29
HARMONIC MODELING IN POWER DISTRIBUTION SYSTEM USING TIME SERIES SIMULATION CHE KU FARHANA BINTI CHE KU AMRAN UNIVERSITI TEKNOLOGI MALAYSIA

CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

  • Upload
    haanh

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

HARMONIC MODELING IN POWER DISTRIBUTION SYSTEM

USING TIME SERIES SIMULATION

CHE KU FARHANA BINTI CHE KU AMRAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

i

HARMONIC MODELING IN POWER DISTRIBUTION SYSTEM

USING TIME SERIES SIMULATION

CHE KU FARHANA BINTI CHE KU AMRAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JULY 2014

Page 3: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

iii

Specially dedicated to my beloved parents, husband

and for those who have

encouraged, guided, supported and inspired me

Page 4: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

iv

ACKNOWLEDGEMENT

In order to finish this thesis, many people were involved. They have

contributed towards my understanding and thoughts. First and foremost, I would like

to take this golden opportunity to express my sincere appreciation to both of my

supervisors, Dr. Khalid bin Mohamed Nor and Dr. Dalila binti Mat Said. Thank you

for being the dedicated supervisor in guiding and encouraging me throughout the

entire two years. Without their continued support and interest, this research would

not have been the same as presented here. Their patience and enthusiasm in guiding

and helping me throughout these two years have given me great courage and

confidence in completing this research.

Besides that, I am indebted to the Malaysian Ministry of Higher Education

(MOHE) and Universiti Teknologi Malaysia (UTM) for the funding support under

the Research University Grant (RUG) under vote Q.J13000.2523.00H57. The

contributions of Centre of Electrical Energy Systems (CEES) for providing good

environment and facilities to support this research is also acknowledged. Librarians

and internet services at UTM also deserved special thanks for their assistance in

supplying the relevant literatures.

I also want to convey my gratitude to all the Advanced Power Solutions Sdn.

Bhd. personnel for their assistance, consultation and hospitality during my visitation.

My appreciation also goes to my beloved family and my husband, Muhammad

Asyraf bin Azman, who have been so tolerant and given me unlimited

encouragement during my studies in UTM. Last but not least, I am thankful to

everyone who directly or indirectly had given me the moral support, advices and

critics in completing my project.

Page 5: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

v

ABSTRACT

Harmonic distortion is one of the major power quality concerns. The non-

linearity of customer loads caused the occurrence of harmonic distortion that leads to

degradation of power system components. Therefore, harmonic studies have become

an important part in power system modeling, simulation and analysis. The needs for

harmonic modeling and simulation are to determine the existence of dangerous

resonant conditions and to verify that the distortion level complies with the standard

harmonic limits. This research is to model time-series harmonic analysis. An

integration of Open Distribution System Simulator (OpenDSS) with Microsoft

Visual C++ and Microsoft Excel into an application for time-series simulation

control is presented. Harmonic power flow analysis is performed by using OpenDSS

interfaced with C++ to simulate the time-series simulation. The impact of practical

harmonic loads measured from commercial, industrial and residential sectors on

different distribution network systems are investigated. Two test case studies, with

and without harmonic loads are modeled to show the usefulness of time-series

simulation. IEEE test feeder and practical power distribution system are used as the

test system for both case studies. The impact of harmonics on the test systems is

studied by using the measured harmonic data obtained from logging sites. The

simulation results were compared with the standard harmonic limits to ensure the

compliance of distortion levels. Simulation results obtained show that total harmonic

distortion has a significant effect on the losses of the system, mainly on the lines,

cables and transformer losses. The losses of the system with harmonics for both

types of the test system showed an increment compared to the system without

harmonics. Hence, this proves that when harmonics exist within the system, losses

increase. Based on the simulation results acquired using the developed application,

the system losses and the level of harmonic distortions in the electric power

distribution network are easily obtained for each interval of time-series. The

developed application saves computational time as well as providing a method that is

cost effective.

Page 6: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

vi

ABSTRAK

Herotan harmonik merupakan salah satu daripada masalah utama kualiti

kuasa. Ketidaklurusan beban pelanggan telah menyebabkan berlakunya herotan

harmonik yang membawa kepada kerosakan komponen sistem kuasa. Oleh itu,

kajian harmonik telah menjadi penting dalam permodelan sistem kuasa, simulasi dan

