30
37 CHAPTER THREE Basic Transcendental Functions of Complex Variables §3-1 The Exponential Function 1. If iy x z + = , the complex exponential e z is given by (cos sin ) z x iy x iy x e e ee e y i y + = = = + 上述之定義中,使用到 Euler's Formulaθ θ θ sin cos i e i + = R θ 在此須先證明 e iy 是否亦符合 Euler's Formula,使得 y i y e iy sin cos + = ------ (1) 所以,底下我們將先舉出在實變函數中 Exponential 函數的性質,而後再證明之。 在實變微積分中,若定義 ax e x f = ) ( 則其有下列之性質 i) 2 1 2 1 x x x x e e e = + ii) 1 ) 0 ( = f iii) ) ( ) ( x af ae x f ax = = Using the above mentioned properties, we want to prove that the Equation (1) holds for any real number y. y i y e iy sin cos + = Let iy e y f = ) ( ) ( ) ( y h i y g + = where both g ( y ) and h ( y ) are real functions and satisfy the properties mentioned above, i.e., ) ( ) ( y f i y f = 1 ) 0 ( = f Thus, when ) ( ) ( ) ( y h i y g y f + = ( ) [() ( )] ( ) ( ) if y igy ih y ig y hy = = + = We know that when the equality holds any y, there must have Real part = Real part and Im = Im So, we obtain the following equations: () ( ) (2) ( ) () (3) g y hy h y g y =− −−−−−− = −−−−−− Differentiating equation (2) with respect to y, gives ) ( ) ( ) ( y g y h y g = = 0 ) ( ) ( = + y g y g ) 4 ( sin cos ) ( 2 1 + = y c y c y g From equation (2), we know that 1 2 ( ) () sin cos (5) hy g y c y c y =− = −−−−−− And then we use the property 1 ) 0 ( = f : 1 ) 0 ( ) 0 ( ) 0 ( = + = h i g f This implies that

CHAPTER THREE Basic Transcendental Functions of Complex …taiwan921.lib.ntu.edu.tw/mypdf/Jiang-Ch03.pdf · 2014-05-22 · 37 CHAPTER THREE Basic Transcendental Functions of Complex

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • 37

    CHAPTER THREE Basic Transcendental Functions of Complex Variables

    §3-1 The Exponential Function

    1. If iyxz += , the complex exponential ez is given by

    (cos sin )

    z x iy x iy

    xe e e e

    e y i y

    += =

    = +

    上述之定義中,使用到 Euler's Formula: θθθ sincos ie i += , R∈θ

    在此須先證明 e i y 是否亦符合 Euler's Formula,使得 yiyeiy sincos += ------ (1)

    所以,底下我們將先舉出在實變函數中 Exponential 函數的性質,而後再證明之。 * 在實變微積分中,若定義

    axexf =)( 則其有下列之性質

    i) 2121 xxxx eee =+ ii) 1)0( =f

    iii) )()( xafaexf ax ==′ Using the above mentioned properties, we want to prove that the Equation (1) holds for any real number y.

    yiyeiy sincos +=

    Let iyeyf =)( )()( yhiyg +=

    where both g(y ) and h (y) are real functions and satisfy the properties mentioned above, i.e., )()( yfiyf =′

    1)0( =f Thus, when

    )()()( yhiygyf ′+′=′ ( )

    [ ( ) ( )]( ) ( )

    i f yi g y i h yi g y h y

    == += −

    We know that when the equality holds any y, there must have Real part = Real part and Im = Im

    So, we obtain the following equations: ( ) ( ) (2)( ) ( ) (3)

    g y h yh y g y′ = − − − − − − −⎧

    ⎨ ′ = − − − − − −⎩

    Differentiating equation (2) with respect to y, gives )()()( ygyhyg −=′−=′′

    ⇒ 0)()( =+′′ ygyg ⇒ )4(sincos)( 21 −−−−−−+= ycycyg From equation (2), we know that

    1 2

    ( ) ( )sin cos (5)

    h y g yc y c y

    ′= −= − − − − − − −

    And then we use the property 1)0( =f : ⇒ 1)0()0()0( =+= higf This implies that

  • 38

    (0) 1(0) 0

    gh

    =⎧⎨ =⎩

    ⇒ 12

    10

    cc=⎧

    ⎨ =⎩

    ⇒ ( ) cos( ) sin

    g y yh y y

    =⎧⎨ =⎩

    ⇒ )()()( yhiygyfeiy +== yiy sincos +=

    ♣ Some basic properties of the exponential function are discussed as below.

