 -asGas

    Liquid : pig i ron + slaga: Iron ore, b: Coke, c: Cohesive zone, d: Pulverized coal rate

  • 7/27/2019 Choi_Japanese Combustion Symposium

    40/55

    29.5

    30

    30.5

    28

    28.5

    29

    Height(m) .

    Coke+Ore

    O.L

    C.COKE

    O.S

    27

    27.5

    0 1 2 3 4

    COKE

    a us m

    8

    29

    29.5

    30

    (m)

    5

    6

    7Lo/Lc

    smoothing of Lo/Lc

    27.5

    28

    28.5

    Heigh

    1

    2

    3

    4

    Lo/Lc

    COKE

    Thermal Engineering Lab

    0 1 2 3 4

    Radius(m) 0 1 2 3 4

    0

    Radius(m)

  • 7/27/2019 Choi_Japanese Combustion Symposium

    41/55

    7

    Case A

    5

    6

    Case C

    c

    2

    3Lo/

    0 1 2 3 4 5

    0

    1

    Radius(m)

    Lo/Lc data (Case A : Base)

    Thermal Engineering Lab

    Case A Case B Case C

  • 7/27/2019 Choi_Japanese Combustion Symposium

    42/55

    -

    Thermal Engineering LabCase A Case B Case C

  • 7/27/2019 Choi_Japanese Combustion Symposium

    43/55

    Thermal Engineering Lab

    Fe2O3 Fe3O4 FewO Fe

  • 7/27/2019 Choi_Japanese Combustion Symposium

    44/55

    =

    1.0

    Fe O

    0.35

    0.40 CO2

    CO

    0.6

    .

    action

    2 3

    Fe3O

    4

    FewO

    Fe0.20

    0.25

    0.30

    action

    0.2

    0.4

    Mas

    sf

    0.10

    0.15

    Mas

    sF

    10 15 20 25

    0.0

    5 10 15 20 25 30

    0.00

    0.05

    Height(m) Height(m)

    Mass Fraction of Ore Mass Fraction of Gas

    Thermal Engineering Lab

  • 7/27/2019 Choi_Japanese Combustion Symposium

    45/55

    Reactions of Indirect Reduction

    2 3 3 4 23 ( ) ( ) 2 ( ) ( )Fe O s CO g Fe O s CO g+ +

    Shrinking Core Model

    3 4 2

    3( ) ( ) ( ) ( )

    4 3 4 3w

    wFe O s CO g Fe O s CO g

    w w+ +

    2we s g w e s g+ +

    3 4 21 3( ) ( ) ( ) ( ) ( 848 )4 4

    sFe O s CO g Fe s CO g T K + +