18
Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel November 6, 2018 Marc R. Roussel Crystal field theory November 6, 2018 1 / 18

Chemistry 1000 Lecture 26: Crystal field theorypeople.uleth.ca/~roussel/C1000/slides/26color.pdf · 2018. 11. 6. · Crystal eld theory Octahedral crystal elds In an octahedral complex,

  • Upload
    others

  • View
    4

  • Download
    2

Embed Size (px)

Citation preview

  • Chemistry 1000 Lecture 26: Crystal field theory

    Marc R. Roussel

    November 6, 2018

    Marc R. Roussel Crystal field theory November 6, 2018 1 / 18

  • Crystal field theory

    The d orbitals

    −20−10−20

    −20

    −10

    −10

    0

    0

    0

    10

    10

    20

    2010 y

    z

    20x

    −20

    −10

    −24

    −20

    −20

    −16

    −12

    −10

    −8

    −400

    0

    4

    8

    10

    12

    16

    20

    20

    24

    10y

    z

    20x

    3dx2−y2 3dz2

    −20−10−20

    −20

    −10

    −10

    0

    0

    0

    10

    10

    20

    2010 y

    z

    20x

    −20−10−20

    −20

    −10

    −10

    0

    0

    0

    10

    10

    20

    2010 y

    z

    20x

    −20−10−20

    −20

    −10

    −10

    00

    0

    10

    10

    20

    2010 y

    z

    20x

    3dxy 3dxz 3dyz

    Marc R. Roussel Crystal field theory November 6, 2018 2 / 18

  • Crystal field theory

    Crystal field theory

    In an isolated atom or ion, the d orbitals are all degenerate, i.e. theyhave identical orbital energies.

    When we add ligands however, the spherical symmetry of the atom isbroken, and the d orbitals end up having different energies.

    The qualitative appearance of the energy level diagram depends onthe structure of the complex (octahedral vs square planar vs. . . ).

    The relative size of the energy level separation depends on the ligand,i.e. some ligands reproducibly create larger separations than others.

    Marc R. Roussel Crystal field theory November 6, 2018 3 / 18

  • Crystal field theory

    Octahedral crystal fields

    In an octahedral complex, the dx2−y2 and dz2 orbitals point directly atsome of the ligands while the dxy , dxz and dyz do not.

    This enhances the repulsion between electrons in a metal dx2−y2 ordz2 orbital and the donated electron pair from the ligand, raising theenergy of these metal orbitals relative to the other three. Thus:

    dddxy xz yz

    z2 x2−y2dd

    z2 x2−y2dd

    isolated atom atom in octahedral field

    dddxy xz yz

    ∆ = crystal-field splitting

    Marc R. Roussel Crystal field theory November 6, 2018 4 / 18

  • Crystal field theory

    Crystal-field splitting

    Note: Sometimes we write ∆o instead of ∆ to differentiate thecrystal-field splitting in an octahedral field from the splittingin a field of some other symmetry (e.g. ∆t for tetrahedral).

    Marc R. Roussel Crystal field theory November 6, 2018 5 / 18

  • Crystal field theory

    Electron configurations

    At first, just follow Hund’s rule, e.g. for a d3 configuration,

    dddxy xz yz

    z2 x2−y2dd

    P = pairing energy = extra electron-electron repulsion energyrequired to put a second electron into a d orbital + loss of favorablespin alignment

    Marc R. Roussel Crystal field theory November 6, 2018 6 / 18

  • Crystal field theory

    For d4, two possibilities:

    P < ∆ P > ∆

    2 x2−y2dd

    dddxy xz yz

    z

    dddxy xz yz

    z2 x2−y2dd

    low spin high spin

    Experimentally, we can tell these apart using the paramagnetic effect,which should be twice as large for the high-spin d4 than for thelow-spin d4 configuration.

    Marc R. Roussel Crystal field theory November 6, 2018 7 / 18

  • Crystal field theory

    Spectrochemical series

    We can order ligands by the size of ∆ they produce.

    =⇒ spectrochemical series

    A ligand that produces a large ∆ is a strong-field ligand.

    A ligand that produces a small ∆ is a weak-field ligand.