    2. If, 111 yixz += and 222 yixz += are two complex numbers, then 221 zzzz zeee +=

    )()( 2121121 yixyixzz eeee ++=

    [ ] [ ][ ][ ]

    1 2

    1 2

    1 2

    1 2 1 2

    1 2 1 2

    1 2

    1 1 2 2

    1 2 1 2 1 2 2 1

    1 2 1 2( ) ( )

    ( ) ( )

    cos sin cos sin

    (cos cos sin sin ) (sin cos sin cos )

    cos( ) sin( )

    x x

    x x

    x x

    x x i y y

    x x i y y

    z z

    e y i y e y i y

    e y y y y i y y y y

    e y y i y y

    e eee

    +

    +

    + +

    + + +

    +

    = + ⋅ +

    = − + +

    = + + +

    =

    =

    =

    3. If ]sin[cos)( yiyezf x += is analytic in the entire complex plane, then zezf =′ )(

    * 為了證明上述結果,我們必須先了解下列的性質。 If ),(),()( yxviyxuzf += ,且其

    yv

    xu

    ∂∂

    =∂∂

    , yu

    xv

    ∂∂

    −=∂∂

    而且 xu∂∂

    ,yv

    ∂,

    xv

    ∂∂

    ,yu

    ∂∂ 均為連續 ⇔ )(zf is analytic

    Since ]sin[cos)( yiyezf x +=

    ⇒ yeyxu x cos),( =

    yeyxv x sin),( = It is easily seen that

    yexu x cos=∂∂

    yeyv x cos=

    ∂∂

    ⇒ yv

    xu

    ∂∂

    =∂∂ -------- (1)

    And yexv x sin=

    ∂∂

    , yeyu x sin−=

    ∂∂

    ⇒ yu

    xv

    ∂∂

    −=∂∂ -------- (2)

    Furthermore, xu∂∂

    ,yu

    ∂∂

    ,xv

    ∂∂ and

    yv

    ∂ are continuous everywhere in the xy-plane, and

    satisfy the Cauchy-Riemann conditions for all finite values of z everywhere in this plane. ⇒ )(zf is analytic for all z and is therefore an entire function.

  • 39

    The derivative ( )f z′ is easily found as

    xvi

    xuzf

    ∂∂

    +∂∂

    =′ )(

    cos sin[cos sin ]

    x x

    x

    z

    e y i e ye y i ye

    = +

    = +

    =

    ♣ Chain Rule: If ( )g z is also an analytic function, we have ( ) ( )( ) ( ) ( )g z g zd e e g zdz

    ′= .

    4. zx ee 和 之比較如下表所示:

    xe ze

    1) 0>xe ze 沒有大小

    2) 0≠xe )1(0 0 ==⋅≠ − eeee zzz

    3) xexf =)( is one-to-one function *** zezf =)( is a periodic function.

    Its period is 2πi *** ]sin[cos yiyee xz +=

    ( 2 )

    2

    2

    [cos( 2 ) sin( 2 )]

    ,

    x

    x i y n

    x i y n i

    z n i

    e y n i y ne eee n I

    π

    π

    π

    π π+

    + +

    +

    = + + +

    =

    =

    = ∈

    iT π2= (imaginary period),故知 ze 為週期函數。 ♣ MATLAB Commands for plotting ze , ( )Re ze , and ( )Im ze :

    % Magnitude of exp(z) x=[-1:0.05:1]; y=[-6:0.05:6]; [X,Y]=meshgrid(x,y); Z=X+i*Y; w=exp(Z); wm=abs(w); meshz(X,Y,wm);hold on title('Magnitude of exp(z)') % Real part of exp(z) x=[-1:0.05:1]; y=[-6:0.05:6]; [X,Y]=meshgrid(x,y); Z=X+i*Y; w=exp(Z); wm=real(w); meshz(X,Y,wm);hold on surf(X,Y,wm) title('Real Part of exp(z)') % Imaginary part of exp(z) x=[-1:0.05:1]; y=[-6:0.05:6]; [X,Y]=meshgrid(x,y); Z=X+i*Y;

  • 40

    w=exp(Z); wm=imag(w); meshz(X,Y,wm);hold on title('Imaginary Part of exp(z)')

  • 41

    5. For iyxz += , we have

    1) 0≠ze

    2) 1=yie and xz ee = (The magnitude of ze is determined by the real part of z.)

