Characterization & Identification of Polymers Presentation

  • Upload
    vinidsa

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    1/42

    1To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Topic IV:Structural Characterization and Identification of Polymers

    IV.1. Thermoanalytic methods- Differential thermal analysis (DTA) & differential scanning calorimetry (DSC)- Thermogravimetric analysis (TGA)- Thermomechanical analysis (TMA)

    IV.2. Spectroscopic methods- IR Spectroscopy

    IV.3. Microscopic methods- Optical/light Microscopy- Scanning Electron Microscopy

    IV.4. Diffraction methods- X-Ray Diffraction

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    2/42

    2To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Differential Thermal Analysis (DTA) & Differential Scanning Calorimetry (DSC)Methods based on measurement of heat consumed (endo) up or released (exo)to the surrounding per unit time during isothermal (hold), heating or cooling

    processes.

    Thermogravimetric Analysis (TGA)Measurement of changes of polymer weight as a function of temperature.

    Thermomechanical Analysis (TMA)Measurement of dimensional changes during heating or cooling

    Thermoanalytic Methods

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    3/42

    3To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods - DTA

    Differential Thermal Analysis (DTA)

    Sample (~10mg) pan and reference pan are placed in an oven. The oven is usually heated or cooled at a rate ranging from 0.1 to 100 K/min.

    Temperature difference (T) between sample and reference pan measured and recorded.

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    4/42

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    5/42

    5To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    380 400 420 440 460-15

    -10

    -5

    0

    5

    heatflux[W

    /g]

    temperature [C]

    Zinc

    endo

    exo

    TM

    = 419.6 C

    130 140 150 160 170 180-20

    -15

    -10

    -5

    0

    5

    H100%

    = 28.45 J/g

    TM

    = 156.6 C

    heatflux[W

    /g]

    temperature [C]

    Indium

    endo

    ex

    o

    Calibration of Temperature and Heat Flux

    ZincIndium

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    6/426To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Application of DTA/DSC

    Thermal transitions (e.g., glass transition, phase transitions) Melting behavior, -temperature, -enthalpy; specific heat

    Crystallization behavior; recrystallization Degree of crystallinity

    Annealing and curing processes; thermal stability

    Desorption, evaporation, decomposition Efficiency of additives

    Chemical reaction enthalpy, reaction temperature, reaction kinetics

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    7/427To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    50 100 150 200

    temperature [C]

    1

    0

    PC film

    50m

    heatflux[W/g]

    ex

    o

    endo

    TG = 150C

    Thermoanalytic Methods DTA/DSC

    Amorphous Polymers Glass TransitionPolycarbonate (PC)

    glass transition

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    8/428To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    50 100 150

    -11

    -10

    -9

    -8

    -7

    -6

    heatflux

    [W/g]

    temperature [C]

    ABS/PC blend

    e

    xo

    endo

    Thermoanalytic Methods DTA/DSC

    Amorphous Polymers Glass TransitionABS/PC blend

    glass transition

    ABSPC

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    9/429To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Amorphous Polymers Glass Transition

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    10/4210To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Amorphous thermoplastics Glass transition temperature [C]

    Polyvinylchloride (PVC) 80

    Polystyrene (PS) 95

    Polymethylmethacrylate (PMMA) 105

    Polycarbonate (PC) 150

    Polysulfone (PSU) 190

    Polyethersulfone (PES) 230

    Polyetherimide (PEI) 220

    Athas Databank:http:web.utk.edu/~athas/databank/

    Engineering and high temperature-resistant, amorphous polymers (PC, PSU, PES, PEI, etc.)contain aromatic rings, giving the macromolecule main chain a 2-dimensional (ladder-like) structure.