analisis. Keperluan untuk permodelan dan simulasi harmonik adalah untuk

menentukan kewujudan keadaan resonan berbahaya dan untuk mengesahkan bahawa

tahap herotan mematuhi had piawaian harmonik. Penyelidikan ini adalah untuk

memodelkan analisis siri masa harmonik. Integrasi OpenDSS dengan Microsoft

Visual C++ dan Microsoft Excel kepada satu aplikasi kawalan simulasi siri masa

telah dibentangkan. Analisis aliran kuasa harmonik telah dilakukan menggunakan

OpenDSS dengan C++ untuk simulasi siri masa. Kesan beban harmonik praktikal

yang diukur dari sektor komersil, perindustrian dan perumahan pada sistem

rangkaian pengagihan yang berbeza dikaji. Dua kes kajian, dengan beban harmonik

dan tanpa beban harmonik dimodelkan untuk menunjukkan kegunaan simulasi siri

masa. Sistem rangkaian IEEE dan sistem pengagihan kuasa praktikal digunakan

sebagai sistem ujian untuk kedua-dua kajian kes. Kesan harmonik ke atas sistem

ujian dikaji dengan menggunakan data harmonik yang diperolehi. Keputusan

simulasi dibandingkan dengan had piawaian harmonik untuk memastikan kepatuhan

tahap herotan tersebut. Keputusan simulasi yang diperolehi menunjukkan bahawa

jumlah herotan harmonik mempunyai kesan ke atas kehilangan kuasa sistem,

terutama pada talian, kabel dan pengubah. Kehilangan kuasa sistem dengan

harmonik untuk kedua-dua jenis sistem ujian menunjukkan peningkatan berbanding

dengan sistem tanpa harmonik. Maka, ini membuktikan apabila harmonik wujud di

dalam sistem, kehilangan kuasa meningkat. Berdasarkan kepada keputusan simulasi

yang diperolehi menggunakan aplikasi yang telah disiapkan, kehilangan kuasa sistem

dan tahap herotan harmonik dalam rangkaian pengagihan kuasa elektrik mudah

diperolehi untuk setiap selang siri masa. Aplikasi yang dibangunkan menjimatkan

masa pengiraan dan juga menyediakan satu kaedah yang kos efektif.

Page 7: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF SYMBOLS xv

LIST OF APPENDICES xvi

1 INTRODUCTION 1

1.1 Background 1

1.2 Objectives 2

1.3 Scopes 2

1.4 Problem Statement 3

1.5 Significance of Study 4

1.6 Thesis Outline 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Harmonics in Power Distribution System 8

2.2.1 Harmonic Definition 9

2.2.2 Sources of Harmonic 9

Page 8: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

viii

2.2.3 Effects of Harmonic 10

2.2.4 Harmonic Distortions 12

2.2.5 Harmonic Standards 13

2.3 Distribution System Modeling with

Consideration of Harmonics Penetration 17

2.3.1 Harmonic Multiphase System 17

2.3.2 Harmonic Source 19

2.3.3 Harmonic Power Flows 20

2.4 Modeling of Distribution System Components

for Harmonic Analysis 23

2.4.1 Overhead Lines and Underground Cables 24

2.4.2 Transformers 26

2.4.3 Rotating Machines 27

2.4.4 Shunt Capacitors 28

2.4.5 Linear and Nonlinear Loads 29

2.5 Time-Series Simulation of Harmonic Analysis

using OpenDSS Simulator 31

2.5.1 OpenDSS Simulator Tool 31

2.5.2 Harmonic Modeling and Analysis 35

2.5.3 Time-Series Harmonic Studies 40

2.6 Summary 43

3 METHODOLOGY 46

3.1 Introduction 46

3.2 Distribution Network System 48

3.2.1 IEEE13 Node Test System 48

3.2.2 Practical Distribution Test System 49

3.3 Data Acquisitions 51

3.3.1 Commercial Sector Data 51

3.3.2 Industrial Sector Data 57

3.3.3 Residential Sector Data 62

3.4 Summary 68

Page 9: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

ix

4 DEVELOPMENT OF AN INTEGRATED

APPLICATION OF OPENDSS WITH C++ AND

MS EXCEL 69

4.1 Introduction 69

4.2 Getting a connection to the OpenDSS COM

interface and start OpenDSS 70

4.3 Setting up the Time-series Simulation of

Harmonic Analysis 73

4.4 Harmonic Analysis Time-series Simulation Loop 74

4.5 MS Excel Application with OpenDSS and C++ 75

4.5.1 Function Argument of Time-Series 77

4.5.2 Function Argument of Load Data 77

4.5.3 Function Argument of Result 78

4.6 Summary 79

5 RESULTS AND DISCUSSIONS 81

5.1 Introduction 81

5.2 Validation Testing of OpenDSS Simulator Program 81

5.2.1 Validation Comparison of Three Bus

Network System 83

5.2.2 Validation Comparison of IEEE13

Node Test Feeder 84

5.3 IEEE13 Node Test Feeder Analysis

(Medium harmonic current spectrum injected) 87

5.3.1 Case 1a: Test system without harmonics 88

5.3.2 Case 2a: Test system with harmonics 89

5.3.3 Discussions of Case A 93

5.4 Practical Distribution Network System Analysis

(Low harmonic current spectrum injected) 94

5.4.1 Case 1b: System without harmonics 95

5.4.2 Case 2b: System with harmonics 96

5.4.3 Discussions of Case B 98

Page 10: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

x

5.5 Practical Distribution Network System Analysis

(High harmonic current spectrum injected) 99

5.5.1 Case 1c: System without harmonics 100

5.5.2 Case 2c: System with harmonics 101

5.5.3 Discussions of Case C 104

5.6 Summary 106

6 CONCLUSION 108

6.1 Conclusion 108

6.2 Recommendations 111

REFERENCES 112

Appendices A - D 119-143

Page 11: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 IEEE Std. 519-1992 Voltage Harmonic Limits [14] 14

