76
Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

Embed Size (px)

Citation preview

Page 1: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Chapter 8 & 9Concepts of Chemical

Bonding

Chemistry, The Central Science, 10th editionTheodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

John D. BookstaverSt. Charles Community College

St. Peters, MO 2006, Prentice Hall, Inc.

Page 2: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Chemical Bonds

• Three basic types of bonds:Ionic

Covalent

Metallic

Page 3: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Ionic Bonding

Page 4: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

As we saw in the last chapter, it takes 495 kJ/mol to remove electrons from sodium.

Page 5: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

We get 349 kJ/mol back by giving electrons to chlorine.

Page 6: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

• But these numbers don’t explain why the reaction of sodium metal and chlorine gas to form sodium chloride is so exothermic!

Page 7: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

• There must be a third piece to the puzzle.

• What is as yet unaccounted for is the electrostatic attraction between the newly formed sodium cation and chloride anion.

Page 8: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Lattice Energy

• This third piece of the puzzle is the lattice energy:The energy required to completely separate a mole of

a solid ionic compound into its gaseous ions.• The energy associated with electrostatic

interactions is governed by Coulomb’s law:

Eel = Q1Q2

d

Page 9: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Coulomb’s Law

Where Q1 Q2 are the charges on the particles, d is the distance between their centers and is a constant, 8.99 x 109 J-m/C2

Eel = Q1Q2

d

Page 10: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Lattice Energy

• Lattice energy, then, increases with the ________________________________.

• It also increases with ____________________.

Page 11: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Example

Which substance would you predict to have the greatest lattice energy, AgCl, CuO, or CrN? Explain.

Page 12: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

By accounting for all three energies (ionization energy, electron affinity, and lattice energy), we can get a good idea of the energetics involved in such a process.

Page 13: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Energetics of Ionic Bonding

• These phenomena also helps explain the “octet rule.”

• Metals, for instance, tend to stop losing electrons once they attain a noble gas configuration because energy would be expended that cannot be overcome by lattice energies.

Page 14: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Covalent Bonding

• In these bonds atoms share electrons.

• There are several electrostatic interactions in these bonds:

Page 15: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Polar Covalent Bonds

• Although atoms often form compounds by sharing electrons, the electrons are not always shared equally.

• Fluorine pulls harder on the electrons it shares with hydrogen than hydrogen does.

• Therefore, the fluorine end of the molecule has more electron density than the hydrogen end.

Page 16: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Electronegativity:• The ability of atoms in a

molecule to attract electrons to itself.

• On the periodic chart, electronegativity increases as you go… …from left to right across a

row. …from the bottom to the top

of a column. With the most

electronegative element being fluorine.

Page 17: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Polar Covalent Bonds

• When two atoms share electrons unequally, a bond dipole results.

• The dipole moment, , produced by two equal but opposite charges separated by a distance, r, is calculated:

= Qr• It is measured in debyes (D).• 1 D = 3.34 x 10-30 C-m

Page 18: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Page 19: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Polar Covalent Bonds

The greater the difference in electronegativity, the more polar is the bond.

Page 20: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Example

The dipole moment of chlorine monofluoride, ClF (g), is 0.88D. The bond length of the molecule is 1.63Å.

a. Which atom is expected to have a negative charge?

b. What is the charge on that atom in e?

Page 21: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Example

• Arrange the following bonds in order of increasing polarity: S-Cl, S-Br, Se-Cl or Se-Br.

• Indicate in each case which atom has the partial negative charge.

• Which of the bonds above would be expected to be most soluble in water?

Page 22: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Lewis Structures

Lewis structures are representations of molecules showing all electrons, bonding and nonbonding.

Page 23: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

1. Find the sum of valence electrons of all atoms in the polyatomic ion or molecule. If it is an anion, add

one electron for each negative charge.

If it is a cation, subtract one electron for each positive charge.

PCl35 + 3(7) = 26

Page 24: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

2. The central atom is the least electronegative element that isn’t hydrogen. Connect the outer atoms to it by single bonds.

Keep track of the electrons:

26 6 = 20

Page 25: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

3. Fill the octets of the outer atoms.

Keep track of the electrons:

26 6 = 20 18 = 2

Page 26: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

4. Fill the octet of the central atom.

Keep track of the electrons:

26 6 = 20 18 = 2 2 = 0

Page 27: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

5. If you run out of electrons before the central atom has an octet…

…form multiple bonds until it does.

Page 28: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Examples

Draw the Lewis structures of CH2Cl2, C2H4, BrO3

-, NO+

Recall, isomers are compounds that have the same structures, by different arrangements. Which of these four would be expected to have an isomer? What would its structure be?

