36
Chiral Fermion on Curved Domain-wall Shoto Aoki, in collaboration with Hidenori Fukaya 28, Sep, 2021 Osaka university

Chiral Fermion on Curved Domain-wall

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chiral Fermion on Curved Domain-wall

Chiral Fermion on Curved Domain-wall

Shoto Aoki, in collaboration with Hidenori Fukaya

28, Sep, 2021

Osaka university

Page 2: Chiral Fermion on Curved Domain-wall

Contents

Introduction

S1 ↪→ R2

S2 ↪→ R3

Summary

2

Page 3: Chiral Fermion on Curved Domain-wall

Contents

Introduction

S1 ↪→ R2

S2 ↪→ R3

Summary

3

Page 4: Chiral Fermion on Curved Domain-wall

Motivation

We propose a lattice formulation of fermion in a curved space,embedding a curved domain-wall into a flat square lattice.

Euclidean lattice space

Curved space

Embed asdomain-wall

(Nash [1956])

Cf. Brower et al. [2017] and Ambjørn et al. [2001] studied on triangle lattices.

4

Page 5: Chiral Fermion on Curved Domain-wall

Domain-wall and edge states

We consider a Dirac operator with a domain-wall mass

H = −iσ1(∂

∂x+ σ3εM

), ε(x) =

{−1 (x < 0)

1 (x > 0),

Domain-wall is a boundary where a sign of mass changes.

A Chiral 0-mode

ψ = e−M |x|

(1

0

)

appears at x = 0.edge state

xO

m

−m

Fig 1: Edge state localized at thedomain-wall.

5

Page 6: Chiral Fermion on Curved Domain-wall

Embedding a curved space

For any n-dim. Riemann space (Mn, g), there is an embeddingf :Mn → Rm (m≫ n) such that Mn is identified as

xµ = fµ(x1, · · · , xn) (µ = 1, · · · ,m) (1)(xµ : Cartesian coordinates of Rm

xi : coordinates of Mn

and the metric g is induced as

gij =∑µν

∂fµ

∂xiδµν

∂fν

∂xj. (2)

Therefore (Mn, g) can be identified as a submanifold of Rm.

cf. Nash [1956].

6

Page 7: Chiral Fermion on Curved Domain-wall

Our Work

We find that

• Edge states are localizedat the curved domain-wall(S1 or S2 in this work),

• They feel gravity (throughinduced spin connection).

Cf. Similar studies in condensed matter physics [Imura et al. [2012],

Parente et al. [2011]].

7

Page 8: Chiral Fermion on Curved Domain-wall

Contents

Introduction

S1 ↪→ R2

S2 ↪→ R3

Summary

8

Page 9: Chiral Fermion on Curved Domain-wall

Plan of this section

We embed an S1 domain-wall into R2 and study

• Spectrum of Dirac operator,• Edge states,• Their effective Dirac op.

both in the continuum and on the lattice.

O x

y

−M

+M

Fig 2: Continuum Case Fig 3: Lattice case9

Page 10: Chiral Fermion on Curved Domain-wall

Dirac op in Continuum case

The domain-wall is given by

εA(r) =sign(r − r0)

=

{−1 (r < r0)

1 (r ≥ r0), O x

y

−M

+M

and the Dirac op. is

H = σ3

∑i=1,2

(σi

∂xi

)+Mε

=

(Mε e−iθ( ∂∂r −

ir∂∂θ )

−eiθ( ∂∂r +ir∂∂θ ) −Mε

).

(3)

10

Page 11: Chiral Fermion on Curved Domain-wall

Edge states

When M is large enough, edgestates are

ψE,jedge ≃

√M

4πre−M|r−r0|

(ei(j−

12)θ

ei(j+12)θ

).

They are "chiral" eigenstates of

γnormal :=σ1 cos θ + σ2 sin θ

=

(0 e−iθ

eiθ 0

),

with eigenvalue +1.

Fig 4: Edge state whenM = 5, r0 = 1

11

Page 12: Chiral Fermion on Curved Domain-wall

Effective Dirac op

Fig 5: Eigenvalue of edge statesat M = 5, r0 = 1

Effective Dirac op on the chiraledge states is

HS1 =1

r0

(−i ∂∂θ

+1

2

)(4)

E =j

r0

(j = ±1

2,±3

2, · · ·

).

(5)

The 12 is identified as the

induced spin connection.

Gravity appear as the gap of the spectrum

12

Page 13: Chiral Fermion on Curved Domain-wall

Lattice domain-wall fermion

Let (Z/nZ)2 is a 2-dim. lattice. Thedomain-wall is given by

ε(x) =

{−1 (|x| < r0)

1 (|x| ≥ r0),

and the (Wilson) Dirac op is

H = σ3

∑i=1,2

[σi

∇fi +∇b

i

2−r

2∇f

i ∇bi

]+ ϵM

,(∇f

i ψ)x = ψx+i − ψx, (∇biψ)x = ψx − ψx−i

where periodic boundary condition isimposed in the x and y direction. Fig 6: Edge state

Cf. Kaplan [1992] studied a flat domain-wall in R2m+113

Page 14: Chiral Fermion on Curved Domain-wall

Continuum Limit

Fig 7: the Dirac eigenvalue spectrumnormalized by the circle radius whenMa = 0.7, r0 = L/4.