    (strong) CO ≈ CN− > phen > en > NH3 > EDTA4− > H2O >ox2− ≈ O2− > OH− > F− > Cl− > Br− > I− (weak)

    Marc R. Roussel Crystal field theory November 6, 2018 8 / 18

  • Crystal field theory

    Example: Iron(II) complexes

    Electronic configuration of Fe2+: [Ar]3d6

    [Fe(H2O)6]2+ is high spin:

    2 x2−y2dd

    dddxy xz yz

    z

    From the spectrochemical series, we know that all the ligands afterH2O in octahedral complexes with Fe

    2+ will also produce high-spincomplexes, e.g. [Fe(OH)6]

    4− is high spin.

    (strong) CO ≈ CN− > phen > en > NH3 > EDTA4− > H2O >ox2− ≈ O2− > OH− > F− > Cl− > Br− > I− (weak)

    Marc R. Roussel Crystal field theory November 6, 2018 9 / 18

  • Crystal field theory

    Example: Iron(II) complexes (continued)

    [Fe(CN)6]4− is low spin:

    2 x2−y2dd

    dddxy xz yz

    z

    Somewhere between CN− and H2O, we switch from low to high spin.

    (strong) CO ≈ CN− > phen > en > NH3 > EDTA4− > H2O >ox2− ≈ O2− > OH− > F− > Cl− > Br− > I− (weak)

    Marc R. Roussel Crystal field theory November 6, 2018 10 / 18

  • Absorption spectroscopy

    Color

    Typically in the transition metals, ∆ is in the range of energies ofvisible photons.

    Absorption:

    2 x2−y2dd

    dddxy xz yz

    z

    +hν →2 x2−y2dd

    dddxy xz yz

    z

    Colored compounds absorb light in the visible range.The absorbed light is subtracted from the incident light:

    White light Absorption spectrum Transmitted light

    Inte

    nsity

    λ λ

    Ab

    so

    rptio

    n

    Inte

    nsity

    λ

    Marc R. Roussel Crystal field theory November 6, 2018 11 / 18

  • Absorption spectroscopy

    Example: copper sulfate

    CuSO4 · 5 H2O CuSO4 solution vs blank

    Marc R. Roussel Crystal field theory November 6, 2018 12 / 18

  • Absorption spectroscopy

    Example: copper sulfateVisible spectrum

    CuSO4 in water

    violet blue green red

    ye

    llo

    w

    ora

    ng

    e

    Marc R. Roussel Crystal field theory November 6, 2018 13 / 18

  • Absorption spectroscopy

    The color wheel

    Colors in opposite sectors are complementary.

    Example: a material that absorbs strongly in the red will appear green.

    Marc R. Roussel Crystal field theory November 6, 2018 14 / 18

  • Absorption spectroscopy

    Simple single-beam absorption spectrometer

    sample detectormonochromatorsource

    Marc R. Roussel Crystal field theory November 6, 2018 15 / 18

  • Absorption spectroscopy

    Dual-beam absorption spectrometer

    source monochromator

    beam

    splitter

    mirror

    sample

    blank

    mirror

    comparator

    Marc R. Roussel Crystal field theory November 6, 2018 16 / 18

  • Absorption spectroscopy

    Example: Cobalt(III) complexes

    The [Co(H2O)6]3+ ion is green.

    From the color wheel, this corresponds to absorption in the red.

    The [Co(NH3)6]3+ ion is yellow-orange.

    It absorbs in the blue-violet.

    The [Co(CN)6]3− ion is pale yellow.

    It absorbs mostly in the ultraviolet, with an absorption tail in theviolet.

    Note that these results are consistent with the spectrochemical series:The d level splitting is orderedH2O < NH3 < CN

    −.

    Marc R. Roussel Crystal field theory November 6, 2018 17 / 18

  • Absorption spectroscopy

    Examples: Colorless ions

    Titanium(IV) ion =⇒ d0 configuration

    Zinc(II) ion =⇒ d10 configuration

    Marc R. Roussel Crystal field theory November 6, 2018 18 / 18

    Crystal field theoryAbsorption spectroscopy