2.2 IEEE Std. 519-1992 Current Harmonic Limits [14] 14

2.3 Indicative values of planning levels for harmonic voltages

(% of the fundamental voltage) 16

5.1 Node voltage comparison between PSS Adept and

OpenDSS 83

5.2 Branch current comparison between PSS Adept and

OpenDSS 83

5.3 Branch power comparison between PSS Adept and

OpenDSS 84

5.4 Node voltage by phase comparison between PSS Adept

and OpenDSS 84

5.5 Branch current by phase comparison between PSS Adept

and OpenDSS 85

5.6 Total branch power comparison between PSS Adept and

OpenDSS 86

5.7 Losses comparison between PSS Adept and OpenDSS 87

5.8 Types of Cases B 95

5.9 Types of Cases C 99

Page 12: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Overhead line model 24

2.2 Transformer model for harmonic analysis [3] 27

2.3 OpenDSS structure 33

2.4 Flow chart process of the time-series harmonic simulation 41

3.1 Flow chart of the methodology taken 47

3.2 IEEE 13 node test feeder 48

3.3 Practical test system of distribution network 50

3.4 24 hours loadshape of a commercial building 52

3.5 Harmonic current spectrum injected (IhL1) 53

3.6 Harmonic current spectrum injected (IhL2) 54

3.7 Harmonic current spectrum injected (IhL3) 54

3.8 Total harmonic distortion (current) 54

3.9 Harmonic voltage spectrum (VhL1) 55

3.10 Harmonic voltage spectrum (VhL2) 56

3.11 Harmonic voltage spectrum (VhL3) 56

3.12 Total harmonic distortion (voltage) 56

3.13 24 hours loadshape of a manufacturer company 58

3.14 Harmonic current spectrum injected (IhL1) 59

3.15 Harmonic current spectrum injected (IhL2) 59

3.16 Harmonic current spectrum injected (IhL3) 59

3.17 Total harmonic distortion (current) 60

3.18 Harmonic voltage spectrum (VhL1) 61

3.19 Harmonic voltage spectrum (VhL2) 61

3.20 Harmonic voltage spectrum (VhL3) 61

3.21 Total harmonic distortion (voltage) 62

3.22 24 hours loadshape of an apartment building 63

Page 13: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xiii

3.23 Harmonic current spectrum injected (IhL1) 64

3.24 Harmonic current spectrum injected (IhL2) 64

3.25 Harmonic current spectrum injected (IhL3) 65

3.26 Total harmonic distortion (current) 65

3.27 Harmonic voltage spectrum (VhL1) 66

3.28 Harmonic voltage spectrum (VhL2) 66

3.29 Harmonic voltage spectrum (VhL3) 67

3.30 Total harmonic distortion (voltage) 67

4.1 Flow chart on driving a time based simulation using

OpenDSS from Visual C++ and MS Excel. 72

5.1 Three bus network system 82

5.2 Percentage of system losses without harmonics 88

5.3 Percentage of system losses with harmonics 89

5.4 Total harmonic distortion of current at line 671680 91

5.5 Total harmonic distortion of voltage at line 671680 91

5.6 Total harmonic distortion of current at line 632633 91

5.7 Total harmonic distortion of voltage at line 632633 92

5.8 Comparison between both system losses 93

5.9 Percentage of circuit losses without harmonics 95

5.10 Percentage of circuit losses with harmonics 96

5.11 Total harmonic distortion of current at line X 97

5.12 Total harmonic distortion of voltage at line X 97

5.13 Comparison between both circuit losses 98

5.14 Percentage of increment of circuit losses 99

5.15 Percentage of circuit losses without harmonics 101

5.16 Percentage of circuit losses with harmonics 102

5.17 Total harmonic distortion of current at line Y 103

5.18 Total harmonic distortion of voltage at line Y 104

5.19 Comparison between both circuit losses 104

5.20 Percentage of increment of circuit losses 105

Page 14: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xiv

LIST OF ABBREVIATIONS

COM - Component Object Model

DC - Direct Current

DLL - Dynamic Link Library

EHV - Extra High Voltage

EMTDC - Electromagnetic Transients for Direct Current

EPRI - Electric Power Research Institute

FFT - Fast Fourier Transform

HV - High Voltage

HVDC - High Voltage Direct Current

IEC - International Electrotechnical Commission

IEEE - Institute of Electrical and Electronics Engineers

MV - Medium Voltage

OpenDSS - Open Distribution System Simulator

PCC - Point of Common Coupling

PSCAD - Power System Computer Aided Design

PSS - Power System Simulator

PV - Photovoltaic

SMPS - Switch Mode Power Supplies

THD - Total Harmonic Distortion

THDI - Total Harmonic Distortion of Current

THDV - Total Harmonic Distortion of Voltage

TNB - Tenaga Nasional Berhad

UPS - Uninterruptible Power Supplies

VAR - Volt Ampere Reactive

VFD - Variable Frequency Drives

XLPE - Cross Link Polyethylene

Page 15: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xv

LIST OF SYMBOLS

θ - Angle

π - Pi = 3.142

f - Frequency

h - Harmonic order

I - Current

L - Inductance

R - Resistance

V - Voltage

Y - Admittance matrix

Page 16: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A IEEE13 node test feeder component parameters and 119