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    11/4211To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Melting BehaviourPE-HD

    60 80 100 120 140 160

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    TM

    = 135C

    heatflux

    [W/g]

    temperature [C]

    PE-HDexo

    endo

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    12/4212To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Melting Behaviour

    PE-HD and PE-LD

    60 80 100 120 140 160

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    X

    TM

    = 115C

    TM

    = 135C

    heatflux

    [W/g]

    temperature [C]

    PE-HD

    PE-LD

    e

    xo

    endo

    X

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    13/4213To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Melting Behaviour

    PE-LD / PP blend

    40 60 80 100 120 140 160 180 200-1.1

    -1.0

    -0.9

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    heatflux

    [W/g]

    temperature [C]

    PE-LD/PP Blend

    exo

    endo

    XTM = 165C

    TM

    = 115C

    X

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    14/4214To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Melting Behaviour

    w/o enthalpy relaxation

    with enthalpy relaxation

    Blend

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    15/4215To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    60 80 100 120 140 160

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    TM

    = 135C

    heatflux[W/g]

    temperature [C]

    PE-HDex

    o

    endo

    X

    60 80 100 120 140 160

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    heatflux[W/g]

    temperature [C]

    PE-HDex

    o

    endo

    Melting Enthalpy (H) = 188 J/g

    Thermoanalytic methods DTA/DSC

    Semicrystalline Polymers Degree of Crystallinity

    PE-HD

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    16/42

    16To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Degree of Crystallinity

    = H /H100%cr

    ... Degree of crystallinity

    H ... Measured melting enthalpy

    H100%cr ... Melting enthalpy for 100% crystalline material

    Example PE-HD:

    = 188/294 = 64%

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    17/42

    17To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline polymer Melting temperature[C]

    Melting enthalpy for100% crystallinity [J/g]

    Polyethylene (PE) 80 150

    165

    180

    260

    270

    350

    175

    325

    294

    Polypropylene (PP) 207

    Polyoxymethylene (POM) 326

    Polyamide 6,6 (PA66) 270

    Polyethyleneterephthalate (PET) 153

    Polyether ether ketone (PEEK) 130

    Poly(vinylidene fluoride) (PVDF) 105

    Polytetrafluoroethylene (PTFE) 41

    Athas Data bank:

    http:web.utk.edu/~athas/databank/http://athas.prz.rzeszow.pl/databank/welcome-db.html

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    18/42

    18To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Melting vs. Crystallization

    PTFE

    200 220 240 260 280 300 320 340 360-6

    -4

    -2

    0

    2

    4

    6 TCr

    = 310 C

    heatflux

    [W/g]

    temperature [C]

    PTFEexo

    endo

    cooling, -10 K/min

    heating, 10 K/min

    TM

    = 327C

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    19/42

    19To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Semicrystalline Polymers Postcrystallization

    PET

    50 100 150 200 250 300-20

    -15

    -10

    -5

    0

    5

    TM

    = 250 C

    TPostCr

    = 150 C

    heatflux

    [W/g]

    temperature [C]

    quenched PET

    endo

    exo

    TG

    = 75 C

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    20/42

    20To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Polyolefines exhibit autooxidation. Oxidation temperature (TOx) is affected by stabilization and ageing.

    weathering

    50 100 150 200 250

    2

    0

    unaged

    weathered

    PP film

    heatflux[W/g]

    temperature [C]

    exo

    endo

    TOx

    = 220 C

    Degradation / Oxidation of Polymers - PP

    Th l ti M th d DTA/DSC

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    21/42

    21To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods DTA/DSC

    Epoxy Resin - Relationship Between Degree of Cure

    & Glass Transition Temperature

    70 75 80 85 90 95 10060

    80

    100

    120

    140

    160

    180

    200

    220

    epoxy resin

    glasstrans

    itiontempe

    ratureT

    gDS

    C,

    C

    degree of cureDSC

    , %

    Th l ti M th d TGA

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    22/42

    22To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods - TGA

    Thermogravimetrical Analysis (TGA)

    Sample (~10 mg) and crucible, connected to a microbalance, are placed in an oven. The oven is usually heated or cooled at a rate ranging between 0.1 and 100 K/min.