    3) If ikze z π21 =⇔= , k = constant.

    4) If ikzzee zz π22121 =−⇔= where k is an integer.

    1) From 0 1z ze e e−⋅ = = , since the product is never zero, neither factor can be zero. Therefore, Cze z ∈∀≠ 0 .

    2) 1sincos 22 =+= yye yi

    Since ]sin[cos yiyee xz += ,

    then yiyee xz sincos +=

    1xx

    ee

    = ⋅

    =

    3) Let 1]sin[cos =+= yiyee xz

    thus cos 1

    sin 0

    x

    x

    e y

    e y

    ⎧ =⎪⎨

    =⎪⎩

    Since Rxe x ∈∀≠ 0 , we see that 0sin =y . Hence Inny ∈= ,π

    Because ( )不合11cos0 −=⇒> ye x ⇒ Ikky ∈= ,2 π Thus, we seek that kn 2= . If we take 01 =⇒= xe x 因此, iyxz +=

    02

    ink i

    ππ

    = += ←此為必要條件

    現在,尚須證明其充分條件亦成立,故 Suppose that ikz π2= , where k I∈ . Then, we obtain that

    2

    cos2 sin 21

    z k ie ek i k

    π

    π π== +=

    4) Since 21 zz ee = 121 =⇔ −zze Hence from the property 3), we have ikzz π221 =− , where k I∈ . The theorem is thus established. Since Cze z ∈∀≠ 0 , and 1=− zzee We have that

    zz

    ee 1=−

    6. Let us show that z ze e=

    z x i y x i ye e e+ −= =

    (cos sin )

    x i y

    xe ee y i y

    −=

    = −

  • 42

    (cos sin ) (cos sin )z x xe e y i y e y i y= + = −

    Thus, we see that z ze e= ♣ Some useful identities:

    1) 0 / 2 3 / 2 / 21, , 1,i i i i ie e i e e i eπ π π π−= = = − = − =

    2) 1 0ie π + =

    3) DeMoivre’s Theorem: (cos sin ) cos sinni n i nθ θ θ θ+ = + or ( )ni ine eθ θ= . 4) Complex functions of a real variable: ( ) ( ) ( )f t u t iv t= + , where ( )u t and ( )v t are real.

    ⇒ ( ) ( ) ( )f t u t iv t′ ′ ′= +

    Example 1 Find 7 2

    7

    cos(2 )td e t

    dt

    ⎡ ⎤⎣ ⎦ .

    1. Direct differentiation ⇒ laborious ! 2. Note that ( )2 2(1 )cos(2 ) Ret i te t e += .

    Let 2(1 )( ) i tf t e += . Then, we have (7) 7 7 2(1 ) 7 2(1 )( ) 2 (1 ) 2 ( 8 )(1 )i t i tf t i e i i e+ += + = × − +

    Thus,

    ( ) ( ){ }7 2

    7 2(1 ) 10 27

    10 2

    cos(2 )Re 2 ( 8 )(1 ) Re 2 sin 2 cos2 sin 2 cos2

    2 (sin 2 cos2 )

    ti t t

    t

    d e ti i e e t t i t t

    dte t t

    +⎡ ⎤⎣ ⎦ ⎡ ⎤= × − + = + + −⎡ ⎤⎣ ⎦⎣ ⎦

    = +

    H.W. 1 (a) Suppose we want the n-th derivative, with respect to t, of ( )2( ) / 1f t t t= + . Notice that

    1( ) Ref tt i

    ⎛ ⎞= ⎜ ⎟−⎝ ⎠ and that the n-th derivative of the function in the brackets is exactly taken. Using

    the method of Example 1, as well as the binomial theorem (which perhaps should be reviewed), show that

    ( 1) / 2 1 2( )

    2 10

    ( 1) !( 1)! ( 1)( )(2 )!( 1 2 )!( 1)

    n k n kn

    nk

    n n tf tk n kt

    + + −

    +=

    − + −=

    + −+∑ , for n odd,

    1 2/ 2( )

    2 10

    !( 1)! ( 1)( )(2 )!( 1 2 )!( 1)

    k n knn

    nk

    n n tf tk n kt

    + −

    +=

    + −=

    + −+∑ , for n even.