network configuration data

B Practical distribution system component parameters 123

and network configuration data

C Programming scripts of integrating OpenDSS with 128

MS Visual C++

D Programming scripts of integrating OpenDSS with 133

MS Excel

E List of Publications 143

Page 17: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

96

CHAPTER 1

INTRODUCTION

1.1 Background

The use of electrical energy is a natural part of life in developed countries all

around the world. Electrical energy is used in every aspect of living, working and

travelling, and in any sector such as residential, commercial, and industrial.

Nowadays, the use of energy efficient equipment that consist of power electronic

devices increases rapidly in our country, as saving of electrical energy is the main

target of industrial consumer and also electric utility companies. Before, the

utilization of energy efficient equipment was not in a major scale. Now, due to

modern developments, the equipment became easily available. Their reliability has

improved, and cost becomes manageable. Therefore, the use of this equipment grew

rapidly and its utilization increased. Consequences of large usage of these equipment,

is that it gives rise to the harmonic distortions on the electrical power system and

pollutes the system. Harmonic is one of the major power quality problems. Harmonic

causes the voltage and current waveform of the system to distort, which will lead to

the degradation of all the system components. Therefore, it is very much needed to

model the power distribution system components with the consideration of harmonic

penetration.

Page 18: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

2

1.2 Objectives

The objective of this research is to model and analyze harmonic analysis

time-series by using simulation utilizing Open Distribution System Simulator

(OpenDSS). The overall objectives are as follows:

i. To develop an integrated application of time-series simulation control using

OpenDSS with Microsoft (MS) Visual C++ and Microsoft (MS) Excel.

ii. To validate the power flow simulation results of OpenDSS using Power

System Simulator (PSS) Adept, which is used by the industry such as Tenaga

Nasional Berhad (TNB).

iii. To investigate the impact of practical harmonic loads measured from

commercial, industrial and residential sectors on different distribution

network systems.

1.3 Scopes

The scopes of this research can be summarized as follows:

i. OpenDSS is used to model and simulate the power system for harmonic

analysis.

ii. The time-series simulation is performed using OpenDSS by utilizing the

measured harmonic data obtained from industrial, commercial and residential

sectors.

iii. IEEE test system and practical distribution network system are used as

distribution system model to study the harmonics impact.

iv. MS Visual C++ interfaced with OpenDSS is used for custom control for the

time-series simulation.

v. MS Excel interfaced with OpenDSS is used for data exchanging interface for

input and output data.

vi. PSS Adept is used to validate the power flow solution of OpenDSS simulator

tool.

Page 19: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

3

1.4 Problem Statement

Harmonic distortion is one of the major power quality concerns for electric

utility companies and consumers. The non-linearity of customer loads caused the

occurrence of harmonic distortion in the power system. The increasing use of

nonlinear loads being connected to the power system network had magnified the

power quality problems. Distortion of sinusoidal current and voltage waveforms due

to harmonics cause increases in system losses, possible equipment loss of life, over

currents or over voltages resulting from resonances and interference in the

communication system. This concern has drawn much attention from utilities,

manufacturers of equipment and users.

Harmonic studies have become an important part in power system modeling,

simulation and analysis. The need for harmonic modeling and simulation is to be

able to model and simulate power quality phenomena. Besides that, the existence of

dangerous resonant conditions can be determined and the distortion level can be

verified to comply with the standard harmonic limits.

Simulator tool for power system components are also important not only for

calculating power quality indices but also for understanding the propagation

characteristics of the disturbance. The selection of a simulator tool depends on the

problems to be analyzed. The simulator selection should commensurate with the

accuracy of the available data parameters within the simulator tools. Therefore, it is

important to understand the algorithms used by the tools in order to have better ideas

with respect to the impact of model complexity and accuracy on the solution results.

The problem that this research aimed to solve is the application of time-series

simulation of harmonic analysis utilization to real network practices. This application

presented an integration of OpenDSS with MS Visual C++ and MS Excel for time-

series simulation. OpenDSS definitely has the capabilities to perform power flow

analysis as well as harmonic analysis solution. However, harmonic analysis can only

provide the solution for one snapshot of time. Hence, the integration would enable

OpenDSS to conduct harmonic analysis over a period of time within the time-series.