    The change of weight (m) is measured as a function of temperature.

    Th l ti M th d TGA

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    23/42

    23To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Thermoanalytic Methods - TGA

    Thermogravimetrical analysis (TGA)

    0 100 200 300 400 50085

    90

    95

    100

    < 10 wt% phenolresin coating

    temperature [C]

    Phenol resin coated mineral wool

    Relativemass[%]

    < 2 wt% water content

    Determination of volatile components (e.g., water, solvents, etc.) Determination of mineral filler or reinforcement content of plastics.

    Topic IV:

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    24/42

    24To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    pStructural Characterization and Identification of Polymers

    IV.1. Thermoanalytic methods- Differential thermal analysis (DTA) & differential scanning calorimetry (DSC)

    - Thermogravimetric analysis (TGA)- Thermomechanical analysis (TMA)

    IV.2. Spectroscopic methods

    - IR Spectroscopy

    IV.3. Microscopic methods- Optical/light Microscopy- Scanning Electron Microscopy

    - Atomic force Microscopy

    IV.4. Diffraction methods- X-Ray Diffraction

    Spectroscopy

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    25/42

    25To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    Spectroscopy

    Spectroscopic methods play an important role in structural analysis of polymers.

    Spectroscopic phenomena are associated with the absorption or emission ofelectromagnetic radiation.

    : wavelength

    IR Spectroscopy

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    26/42

    26To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR - Spectroscopy

    Infrared spectroscopy (IR)

    For the analysis of plastics, infrared radiation with wavelength between2.5m and 25m is used.

    For experimental reasons usually the wavenumber () is used instead of thewavelength ().

    = 1/*10000 : wavenumber in cm-1 and

    : wavelength in m

    IR Spectroscopy

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    27/42

    27To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR - Spectroscopy

    Infrared spectroscopy (IR)

    The IR radiation causes rotations and vibrations of molecules and atomic groups. The oscillations are described by spring-mass-systems:

    m2

    m1

    km1 : mass of group 1 (e.g., H, O, N, S, Cl, F, CH3 )

    m2 : mass of group 2 (e.g., C, macromolecule)K : spring constant (e.g., C-H, C-O, C=O, C-N ...)

    Absorption occurs when the exciting frequency is equal to the resonancefrequency of the system.

    Due to the many different groups in polymers many different oscillations withspecific absorption peaks occur.

    IR - Spectroscopy

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    28/42

    28To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR - Spectroscopy

    Vibrations of CH2groups

    C

    HH

    symmetric CHstretching vibration Antisymmetric CHstretching vibration H-C-H deformation(bending)

    Rotation of CH2 group

    (twisting)

    Out-of plane pendulum vibration ofthe CH2 group (wagging)

    In-plane pendulum vibrationof the CH2 group (rocking)

    IR-Spectroscopy

    IR - Spectroscopy

    http://en.wikipedia.org/wiki/Infrared_spectroscopyhttp://en.wikipedia.org/wiki/Infrared_spectroscopy
  • 7/31/2019 Characterization & Identification of Polymers Presentation

    29/42

    29To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR - Spectroscopy

    Experimental IR-Spectrophotometer

    Heatradiationsource

    Interfero-meter

    Detector,

    Computer

    Samplecompartment

    IR-spectroscopy - PE

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    30/42

    30To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR spectroscopy PE

    4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0

    3 0

    4 0

    5 0

    6 0

    7 0

    8 0

    9 0

    1 0 0

    transmission[%]

    w a v e n u m b e r [ c m-1

    ]