    (b) Using the method of part (a), find similar expressions for the nth derivative of ( )2( ) 1/ 1f t t= + . Note that this function is identical to ( )Im 1/( )t i− .

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.1, Problem 24, Pearson Education, Inc., 2005.】 H.W. 2 The absolute magnitude of the expression

    12 ( 1)

    01

    Ni i i N in

    nP e e e eψ ψ ψ ψ

    −−

    == + + + + = ∑

    is of interest in many problems involving radiation from N identical physical elements (e.g., antennas, loudspeakers). Here ψ is a real quantity that depends on the separation of the elements and the position of an observer of the radiation. P can tell us the strength of the radiation observed. (a) Using the formula for the sum of a finite geometric series (see H.W. 8 in page 6, lecture note of

    ch_01), show that

  • 43

    sin / 2( )sin / 2

    NP ψψψ

    =

    (b) Find 0lim ( )Pψ ψ→ .

    (c) Use a calculator or a simple computer program to plot ( )P ψ for 0 2ψ π≤ ≤ when N = 3. 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.1, Problem 25, Pearson Education, Inc., 2005.】

    (a) Let iz e ψ= , then 1 1

    2 1 1 111 1

    N NN z zP z z z

    z z

    − +− − −= + + + + = =

    − −.

    ⇒ ( ) ( )( ) ( )

    / 2 / 2 / 2

    / 2 / 2 / 2

    / 2

    / 2

    / 2

    / 2

    1 1( )1 1

    cos( / 2) sin( / 2) cos( / 2) sin( / 2)cos( / 2) sin( / 2) cos( / 2) sin( / 2)

    2 sin( / 2)2 sin(

    iN iN iN iN iN

    i i i i i

    iN

    i

    iN

    i

    e e e e ePe e e e e

    N i N N i Nei ie

    e i Nie

    ψ ψ ψ ψ ψ

    ψ ψ ψ ψ ψ

    ψ

    ψ

    ψ

    ψ

    ψ

    ψ ψ ψ ψψ ψ ψ ψ

    ψψ

    ⎡ ⎤− − −= = = ⎢ ⎥

    − − −⎢ ⎥⎣ ⎦⎡ ⎤+ − −

    = ⎢ ⎥+ − +⎣ ⎦

    =/ 2)

    Thus, we have / 2

    / 22 sin( / 2) sin( / 2)( )2 sin( / 2) sin( / 2)

    iN

    ie i N NP

    ie

    ψ

    ψψ ψψψ ψ

    = = ------------ Q.E.D.

    (b) Consider

    0

    sin( / 2) / 2 cos( / 2)limsin( / 2) 1/ 2 cos( / 2)

    N N N Nψ

    ψ ψψ ψ→

    = =

    Thus, we have

    0lim ( )P Nψ

    ψ→

    =

    (c) MATLAB commands: % H.W.1 part (c) N=3; phi=[0:0.1:2*pi]; y=sin(N*phi)./sin(phi); Y=abs(y); plot(phi,Y)

    0 1 2 3 4 5 6 70

    0.5

    1

    1.5

    2

    2.5

    3

  • 44

    §3-2 The Trigonometric Function

    1. Since xixe xi sincos +=

    xixe xi sincos −=− then we see that

    sin2

    cos2

    i x i x

    i x i x

    e exi

    e ex

    ⎧ −=⎪⎪

    ⎨+⎪ =⎪⎩

    ⇒ 屬於實數

    and sinh

    2

    cosh2

    x x

    x x

    e ex

    e ex

    ⎧ −=⎪⎪

    ⎨+⎪ =⎪⎩

    ⇒ 屬於實數

    1) Given any complex number z , we define

    sin2

    cos2

    i z i z

    i z i z

    e ezi

    e ez

    −=

    +=

    2) The functions zsin and zcos are analytic for all values of z. Moreover,

    sin2

    2cos

    i z i z

    i z i z

    d i e i ezdz i

    e e

    z

    +=

    +=

    =

    cos2

    ( )2

    sin

    i z i z

    i z i z

    d i e i ezdz

    e ei

    z

    −=

    − −=

    = −

    2. 底下是一些三角函數和 Hyperbolic Function 的性質:

    1) 1sincos 22 =+ xx , 1sinhcosh 22 =− xx

    2) cxdxx

    +=−

    −∫ 12 sin11 ,

    cxdxx

    +=+

    −∫ 12 sinh11

    3) ℒ 2 2{sin }t sωωω

    =+

    ,

    ℒ 2 2{sinh }t sωωω

    =−

    4) ℒ 2 2{cos }st

    ω=

    +,

    ℒ 2 2{cosh }st

    ω=

    3. If iyxz += , then

    1) yxiyxz sinhcoscoshsinsin += 2) yxiyxz sinhsincoshcoscos −=

  • 45

    1) ieez

    zizi

    2sin

    −−=

    ( ) ( )

    2

    2[cos sin ] [cos sin ]

    2cos ( ) sin ( )

    2

    cos sin2 2

    sin cosh cos sinh

    i x i y i x i y

    y i x y i x

    y y

    y y y y

    y y y y

    e ei

    e ei

    e x i x e x i xi

    x e e i x e ei

    e e e ei x

    x y i x y

    + − +

    − + − −

    − −

    − −

    −=

    −=

    + − −=

    − + +=

    − += +

    = +

    2) 同理可證。在此另舉一證法: 由 Taylor's Series,知

    3 5 2 1

    03 5 2 1

    0

    ( 1)sin3! 5! (2 1)!

    sinh3! 5! (2 1)!

    n n

    nn

    n

    z z zz zn

    z z zz zn

    +∞

    =+∞

    =

    ⎧ −= − + − + =⎪

    +⎪⎨⎪ = + + + =⎪ +⎩

    比較上列二式可得 sinh sinsin sinh

    iz i ziz i z

    =⎧⎨ =⎩

    同樣地,由下二式 2 4 2

    02 4 2

    0

    ( 1)cos 12! 4! (2 )!

    cosh2! 4! (2 )!

    n n

    nn

    n

    z z zzn

    z z zz zn

    =∞

    =

    ⎧ −= − + − + =⎪

    ⎪⎨⎪ = + + + =⎪⎩

    比較可得 cosh coscos cosh

    iz ziz z

    =⎧⎨ =⎩

    由上述結果我們便可證明 2) 之結果: Since )cos(cos yixz +=

    cos cos sin sincos cosh sin sinh

    x i y x i yx y i x y

    = −= −

    4. 1sin ≤x ,在實變函數中成立;但在複變函數中, 1sin ≤z ,不一定成立。

    Since yxiyxz sinhcoscoshsinsin += ,

    thus yxyxz 22222 sinhcoscoshsinsin +=

    yx

    yxyx22

    2222

    sinhsin

    sinh)sin1()sinh1(sin

    +=

    −++=

    If we take 2π

    =x , 1=y ,then obtain

    1sin 2 =x , 0sinh 2 >y

    ⇒ 1sin 2 >z ⇒ 1sin ≤z ,不一定成立

    5. If Innzz ∈=⇒= ,π0sin .

  • 46

    From 02

    sin =−=−

    ieez

    zizi

    ⇒ 12 =⇒= − zizzi eee i

    ⇒ 1)22( =+ yixie ⇒ 1]2sin2[cos2 =+− xixe y ⇒ 02sin =x Since 02 >ye ,when 02sin =x , we know 12cos ±=x But in this case we must take 12cos +=x (如此 02 >ye 才能配合題意之要求). ⇒ πnx 22 = ⇒ πnx = 而因 12cos =x ,故取 12 =− ye 故知 0=y ⇒ iyxz +=

    0,

    n in n Iππ

    = += ∈

    6. If 1cos 02

    z z n n Iπ⎛ ⎞= ⇒ = + ∈⎜ ⎟⎝ ⎠

    , .

    From 02

    cos =+=− zizi eez , we see that zzi ee i−= .

    ⇒ 12 −=zie ⇒ 1]2sin2[cos2 −=+− xixe y Then, we have sin 2 0x = + .