Page 20: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

4

OpenDSS simulator tool is chosen due to numerous reasons. OpenDSS is

being chosen over PSCAD solely because OpenDSS analysis mode is solved in the

frequency domain which makes it the best tool to perform harmonic analysis.

OpenDSS computational time is faster compared to Matlab Simulink. Besides that,

OpenDSS has the time-series simulation ability and easy data exchange interface

(COM DLL) in which SKM-Power Tools does not have.

OpenDSS requires to be compared with standard software that has been used

by the industry. Measurements of practical harmonic loads are needed to resolve the

analytical results of harmonic studies and to determine compliance with guidelines.

Time-series simulation of harmonic analysis is performed to observe and analyze the

periodic trend of the time-series whether there is any existence of odd behavior

conditions. The sum of harmonic losses from all transformers and cables within the

distribution system is computed for each time step within the time-series. The THD

of currents and voltages obtained are analyzed throughout the time-series for any

irregularities or standard harmonic limits violation. If this approach is applicable to

the real world practice, any sign of abnormalities within the interval of time-series

can be detected and analyzed.

1.5 Significance of Study

The rise of harmonics level in our country’s electrical power system has

drawn many concerns from utilities, industrial, commercial and residential

consumers and other users. The contribution of this research is the developed

integrated application of OpenDSS. The system losses and the level of harmonic

distortions in electrical power distribution network are easily obtained for each

interval of time-series using the developed application. The developed application

also saves computational time as well as providing a method that is cost effective.

Page 21: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

5

Therefore, the outcome of this research is important in improving power

quality with effective cost. Power system components which are affected by

harmonics will have longer life and the cost of maintenance is reduced. Consumers

will also obtain benefits from the application approach taken in this research since

utility companies are able to provide better power quality. System design engineers

can use the application approach in planning of electrical system and control

engineers will be able to use the method in controlling harmonic voltage. Last but not

least, this work would be able to contribute to the national development of our very

own country.

1.6 Thesis Outline

Chapter 1 provides a brief introduction of harmonics in power system and

background. The objectives and the problem statement of the project were also

stated. The areas that the project will be focused on were explained in the scope of

study.

Chapter 2 provides the literature review in the areas of harmonics. The

definitions, the sources and effects of harmonics, harmonic analysis were discussed

in details. Harmonic distortions and standards regarding on harmonic conditions

were briefly explained in this chapter. An introduction to OpenDSS was presented.

Time-series harmonic simulation was described. Previous research is discussed. This

chapter, in general, is intended to provide an overview on modeling of power

distribution systems for harmonic analysis and research improvements to be made

based on the previous research.

Chapter 3 describes the methodology taken throughout the project. The

distribution network systems modeled were chosen in this chapter. The collection

and selection of measured data from three logging sites were done.

Page 22: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

6

Chapter 4 presented the development of an integrated application of

OpenDSS with MS Visual C++ and MS Excel. The step by step process of

integrating OpenDSS with MS Visual C++ and MS Excel for time-series harmonic

simulation is thoroughly explained in this chapter. The flow chart of the written C++

programming script is provided within this chapter.

Chapter 5 describes the time-series harmonic simulation of the test system

using OpenDSS software. Two types of cases were investigated, which are cases of

test system with and without harmonic penetration. Two different network systems

are modeled and simulated. The simulated results were obtained, analyzed and

discussed. Validation of OpenDSS with PSS Adept is performed within this chapter

to prove the accuracy of the power flow solution.

Chapter 6 discusses the conclusion of the project and recommendations that

can be done to improve the research.

Page 23: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

112

REFERENCES

[1] E. L. Owen (1998). A history of harmonics in power systems. IEEE Industry

Applications Magazine, 4 (1), 6-12.

[2] R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty (2002).

Electrical Power Systems Quality. (Second Edition). McGraw Hill

Professional.

[3] Task Force on Harmonics Modeling and Simulation (1996). Modeling and

simulation of the propagation of harmonics in electric power networks. I.

Concepts, models, and simulation techniques. IEEE Transactions on Power

Delivery, 11 (1), 452-465.

[4] F. C. Rosa (2006). Harmonics and Power Systems. New York. Taylor &

Francis.

[5] J. Arrillaga and N. R. Watson (2003). Power System Harmonics. England.

John Wiley & Sons.

[6] D. C. Bhonsle, N. K. Zaveri and R. B. Kelkar (2008). Harmonic Survey of

Typical Non-Linear Loads. Proceedings of the International Conference on

Electrical Engineering (ICEE’08), Hong Kong, China.

[7] L. M. Tolbert, H. D. Hollis and P. S. Hale, Jr. (1996). Survey of harmonics

measurements in electrical distribution systems. Conference Record of the

1996 IEEE Industry Applications Conference, Thirty-First IAS Annual

Meeting, IAS '96., 6-10 Oct 1996, vol.4, 2333-2339.

[8] Suriadi. Analysis of Harmonics Current Minimization on Power Distribution

System using Voltage Phase Shifting Concept. Master Universiti Sains

Malaysia; 2006.

