15
Chera Rogers West Virginia Wesleyan College Host: Florida State University

CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

Chera  Rogers  West  Virginia  Wesleyan  College  Host:  Florida  State  University  

Page 2: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• Introduction  • Thermal  Concept  of  Point  Defects  • Diffusion  • Mechanisms  • How  to  Study  Diffusion  • Characterization  of  Diffusion  • Random  Walk  Theory  • Numerical  Approach  of  Diffusion  • Results  

Page 3: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• In  a  perfect  crystal,  mass  and  charge  density  have  the  periodicity  of  the  lattice.  • Solids  in  nature  are  not  perfect  crystals;  they  have  defects.  

•  The  creation  of  a  point  defect  or  extended  defects  disturbs  this  periodicity.  

http://www.nyu.edu/classes/tuckerman/honors.chem/lectures/lecture_20/lattices.jpg  

Page 4: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• Concept:  Thermal  Agitation  causes  the  transitions  of  atoms  from  their  normal  lattice  sites  into  interstitial  positions  leaving  behind  lattice  vacancies.  

• When  a  vacancy  is  created,  the  crystal  lattice  relaxes  around  the  vacant  site  and  the  vibrations  of  the  crystal  are  altered.  • When  the  interstitials  are  created  the  crystal  lattice  is  strained  around  that  interstitial.    

Page 5: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• Describes  the  spread  of  particles  through  random  motion  from  regions  of  high  concentration  to  low  concentration.    • Diffusion  is  caused  by  the  Brownain  motion  (random  motion)  of  atoms  or  molecules  that  leads  to  complete  mixing  

• Example  :  Ink  in  Water  

Page 6: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• Mathematical  framework  by  Adolf  Fick  • Fick  introduced  the  concept  of  diffusion  coefficient  and  suggested  a  linear  response  between  the  concentration  gradient  and  flux.  

Fick’s  First  Law:  

Fick's  first  law  is  formally  equivalent  to  Fourier's  Law  of  heat  flow  and  Ohm’s  Law:  

J = −D∇C

Jq = −k∇T

Je = −σ∇V

J:  Diffusion  Flux  D:  Diffusion  Coefficient  C:  Concentration  Gradient    

Page 7: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• In  diffusion  process  the  number  of  diffusing  particles  is  conserved.  • Inflow  –  outlfow  =  accumulation  rate  • The  continuity  equation  and  Fick’s  first  law  can  be  combined  to  create  Fick’s  second  law.  

−∇ • J =∂C∂t

∂C∂t

=∇⋅ (D∇C)

J = −D∇C

−∇ • J =∂C∂t

Page 8: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

Vacancy  Mechanism  

Interstitial  Mechanism  

Interstitialcy  Mechanism  

Exchange  Mechanism   Ring  Mechanism  

Page 9: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• The  diffusion  coefficient  can  be  calculated  by  the  Einstein-­‐Relation:  

D =R2

Mean  square  displacement  

Diffusion  Coefficient  

Calculated  by  Random  Walk  

R2

Page 10: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

• Diffusion  in  solids  results  from  any  individual  displacements  (jumps)  of  the  diffusing  particles  in  a  random  fashion.    • The  total  distance  traveled  by  a  particle  is  sum  of  a  sequence  of  jump  distances  

R = r1l=1

nstep

R2 = rl2 +

l=1

nstep−1

∑ rl ⋅ rjJ = l+1

nstep

∑l=1

nstep

R2 = rl2 + 2

l=1

nstep−1

∑ rl ⋅ rJJ = l+1

nstep

∑l=1

nstep

∑Average  R  

Page 11: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

D =R2

τ =nZΓ

D =R2

4ZΓn

Z=4  so  they  cancel  each  other  out  leaving  you  with:  

D =R2

Γ = vo exp − ΔGkBT

⎝ ⎜

⎠ ⎟

ΔG :kB :vo :T :

Gibbs  free  energy  of  activation  

Boltzmann  constant  

Attempt  frequency    

Temperature  

R :n :

Final  position  of  the  tracer  

Number  of  steps  

Page 12: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

 In  the  Random  Walk  Code  we  used  Monte  Carlo  Method.   We  picked  random  numbers  between  (0,1)  and  depending  on  the  number  there  were  4  choices  of  step  direction.     Within  the  innermost  loop  each  step  is  based  on  a  random  number  between  (0,1)   In  one  walk  ,  with  50  different  steps,  50  different  random  numbers  were  picked.  

increment i :if i<=nstep

if i>nstep -> exit

take step:rnd <=0.25 -> x+dx , 0.25<rnd<=0.5->x-dx

0.5<rnd<=0.75->y-dx0.75<rnd<=1->y+dx

Get Random #'s -> rnd

for i=1,2,...nstep

xij=0, yij=0Initial position

for j=1,2, .. nwalk

Increment jif j <= nwalk

if j > nwalk ->exit

Page 13: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

Increasing  the  number  of  walks    

• As  we  increased  the  number  of  walks  the  diffusion  coefficient  converge  to  their  “true”  values.  

• As  we  increased  the  number  of  walk  the  average  distance  traveled  aproached  zero.  

Page 14: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&

•   As  expected,  X  and  Y  components  of  the  resultant  poistion  vector  of  the  Random  walks  are  centered  around  0.  

Page 15: CheraRogers& West&Virginia&WesleyanCollege& Host ...ww2.che.ufl.edu/reu/student_presentations/2010/Rogers_presentation.pdfR2 4τ € τ= n ZΓ € D= R2 4 ZΓ n Z=4&so&they& cancel&each&