    Since 02 >− ye ,when 02sin =x , we know that 12cos ±=x . But in this case we must take 12cos −=x (such that they satisfy 02 >− ye , 12cos2 −=− xe y ). ⇒ π)12(2 += nx

    ⇒ 12

    x n π⎛ ⎞= +⎜ ⎟⎝ ⎠

    又因 12cos −=x ,故取 12 =− ye 。 ⇒ 02 =− y ⇒ 0=y 故 iyxz +=

    1 0212

    n i

    n

    π

    π

    ⎛ ⎞= + +⎜ ⎟⎝ ⎠⎛ ⎞= +⎜ ⎟⎝ ⎠

    7. Given the complex number z , we define

    1) sin 1tancos 2

    zz z nz

    π⎛ ⎞= ≠ +⎜ ⎟⎝ ⎠

    2) coscotsin

    zz z nz

    π= ≠,

    3) 1seccos 2

    z z nz

    π π= ≠ +,

    4) 1cscsin

    z z nz

    π= ≠,

    where In∈ in all above cases. 5) ztan and zcot both have a fundamental period of π. 6) zsec and zcsc both have a fundamental period of 2π.

    8. ztan , zcot , zsec and zcsc are analytic functions of z except for the above mentioned

    y

    x 0 π 2π 3π -3π -2π -π

    y

    x0

    π2

    3− π

    2

    1− π

    2

    2

    3 π

    2

    5

  • 47

    limiting values. We can define that

    1) ππ nzzzdzd

    +≠=2

    sec)(tan 2 ,

    2) πnzzzdzd

    ≠−= ,2csc)(cot

    3) ππ nzzzzdzd

    +≠=2

    tansec)(sec ,

    4) πnzzzzdzd

    ≠−= ,cotcsc)(csc

    where in all cases , In∈ .

    9. If iyxz += , then

    1) sin sinz z= , cos cosz z=

    sin sin( ) sin( )z x i y x i y= + = −

    yxiyxyixyix

    sinhcoscoshsinsincoscossin

    −=−=

    ⇒ sin sinz z= yxiyxz sinhcoscoshsinsin +=

    sin sin cosh cos sinhz x y i x y= −

    同理 cos cosz z=

    2) yxz 222 sinhsin|sin| +=

    3) yxz 222 sinhcos|cos| +=

    4) 1cossin 22 =+ zz 5) 212121 sincoscossin)sin( zzzzzz ±=± 6) 212121 sinsincoscos)cos( zzzzzz ∓=±

    7) sin cos2

    z zπ⎛ ⎞− =⎜ ⎟⎝ ⎠

    8) zzz cossin22sin = 9) zzz 22 sincos2cos −=

    以上各式之證明均非常簡單,留待給讀者證明。

    10. Let us show that

    21

    2121 tantan1

    tantan)tan(zzzzzz

    −+

    =+

    where 1 212

    z z n π⎛ ⎞+ ≠ +⎜ ⎟⎝ ⎠

    , In∈ .

    )cos()sin()tan(

    21

    2121 zz

    zzzz++

    =+

    21

    21

    2121

    2121

    tantan1tantan

    sinsincoscossincoscossin

    zzzz

    zzzzzzzz

    −+

    =

    −+

    =

    ♣ MATLAB Commands for plotting cos( )z :

    % Magnitude of cos(z) x=[-6:0.05:6]; y=[-1:0.05:1]; [X,Y]=meshgrid(x,y); Z=X+i*Y; w=cos(Z);

  • 48

    wm=abs(w); meshz(X,Y,wm);hold on title('Magnitude of cos(z)')

    H.W.1 Let ( ) sin(1/ )f z z= .

    (a) Express this function in the form ( , ) ( , )u x y iv x y+ . Where in the complex plane is this function analytic?

    (b) What is the derivative of ( )f z ? Where in the complex plane ( )f z′ is analytic? 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.2, Problem 22, Pearson Education, Inc., 2005.】 (a) Since ( ) sin(1/ )f z z= , where 1/ z is analytic except for z = 0. But, sinz is analytic for all z. Therefore,

    we have sin(1/ )z is analytic for all 0z ≠ . Since z x iy= + , we have

    2 2 2 2 2 2

    2 2 2 2 2 2 2 2

    sin(1/ ) sin sin

    sin cosh cos sinh

    x iy x yz ix y x y x y

    x y x yix y x y x y x y

    ⎛ ⎞ ⎛ ⎞−= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    where

    2 2 2 2( , ) sin coshx yu x y

    x y x y

    ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

    and 2 2 2 2( , ) cos sinhx yv x y

    x y x y

    ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

    (b) 21sin(1/ ) cos(1/ )d z z

    dz z⎛ ⎞= −⎜ ⎟⎝ ⎠

    ----------- analytic for all 0z ≠ .