[9] Sumaryadi, H. Gumilang and A. Suslilo (2009). Effect of power system

harmonic on degradation process of transformer insulation system. IEEE 9th

International Conference on the Properties and Applications of Dielectric

Materials, (ICPADM 2009), 19-23 July 2009, 261-264.

Page 24: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

113

[10] K. D. Patil and W. Z. Gandhare (2011). Effects of harmonics in distribution

systems on temperature rise and life of XLPE power cables. Proceedings of

the International Conference on Power and Energy Systems (ICPES 2011),

Chengdu, China, 1-6.

[11] V. E. Wagner, J. C. Balda, D. C. Griffith, A. McEachern, T. M. Barnes, D. P.

Hartmann, D. J. Phileggi, A. E. Emannuel, W. F. Horton, W. E. Reid, R. J.

Ferraro and W. T. Jewell (1993). Effects of harmonics on equipment. IEEE

Transactions on Power Delivery, 8 (2), 672-680.

[12] J. C. Das (2002). Power System Analysis Short Circuit Load Flow &

Harmonics. New York. Taylor & Francis.

[13] T. H. Ortmeyer, K. R. Chakravarthi and A. A. Mahmoud (1985). The Effects

of Power System Harmonics on Power System Equipment and Loads. IEEE

Transactions on Power Apparatus and Systems, PAS-104 (9), 2555-2563.

[14] IEEE Std. 519-1992 - IEEE Recommended Practices and Requirements for

Harmonic Control in Electric Power Systems, Institute of Electrical and

Electronics Engineers (IEEE). New York, USA, 1993.

[15] T. M. Blooming and D. J. Carnovale (2006). Application of IEEE Std 519-

1992 harmonic limits. Proceedings of the Annual Pulp and Paper Industry

Technical Conference (PPIC 2006). Appleton, Wisconsin, 1-9.

[16] T. Hoevenaars, K. LeDoux and M. Colosino (2003). Interpreting IEEE STD

519 and meeting its harmonic limits in VFD applications. IEEE Industry

Applications Society 50th Annual Petroleum and Chemical Industry

Conference, 15-17 Sept. 2003, 145-150.

[17] IEC 61000-3-2, IEC 61000-3-4, Electromagnetic Compatibility, Part 3:

Limits-Sect.2: Limits for Harmonic Current Emission, International

Electrotechnical Commission (IEC). Geneva, Switzerland, 2011.

[18] IEC 61000-3-6; Electromagnetic compatibility (EMC) – Part 3-6: Limits –

Assessment of emission limits for the connection of distorting installations to

MV, HV and EHV power systems. Geneva, Switzerland, 2011.

[19] M. McGranaghan and G. Beaulieu (2006). Update on IEC 61000-3-6:

Harmonic Emission Limits for Customers Connected to MV, HV, and EHV.

2005/2006 IEEE PES Transmission and Distribution Conference and

Exhibition, 21-24 May 2006, 1158-1161.

Page 25: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

114

[20] S. Herraiz, L. Sainz and J. Clua (2003). Review of harmonic load flow

formulations. IEEE Transactions on Power Delivery, 18 (3), 1079-1087.

[21] A. A. Eajal and M. E. El-Hawary (2010). Optimal capacitor placement and

sizing in distorted radial distribution systems part I: System modeling and

harmonic power flow studies. 2010 14th International Conference on

Harmonics and Quality of Power (ICHQP), 26-29 Sept. 2010, 1-9.

[22] A. K. Singh, G. K. Singh and R. Mitra (2006). Impact of source voltage

unbalance on AC-DC rectifier performance. Proceedings of the International

Conference on Power Electronics Systems and Applications (PESA 2006),

Hong Kong, China, 96-101.

[23] W. Xu and S. J. Ranade (1999). Chapter 8 : Analysis of unbalanced harmonic

propagation in multiphase power systems. IEEE PES Special Publication of

Tutorial on Harmonics Modeling and Simulation.

[24] W. Xu, J. R. Marti and H. W. Dommel (1991). A multiphase harmonic load

flow solution technique. IEEE Transactions on Power Systems, 6 (1), 174-

182.

[25] S. M. Halpin, P. F. Ribeiro and J. J. Dai (1999). Chapter 6: Frequency domain

harmonic analysis methods. IEEE PES Special Publication of Tutorial on

Harmonics Modeling and Simulation.

[26] W. Xu and S. J. Ranade (1999). Chapter 1: An overview of harmonics

modeling and simulation. IEEE PES Special Publication of Tutorial on

Harmonics Modeling and Simulation.

[27] J. Arrillaga, B. C. Smith, N. R. Watson and A. R. Wood (2000). Power

System Harmonic Analysis. England. John Wiley & Sons.

[28] E. F. Fuchs and M. A. S. Masoum (2008). Power Quality in Power Systems

and Electrical Machines. USA. Elsevier Academic Press.