    C H 2

    Vibration Range

    a CH2,s CH2 3000-2840

    CH2 1471

    CH2 717

    * C C

    H

    H

    *

    H

    H

    n

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    31/42

    IR-spectroscopy - PS

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    32/42

    32To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR spectroscopy PS

    4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0

    3 0

    4 0

    5 0

    6 0

    7 0

    8 0

    9 0

    1 0 0

    transmissio

    n[%]

    w a v e n u m b e r [ c m - 1 ]

    p h e n y l e n e

    Vibration Range

    =CH 3150-3000

    a CH2,s CH2 3000-2840

    Vibration Range

    Ph 1600-1375

    =CH 1067

    =CH 1027

    Vibration Range

    =CH 906

    =CH 754

    Ph 695

    * C

    H

    H

    C *

    H

    n

    IR-spectroscopy plasticized PVC

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    33/42

    33To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR spectroscopy plasticized PVC

    4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0

    7 0

    7 5

    8 0

    8 5

    9 0

    9 5

    1 0 0

    transmis

    sion[%]

    w a v e n u m b e r [ c m - 1 ]

    O H

    Vibration Range

    OH (plasticiser) 3331

    a CH2, s CH2, CH 3000-2840

    C(=O)C (plasticiser) 1720 CH2 1426

    Vibration Range

    CH, C-O-C (plast.) 1264

    C-O (plast.) 1122, 1072

    C-C 966 CH 742

    * CH2 CH

    Cl

    *n

    IR-spectroscopy PA12

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    34/42

    34To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    IR spectroscopy PA12

    4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 04 0

    5 0

    6 0

    7 0

    8 0

    9 0

    1 0 0

    transmission[%]

    w a v e n u m b e r [ c m - 1 ]

    N H

    C = O

    N H , N C

    C H 2

    Vibration Range

    NH 3287

    a CH2 2918

    s CH2 2850 C=O 1634

    Vibration Range

    NH, CN 1553, 1269

    CH2 1465

    CH2, CH2 1200 CH2 720

    * C CH2O

    NH *n

    z

    IR-spectroscopy - PET

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    35/42

    35To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    spect oscopy

    4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 00

    2 0

    4 0

    6 0

    8 0

    1 0 0

    transmiss

    ion[%]

    w a v e n u m b e r [ c m - 1 ]

    O = Cp h e n y l e n e

    Vibration Range

    a CH2, s CH2 3000-2840

    C=O 1713

    Ph 1600-1325 C(=O)O, =CH 1242

    Vibration Range

    O-C, =CH 1095

    =CH 1017

    =CH 956, 873 Ph 725

    * C

    O

    C O

    O

    CH2

    CH2

    O *n

    IR-spectroscopy PTFE and ETFE

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    36/42

    36To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    p py

    4 0 0 0 3 5 0 0 3 0 0 0 2 0 0 0 1 5 0 0 1 0 0 0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    w a v e n u m b e r [ c m - 1 ]

    transmission[%]

    E T F E C - F C - C - F

    2 0

    4 0

    6 0

    8 0

    1 0 0

    transmission

    [%]

    P T F E

    C F 2

    PTFE: Vibration Range

    a CF2 1200

    s CF2 1145

    ETFE: Vibration Range

    a CH2, s CH2 3000-2840

    CH 971

    s CH2 1453, 1248, 1162

    C-F 1323, 1038

    CH2, C-C-F 666

    * C C *

    F

    F

    F

    F

    n

    * C C C C

    H

    H H

    H

    *

    F F

    F F

    n

    IR-spectroscopy PES and PSU

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    37/42

    37To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    p py

    4 0 0 0 3 5 0 0 3 0 0 0 2 0 0 0 1 5 0 0 1 0 0 0

    8 0

    8 5

    9 0

    9 5

    1 0 0

    transmission[%]

    w a v e n u m b e r [ c m - 1 ]

    P S U

    6 0

    7 0

    8 0

    9 0

    1 0 0

    transmission[%]