Page 29: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

• Then assign formal charges.For each atom, count the electrons in lone pairs and

half the electrons it shares with other atoms.Subtract that from the number of valence electrons for

that atom: The difference is its formal charge.

Page 30: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Writing Lewis Structures

• The best Lewis structure……is the one with the fewest charges.…puts a negative charge on the most

electronegative atom.

Page 31: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Example

There are three possible structures for NCO-. Draw each of these structures and indicate the preferred one. Why is this one preferred?

Page 32: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

This is the Lewis structure we would draw for ozone, O3. -

+

Page 33: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

• But this is at odds with the true, observed structure of ozone, in which……both O—O bonds

are the same length.…both outer

oxygens have a charge of 1/2.

Page 34: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

• One Lewis structure cannot accurately depict a molecule such as ozone.

• We use multiple structures, resonance structures, to describe the molecule.

Page 35: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

Just as green is a synthesis of blue and yellow…

…ozone is a synthesis of these two resonance structures.

Page 36: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

• In truth, the electrons that form the second C—O bond in the double bonds below do not always sit between that C and that O, but rather can move among the two oxygens and the carbon.

• They are not localized, but rather are delocalized.

Page 37: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Resonance

• The organic compound benzene, C6H6, has two resonance structures.

• It is commonly depicted as a hexagon with a circle inside to signify the delocalized electrons in the ring.

Page 38: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Examples

Draw the resonance structures of the carbonate anion.

Page 39: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Exceptions to the Octet Rule

• There are three types of ions or molecules that do not follow the octet rule:Ions or molecules with an odd number of

electrons.Ions or molecules with less than an octet.Ions or molecules with more than eight

valence electrons (an expanded octet).

Page 40: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Odd Number of Electrons

Though relatively rare and usually quite unstable and reactive, there are ions and molecules with an odd number of electrons.

(i.e.) Chlorine dioxide was the first oxide of chlorine discovered in 1822 and was recently used to kill Anthrax spores released in the U.S. Senate building in October 2001 due to its high reactivity.

Page 41: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Fewer Than Eight Electrons

• Consider BF3:Giving boron a filled octet places a negative

charge on the boron and a positive charge on fluorine.

This would not be an accurate picture of the distribution of electrons in BF3.

Page 42: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Fewer Than Eight Electrons

Therefore, structures that put a double bond between boron and fluorine are much less important than the one that leaves boron with only 6 valence electrons.

Page 43: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Fewer Than Eight Electrons

The lesson is: If filling the octet of the central atom results in a negative charge on the central atom and a positive charge on the more electronegative outer atom, don’t fill the octet of the central atom.

Page 44: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

More Than Eight Electrons

• The only way PCl5 can exist is if phosphorus has 10 electrons around it.

• It is allowed to expand the octet of atoms on the 3rd row or below.Presumably d orbitals in

these atoms participate in bonding.

Page 45: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

More Than Eight Electrons

Even though we can draw a Lewis structure for the phosphate ion that has only 8 electrons around the central phosphorus, the better structure puts a double bond between the phosphorus and one of the oxygens.

Page 46: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

More Than Eight Electrons

• This eliminates the charge on the phosphorus and the charge on one of the oxygens.

• The lesson is: When the central atom is on the 3rd row or below and expanding its octet eliminates some formal charges, do so.

Page 47: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Summary

• C, N, O and F always obey the octet rule

• B, Be and Al are often satisfied with less than an octet

• Second row elements never exceed the octet rule

• Third row and beyond can use valence shell expansion to exceed the octet.

Page 48: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Molecular Shapes

• The shape of a molecule plays an important role in its reactivity.

• By noting the number of bonding and nonbonding electron pairs we can easily predict the shape of the molecule.

Page 49: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

What Determines the Shape of a Molecule?

• Simply put, electron pairs, whether they be bonding or nonbonding, repel each other.

• By assuming the electron pairs are placed as far as possible from each other, we can predict the shape of the molecule.

Page 50: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Electron Domains

• We can refer to the electron pairs as electron domains.

• In a double or triple bond, all electrons shared between those two atoms are on the same side of the central atom; therefore, they count as one electron domain.

• This molecule has four electron domains.

Page 51: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Valence Shell Electron Pair Repulsion Theory (VSEPR)

“The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them.”

See the summary chart

Page 52: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

• Lewis Structures predict the two dimensional arrangement of electrons in a molecule.

• VSEPR theory allows us to extend the Lewis structure of a molecule to three dimensional space.

• Neither of these models allows us to understand the actual formation of the covalent bond.

Page 53: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Binary Covalent Bonds

• Occur when two adjacent orbitals overlap.