[29] S. A. Soliman, A. M. Al-Kandari and M. E. El-Hawary (1997). Time Domain

Estimation Techniques for Harmonic Load Models. Electric Machines &

Power Systems, 25 (8), 885-896.

[30] Y. Wang, S. Chen and S. S. Choi (2007). An overview of various approaches

to power system harmonic analysis. Proceedings of the 8th International

Power Engineering Conference (IPEC 2007). Meritus Mandarin, Singapore,

338-343.

Page 26: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

115

[31] K. M. Nor, L. W. Jeun, M. Abdel-Akher and A. H. Abdul-Rashid (2006).

Reusing Three-Phase Power-Flow Object Components for Unbalanced

Harmonic Analysis. IEEE International Power and Energy Conference

(PECon '06), 28-29 Nov. 2006, 104-108.

[32] N. R. Watson and J. Arrillaga (2003). Harmonics in large systems. Electric

Power Systems Research. 66 (1), 15-29.

[33] X. Wilsun (2004). Status and future directions of power system harmonic

analysis. IEEE Power Engineering Society General Meeting, 6-10 June 2004,

756-761 Vol.1.

[34] R. Shariatinasab and M. Akbari (2010). Harmonic analysis of power systems

in order to network conversion. 2010 IEEE International Conference on

Power and Energy (PECon), 29 Nov. 2010-1 Dec. 2010, 974-979.

[35] G. J. Wakileh (2001). Power System Harmonics : Fundamentals Analysis and

Filter Design. New York. Springer.

[36] W. Xu (2001). Component Modeling Issues for Power Quality Assessment.

IEEE Power Engineering Review, 21 (11), 12-17.

[37] J. Arrillaga, D. A. Bradley and P. S. Bodger (1985). Power System

Harmonics. (1st). John Wiley.

[38] G. W. Chang, P. F. Riberio and S. J. Ranade (1999). Chapter 2: Harmonics

Theory. IEEE PES Special Publication of Tutorial on Harmonics Modeling

and Simulation.

[39] R. Burch, G. Chang, C. Hatziadoniu, M. Grady, Y. Liu, M. Marz, T.

Ortmeyer, S. Ranade, P. Ribeiro and W. Xu (2003). Impact of aggregate

linear load modeling on harmonic analysis: a comparison of common practice

and analytical models. IEEE Transactions on Power Delivery, 18 (2), 625-

630.

[40] K. Wang, S. Guan, Q. Hou, Y. Hou and Q. Wu (2008). Investigation of

harmonic distortion and losses in distribution systems with nonlinear loads.

Proceedings of the China International Conference on Electricity

Distribution (CICED 2008). Guangzhou, China, 1-6.

[41] OpenDSS Program. [Online]. Available through SourceForge.net:

http://sourceforge.net/projects/electricdss. Retrieved 2011.

Page 27: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

116

[42] R. C. Dugan and T. E. McDermott (2011). An open source platform for

collaborating on smart grid research. 2011 IEEE Power and Energy Society

General Meeting, 24-29 July 2011. 1-7.

[43] R. C. Dugan, Reference Guide : The Open Distribution System Simulator

(OpenDSS), March 2012, Electric Power Research Institute (EPRI).

[44] R. C. Dugan, OpenDSS Introductory Training Level 1, April 2009, Electric

Power Research Institute (EPRI).

[45] R. C. Dugan, OpenDSS Training Level 2, April 2009, Electric Power

Research Institute (EPRI).

[46] M. A. Moffet and D. Beauvais, Review of Open Source Code Power Grid

Simulation Tools for Long Term Parametric Simulations, CanmetENERGY

Technical Report – 2011‐137 (RP‐TEC) 411‐MODSIM, 11 July 2011,

Canada.

[47] D. M. Said, N. Ahmad and A. A. M. Zin (2003). Power supply quality

improvement: harmonic measurement and simulation. Proceedings National

Power Engineering Conference (PECon 2003), 15-16 Dec. 2003, 352-358.

[48] G. W. Chang, Y. C. Chin and S. H. Lee (2006). Analyzing Input Harmonic

Currents of a Six-pulse AC/DC Converter by an Efficient Time-domain

Approach. 2006 1ST IEEE Conference on Industrial Electronics and

Applications, 24-26 May 2006, 1-5.

[49] A. Kalbat (2013). PSCAD simulation of grid-tied photovoltaic systems and

Total Harmonic Distortion analysis. 2013 3rd International Conference on

Electric Power and Energy Conversion Systems (EPECS), 2-4 Oct. 2013, 1-6.

[50] Task Force on Harmonics Modeling and Simulation (1996). Modeling and

simulation of the propagation of harmonics in electric power networks. II.

Sample systems and examples. IEEE Transactions on Power Delivery, 11 (1),

466-474.

[51] S. B. Sadati, A. Tahani, B. Darvishi, M. Dargahi and H. Yousefi (2008).