    P E S

    p h e n y l e n e

    S O 2

    Vibration Range

    =CH 3086

    a Me 1486

    a Me, s Me 3000-2840

    Ph 1600-1320

    a SO2, =CH 1293, 1147

    Vibration Range

    a C-O-C 1233

    =CH 833

    =CH 1103

    =CH, Me 1012

    Ph 687

    * O S *

    O

    O

    n

    * O C

    CH3

    CH3

    O S

    O

    O

    *n

    IR-spectroscopy PEI and PI

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    38/42

    38To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    p py

    4 0 0 0 3 5 0 0 3 0 0 0 2 0 0 0 1 5 0 0 1 0 0 08 89 0

    9 2

    9 4

    9 6

    9 8

    1 0 0

    w a v e n u m b e r [ c m - 1 ]

    transm

    ission[%]

    P E IN C 2

    9 2

    9 4

    9 6

    9 8

    1 0 0

    transmission[%]

    P I

    i m i d e

    Vibration Range

    =CH 3150-3000

    Ph 1600-1300

    a Me & s Me (PEI) 3000-2840

    a C=O, s C=O 1775, 1725

    imide (PI) 1375

    Vibration Range

    imide, s Me (PEI) 1355

    s C-O-C 1167, 1114, 1082

    =CH (PI) 881, 821

    C=O (PEI) 848

    imide, aC-O-C (PI) 1243

    s NC2 (PEI) 1236

    C

    C

    O

    N

    C

    C

    O

    N On

    O O

    C

    C

    O

    O

    N* O C

    CH3

    CH3

    O

    C

    C

    O

    O

    N

    *n

    IR-spectroscopy - EVA

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    39/42

    39To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    4 0 0 0 3 5 0 0 3 0 0 0 2 0 0 0 1 5 0 0 1 0 0 00

    2 0

    4 0

    6 0

    8 0

    1 0 0

    transmission[%]

    w a v e n u m b e r [ c m - 1 ]

    5 %

    0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    tr

    ansmission[%]

    2 4 %

    Vibration Range

    a CH2, s CH2 3000-2840

    a CH3,s CH3 3000-2840

    C=O 1740

    CH2, a Me 1469

    Vibration Range

    s Me 1371

    C(=O)O 1241

    O-C, Me 1020

    CH2 720

    * CH2 CH *

    O C CH3

    O

    n

    IR-spectroscopy - EVA

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    40/42

    40To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    A = ln (0/)

    Determination of Vinylacetate (VA) content

    * C C

    H

    H

    *

    H

    H

    n

    * CH2 CH *

    O C CH3

    O

    n

    Ethylene

    A...Absorption

    ...transmission

    Vinylacetate band:A(1240cm-1)...(C=O)O group

    Ethylene band:

    A(1472cm

    -1

    )...CH2, CH3 groups

    5 10 15 20 25

    Vinylacetate

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    A(1240cm-1

    )/

    A(1472cm

    -1

    )

    VA [%]

    y = 0,1427x + 0,038

    R2

    = 0,9646

    IR-spectroscopy (ATR) - PE

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    41/42

    41To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    = 100% * [1-(Ia

    /Ib

    )/1.233]/(1+Ia

    /Ib

    )

    Determination of PE-crystallinity

    760 740 720 700 680

    crystallinity value

    Ia: Intensity peak area of the 730 cm-1 band

    Ib: Intensity peak area of the 720 cm-1 band

    1.233: area-ratio of pure crystalline polyethylene

    720

    Ib

    - amorphous

    absorptio

    n[-]

    wave number [cm-1]

    730

    Ia

    - crystalline

    IR-spectroscopy (ATR) - PE

  • 7/31/2019 Characterization & Identification of Polymers Presentation

    42/42

    42To ic IV.1 & 2 Courtesy of University of Leoben, Austria

    3 0 0 0 2 9 0 0 2 8 0 01 5 0 0 1 4 0 0 1 3 0 0 1 2 0 0 1 1 0 0 1 0 0 0 9 0 0 8 0 0 7 0 0

    absor

    ption[-]

    w a v e n u m b e r [ c m - 1 ]

    4 7 %

    absorption[-] 8 1 %

    * C C

    H

    H

    *

    H

    H

    n

    Vibration Range

    a CH2,s CH2 3000-2840

    CH2 1500-1460

    CH3 730-720