L:Lattice sizea:lattice spacing

14

Page 15: Chiral Fermion on Curved Domain-wall

Relative Error

Fig 8: error =∣∣∣Econ

12

− E lat12

∣∣∣/Econ12

is a relativeerror of E1/2 between continuum and latticewhen r0 = L

4 . a is lattice distance andn→ ∞ means continuum limit.

Finite a scaling is notmonotonic butdecreasing.

15

Page 16: Chiral Fermion on Curved Domain-wall

Contents

Introduction

S1 ↪→ R2

S2 ↪→ R3

Summary

16

Page 17: Chiral Fermion on Curved Domain-wall

S2 domain-wall

The domain-wall is given by

ε(r) =sign(r − r0)

=

{−1 (r < r0)

1 (r ≥ r0),

and the Dirac op is

H = γ0(γj

∂xj+Mε

)=

(Mε σj∂j

−σj∂j −Mε

)(6)

γ0 = σ3 ⊗ 1, γj = σ1 ⊗ σj (7)

17

Page 18: Chiral Fermion on Curved Domain-wall

Edge states and Their spectrum

In the large M limit, edge states are

ψ±E,j,j3edge ≃

√M

2

e−M|r−r0|

r

(χ(±)j,j3

σ·xrχ(±)j,j3

).

E ≃j + 1

2

r0

(j =

1

2,3

2, · · ·

)They are "chiral" eigenstates of

γnormal :=

3∑i=1

xi

rγi =

(0 x·σ

rx·σr 0

)(8)

with eigenvalue +1.

Effective Dirac op is obtained as

HS2 =1

r0(σ ·L+ 1), (9)

which acts on a two-component spinor χ.

18

Page 19: Chiral Fermion on Curved Domain-wall

Effective Dirac op and Dirac op. of S2

Effective Dirac op is obtained as

HS2 =1

r0(σ ·L+ 1) (10)

gauge trsf. by s =

(e−i

ϕ2 cos

(θ2

)−e−i

ϕ2 sin

(θ2

)ei

ϕ2 sin

(θ2

)ei

ϕ2 cos

(θ2

) )

s−1HS2s = −σ3r0

(σ1

∂θ+ σ2

(1

sin θ

∂φ

Spin conn. of S2

− cos θ

2 sin θσ1σ2

))= −σ3

r0/DS2 . (11)

Edge states feel gravity of the spherical domain-wall.

Cf. [Takane and Imura [2013]].

19

Page 20: Chiral Fermion on Curved Domain-wall

Euler number of S2

We get the spin connection

ω∆ = − cos θ

2 sin θσ1σ2 sin θdφ = −1

2iσ3 cos θdφ, (12)

So the Levi-Civita connection ω and Riemann curvature R aregiven by

ω =

(0 − cos θdφ

cos θdφ 0

)(13)

R

2π=dω + ω2

2π=

0

Euler class of S2

sin θ

2πdθdφ

− sin θ2π dθdφ 0

(14)

The Euler number of S2 is identified as

χ(S2) =

∫S2

sin θ

2πdθdφ = 2. (15)

20

Page 21: Chiral Fermion on Curved Domain-wall

Induced gravity makes a gap in the spectrum.

Fig 9: Spectrum of edge states whenM = 5, r0 = 1

Eigenvalue

E ≃ ±j + 1

2

r0(16)

Degeneracy

2j + 1 (17)

(Euler number of S2) = 221

Page 22: Chiral Fermion on Curved Domain-wall

Lattice Domain-wall Fermion

Let (Z/nZ)3 is a 3-dim. lattice. Thedomain-wall is given by

ε(x) =

{−1 (|x| < r0)

1 (|x| ≥ r0),

and the (Wilson) Dirac op is

H = γ3

∑i=1,2

[γi

∇fi +∇b

i

2−r

2∇f

i ∇bi

]+ ϵM

.(∇f

i ψ)x = ψx+i − ψx, (∇biψ)x = ψx − ψx−i

Fig 10: S2 Domain-wall onlattice

22

Page 23: Chiral Fermion on Curved Domain-wall

Edge states

Fig 11: Edge state localized at S2 whenM=0.7 and lattice size = 163

Fig 12: Slice at z = 7

23

Page 24: Chiral Fermion on Curved Domain-wall

Spectrum in Lattice case

Fig 13: Spectrum of edge states at S2 when n = 16,M = 0.7.

It reproduces the spectrum of continuum!24

Page 25: Chiral Fermion on Curved Domain-wall

Contents

Introduction

S1 ↪→ R2

S2 ↪→ R3

Summary

25

Page 26: Chiral Fermion on Curved Domain-wall

Summary

We have considered S1 and S2 as a curved domain-wall onsquare lattice. We have confirmed that

• Chiral edge-localized states appear at the domain-wall.