Comparison of distribution transformer losses and capacity under linear and

harmonic loads. IEEE 2nd International Power and Energy Conference

(PECon 2008), 1-3 Dec. 2008, 1265-1269.

[52] D. M. Said, K. M. Nor and M. S. Majid (2010). Analysis of distribution

transformer losses and life expectancy using measured harmonic data. 2010

Page 28: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

117

14th International Conference on Harmonics and Quality of Power (ICHQP),

26-29 Sept. 2010, 1-6.

[53] M. Shareghi, B. T. Phung, M. S. Naderi, T. R. Blackburn and E.

Ambikairajah (2012). Effects of current and voltage harmonics on

distribution transformer losses. 2012 International Conference on Condition

Monitoring and Diagnosis (CMD), 23-27 Sept. 2012, 633-636.

[54] J. Desmet, G. Vanalme, R. Belmans and D. Van Dommelen (2008).

Simulation of losses in LV cables due to nonlinear loads. IEEE Power

Electronics Specialists Conference (PESC 2008), 15-19 June 2008, 785-790.

[55] J. Desmet, G. Vanalme, C. Debruyne and L. Vandevelde (2010). Influence of

harmonic currents on cable losses for different grid configurations. 2010 14th

International Conference on Harmonics and Quality of Power (ICHQP), 26-

29 Sept. 2010, 1-6.

[56] J. L. Doob (1949). Time Series and Harmonic Analysis. Berkeley Symposium

on Mathematical Statistics and Probability. Statistical Laboratory of the

University of California, Berkeley, 303-343.

[57] Time-Series Analysis. [Online]. Available through:

http://www.wepapers.com/Papers/12852/7-_Time_Series_Analysis,_

Fourier_Transform,_Harmonic_Analysis. Retrieved 2012.

[58] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea, A. Se Un and F. M. Figueiredo

(2000). Daily load profiles for residential, commercial and industrial low

voltage consumers. IEEE Transactions on Power Delivery, 15 (1), 375-380.

[59] M. Domagk, J. Meyer and P. Schegner (2011). Identification of consumer

topologies in low voltage grids by time series analysis of harmonic currents.

2011 11th International Conference on Electrical Power Quality and

Utilisation (EPQU), 17-19 Oct. 2011, 1-6.

[60] D. Paradis, F. Katiraei and B. Mather (2013). Comparative analysis of time

series studies and transient simulations for impact assessment of PV

integration on reduced IEEE 8500 node feeder. 2013 IEEE Power and Energy

Society General Meeting (PES), 21-25 July 2013, 1-5.

[61] J. Fuller, J. Solanki, B. Kersting, R. Dugan and J. Sandoval Carneiro.

Distribution Test Feeders. IEEE PES Distribution System Analysis

Subcommittee's Distribution Test Feeder Working Group, 22 May 2012.

Page 29: CHE KU FARHANA BINTI CHE KU AMRAN - eprints.utm.myeprints.utm.my/id/eprint/48749/25/CheKuFarhanaMFKE2014.pdf · Keperluan untuk permodelan dan simulasi harmonik adalah untuk menentukan

118

Available through: http://ewh.ieee.org/soc/pes/dsacom/testfeeders/. Retrieved

2012.

[62] D. M. Said and K. M. Nor (2008). Simulation of the impact of harmonics on

distribution transformers. IEEE 2nd International Power and Energy

Conference (PECon 2008), 1-3 Dec. 2008, 335-340.

[63] (2008). Fluke 434/435 Three Phase Power Quality Analyzer Users Manual.

[Online]. Available through:

http://www.fluke.com/Fluke/usen/Support/Manuals/

default.htm?ProductId=73939 . Retrieved 2013.

[64] R. C. Dugan (2011). Open Source Distribution System Simulator (OpenDSS)

Training Workshop. Electric Power Research Institute (EPRI). Atlanta,

[65] T. Chui. COM interface to C++. [Online]. Available through

SourceForge.net:http://sourceforge.net/p/electricdss/discussion/861976/threa

d/ ce57c5a0/, 30 May 2012. Retrieved 2012.

[66] A. L. Hazel A brief introduction to C++ and Interfacing with Excel. [Online].

Available through: www.maths.manchester.ac.uk/~ahazel/EXCEL_C++.

Retrieved 2012.

[67] Simulation Tool – OpenDSS. [Online]. Available through:

http://www.smartgrid.epri.com/SimulationTool.aspx. Retrieved 2011.

[68] A. Ponniran, E. Sulaiman, S. A. Jumaat, M. Ishak, M. A. Chulan and S.

Saiman (2007). A Study on Electric Energy Usage At The Residential Area.

1st Engineering Conference on Energy & Environment. 27-28 December

2007, Kuching, Sarawak, Malaysia, 1-5.

[69] W. M. Grady and R. J. Gilleskie (1993). Harmonics and How They Relate to

Power Factor. Proceedings of the EPRI Power Quality Issues &

Opportunities Conference (PQA’93). November 1993, San Diego, CA, 1-8.