• Examples: H2, HF, F2

• Optimal bonding occurs when there is an equilibrium between bond length and repelling nuclei.

Page 54: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

More to the Story…Beyond Binary Compounds

• The covalent bonding in polyatomic molecules is more complex.

• It can be explained with Linus Pauling’s hybrid orbitals

• Let’s consider BeF2

Page 55: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

• Consider beryllium: In its ground electronic

state, it would not be able to form bonds because it has no singly-occupied orbitals.

Page 56: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

But if it absorbs the small amount of energy needed to promote an electron from the 2s to the 2p orbital, it can form two bonds.

Page 57: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

• Mixing the s and p orbitals yields two degenerate orbitals that are hybrids of the two orbitals.These sp hybrid orbitals have two lobes like a p orbital.One of the lobes is larger and more rounded as is the s

orbital.

Page 58: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

• These two degenerate orbitals would align themselves 180 from each other.

• This is consistent with the observed geometry of beryllium compounds: linear.

Page 59: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

• With hybrid orbitals the orbital diagram for beryllium would look like this.

• The sp orbitals are higher in energy than the 1s orbital but lower than the 2p.

Page 60: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

Using a similar model for boron leads to…

Page 61: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

…three degenerate sp2 orbitals.

Page 62: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

With carbon we get…

Page 63: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

…four degenerate

sp3 orbitals.

Page 64: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

For geometries involving expanded octets on the central atom, we must use d orbitals in our hybrids.

Page 65: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

This leads to five degenerate sp3d orbitals…

…or six degenerate sp3d2 orbitals.

Page 66: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Hybrid Orbitals

Once you know the electron-domain geometry, you know the hybridization state of the atom.

Page 67: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Predicting Hybrid OrbitalsSummary

• Draw the Lewis structure• Determine the electron-domain

geometry• Specify the hybrid orbitals needed to

accommodate the electron pairs based of their arrangement.

Page 68: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Covalent Bond Strength

• Most simply, the strength of a bond is measured by determining how much energy is required to break the bond.

• This is the bond enthalpy.• The bond enthalpy for a Cl—Cl bond,

D(Cl—Cl), is measured to be 242 kJ/mol.

Page 69: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Average Bond Enthalpies

• This table lists the average bond enthalpies for many different types of bonds.

• Average bond enthalpies are positive, because bond breaking is an endothermic process.

Page 70: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Average Bond EnthalpiesNOTE: These are

average bond enthalpies, not absolute bond enthalpies; the C—H bonds in methane, CH4, will be a bit different than theC—H bond in chloroform, CHCl3.

Page 71: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Enthalpies of Reaction

• Yet another way to estimate H for a reaction is to compare the bond enthalpies of bonds broken to the bond enthalpies of the new bonds formed.

• In other words, Hrxn = (bond enthalpies of bonds broken)

(bond enthalpies of bonds formed)

Page 72: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Enthalpies of Reaction

CH4(g) + Cl2(g)

CH3Cl(g) + HCl(g)

In this example, one

C—H bond and one

Cl—Cl bond are broken; one C—Cl and one H—Cl bond are formed.

Page 73: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Enthalpies of Reaction

So,

Hrxn = [D(C—H) + D(Cl—Cl) [D(C—Cl) + D(H—Cl)

= [(413 kJ) + (242 kJ)] [(328 kJ) + (431 kJ)]

= (655 kJ) (759 kJ)

= 104 kJ

Page 74: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Example

Use the bond enthalpies on page 301 to calculate the heat of combustion of methane gas with O2 to produce water vapor and carbon dioxide gas.

Page 75: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Bond Enthalpy and Bond Length

• We can also measure an average bond length for different bond types.

• As the number of bonds between two atoms increases, the bond length decreases.

Page 76: Chemical Bonding Chapter 8 & 9 Concepts of Chemical Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce

ChemicalBonding

Phosgene, a substance used in poisonous gas warfare in World War I, is so named because it was first prepared by the action of sunlight on a mixture of carbon monoxide and chlorine gases. Its name comes from the Greek words phos (light) and genes (born of). Phosgene has the following elemental composition: 12.14% C, 16.17% O, and 71.69% Cl by mass. Its molar mass is 98.9 g/mol. (a) Determine the molecular formula of this compound. (b) Draw three Lewis structures for the molecule that satisfy the octet rule for each atom. (The Cl and O atoms bond to C.) (c) Using formal charges, determine which Lewis structure is the most important one. (d) Using average bond enthalpies, estimate H for the formation of gaseous phosgene from CO(g) and Cl2(g).

Sample Integrative Exercise