• They feel gravity through the induced spin connection.

26

Page 27: Chiral Fermion on Curved Domain-wall

Outlook

• Systematics in the continuum limit

• Gravitational anomaly inflow.

• Index theorem with a nontrivial curvature.

27

Page 28: Chiral Fermion on Curved Domain-wall

Thank You

28

Page 29: Chiral Fermion on Curved Domain-wall

Reference i

Ambjørn, J., Jurkiewicz, J., and Loll, R. (2001). Dynamically triangulating lorentzianquantum gravity. Nuclear Physics B, 610(1):347–382.

Brower, R. C., Weinberg, E. S., Fleming, G. T., Gasbarro, A. D., Raben, T. G., and Tan,C.-I. (2017). Lattice dirac fermions on a simplicial riemannian manifold. PhysicalReview D, 95(11).

Imura, K.-I., Yoshimura, Y., Takane, Y., and Fukui, T. (2012). Spherical topologicalinsulator. Phys. Rev. B, 86:235119.

Kaplan, D. B. (1992). A method for simulating chiral fermions on the lattice. PhysicsLetters B, 288(3):342–347.

Nash, J. (1956). The imbedding problem for riemannian manifolds. Annals ofMathematics, 63(1):20–63.

Parente, V., Lucignano, P., Vitale, P., Tagliacozzo, A., and Guinea, F. (2011). Spinconnection and boundary states in a topological insulator. Phys. Rev. B, 83:075424.

Takane, Y. and Imura, K.-I. (2013). Unified description of dirac electrons on a curvedsurface of topological insulators. Journal of the Physical Society of Japan,82(7):074712.

29

Page 30: Chiral Fermion on Curved Domain-wall

Contents

Appendix

Page 31: Chiral Fermion on Curved Domain-wall

Effective Dirac op

We consider a normalized edge state as

ψedge = ρ(r)

(χ(θ)

eiθχ(θ)

), χ(θ + 2π) = χ(θ) (18)∫ ∞

0dr2rρ2 = 1,

∫ 2π

0dθχ†χ = 1 (19)

and let 2rρ2 → δ(r − r0) (M → ∞). Then we obtain∫dxdyψ†

edgeHψedge →∫ 2π

0

dθχ†

Effective Dirac op HS1 !!

1

r0

(−i ∂∂θ

+1

2

)χ (20)

The factor 12 means induced spin connection.

Page 32: Chiral Fermion on Curved Domain-wall

Effective Dirac op

We consider a normalized edge state as

ψedge = ρ(r)

(χ(θ, φ)

x·σr χ(θ, φ)

)(21)∫ ∞

0drr22ρ2 = 1,

∫S2

χ†χ = 1, (22)

and we assume 2r2ρ2 → δ(r − r0) (M → ∞). Thus∫dx3ψ†

edgeHψedge =

∫ ∞

0dr2r2ρ2

∫S2

χ† 1

r(σ ·L+ 1)χ

→∫S2

χ†

Effective Dirac op HS2 !!

1

r0(σ ·L+ 1)χ (M → ∞), (23)

where L is an orbital angular momentum.

Page 33: Chiral Fermion on Curved Domain-wall

Effective Dirac op and Dirac op. of S2

The gauge transformation using

s =

(e−iϕ

2 cos(θ2

)−e−iϕ

2 sin(θ2

)ei

ϕ2 sin

(θ2

)ei

ϕ2 cos

(θ2

) ) (24)

changes χ→ s−1χ and

HS2 →s−1HS2s

=1

r0

(0 − ∂

∂θ + isin θ

∂∂ϕ − 1

2cos θsin θ

∂∂θ + i

sin θ∂∂ϕ + 1

2cos θsin θ 0

)

=− σ3r0

(σ1

∂θ+ σ2

(1

sin θ

∂φ

Spin conn. of S2

− cos θ

2 sin θσ1σ2

))=− σ3

r0/DS2 . (25)

Edge states are affected by the spin connection of the sphericaldomain-wall [Takane and Imura [2013]].

Page 34: Chiral Fermion on Curved Domain-wall

Goal

Embed

Curved domain-wall

S1, S2 into a square lattice.

• Edge states appear !

• They feel gravity !

Page 35: Chiral Fermion on Curved Domain-wall

Main result

• Edge states appear at the curved domain-wall,

• They feel gravity or curvature through the induced spinconnection.

Cf. Similar studies in condensed matter physics.[Imura et al.[2012], Parente et al. [2011]].

Page 36: Chiral Fermion on Curved Domain-wall

Domain-wall and edge states

If the sign of mass is flipped as

ε(x) =

{−1 (x < 0)

1 (x > 0),

then localized states appear atx = 0.

xO

m

−m

Fig 14: Edge state localized at thedomain-wall.