    H.W. 2 Show that sin(2 ) sinh(2 )tancos(2 ) cosh(2 )

    x i yzx y+

    =+

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.2, Problem 28, Pearson Education, Inc., 2005.】

    Since

    2 2 2 2

    sin sin cosh cos sinhtancos cos cosh sin sinh(sin cosh cos sinh )(cos cosh sin sinh )

    cos cosh sin sinh

    z x y i x yzz x y i x yx y i x y x y i x y N

    Dx y x y

    += =

    −+ −

    = ≡+

    Consider the denominator D:

  • 49

    ( ) ( )

    [ ]

    2 2 2 2 2 2 2 2

    2 2

    cos cosh sin sinh cosh 1 sin sin cosh 1

    cosh sin(1 cosh 2 ) [1 cos(2 )]

    21 cosh(2 ) cos(2 )2

    x y x y y x x y

    y xy x

    y x D

    + = − + −

    = −+ − −

    =

    = + =

    Now, consider the numerator N: The real part of N is

    ( )2 2

    2 2

    cosh sin cos sinh sin cos1sin cos cosh sinh sin cos sin(2 )2

    y x x y x x

    x x y y x x x

    = − = =

    Then, consider the imaginary part of numerator:

    ( )2 2

    2 2

    cos cosh sinh sin cosh sinh1sinh cosh cos sin sinh cosh sinh(2 )2

    x y y x y y

    y y x x y y y

    +

    = + = =

    Thus, we have

    ( )

    1 12 2

    12

    sin(2 ) sinh(2 )

    cosh 2 cos2

    x i yND y x

    +=

    +

    This implies that sin(2 ) sinh(2 )tancos(2 ) cosh(2 )

    x i yzx y+

    =+

    ---------- Q.E.D.

    H.W. 3 (a) Since yxiyxz sinhcoscoshsinsin += and sinh coshy y≤ , show that

    sinh sin coshy z y≤ ≤ .

    (b) Derive a comparable double inequality for cos z . 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.2, Problem 30, Pearson Education, Inc., 2005.】 (a) Since yxiyxz sinhcoscoshsinsin += , we have

    ( )

    2 2 2 2

    2 2 2 2

    2 2 2

    2

    sin sin cosh cos sinh

    sin cosh cos sinh

    sin cosh cos cosh sinh cosh

    cosh sin cos

    cosh cosh cosh (since cosh is positive!)

    z x y i x y

    x y x y

    x y x y y y

    y x x

    y y y y

    = +

    = +

    ≤ + ≤

    = +

    = = =

    ∴ sin coshz y≤ ----------- (1) On the other hand, we have

    ( )

    2 2 2 2

    2 2 2 2

    2 2 2

    2

    sin sin cosh cos sinh

    sin sinh cos sinh sinh cosh

    sinh sin cos

    sinh sinh

    z x y x y

    x y x y y y

    y x x

    y y

    = +

    ≥ + ≤

    = +

    = =

    ⇒ sinh siny z≤ ------------ (2) From Eqs.(1) and (2), we conclude that

    sinh sin coshy z y≤ ≤ ------------ Q.E.D. (b) Since cos cos cosh sin sinhz x y i x y= − , we have

  • 50

    ( )

    2 2 2 2

    2 2 2 2

    2 2 2

    2

    cos cos cosh sin sinh

    cos cosh sin sinh

    cos cosh sin cosh sinh cosh

    cosh sin cos

    cosh cosh cosh (since cosh is positive!)

    z x y i x y

    x y x y

    x y x y y y

    y x x

    y y y y

    = −

    = +

    ≤ + ≤

    = +

    = = =

    ∴ cos coshz y≤ ----------- (3) Similarly, we have

    ( )

    2 2 2 2

    2 2 2 2

    2 2 2

    2

    cos cos cosh sin sinh

    sin sinh cos sinh sinh cosh

    sinh sin cos

    sinh sinh

    z x y x y

    x y x y y y

    y x x

    y y

    = +

    ≥ + ≤

    = +

    = =

    ⇒ sinh cosy z≤ ------------ (4) From Eqs.(3) and (4), we conclude that

    sinh cos coshy z y≤ ≤ ------------ Q.E.D. H.W. 4 Find all roots of the equation sin cosh 4z = .

    ( )2 2 4 , 0, 1, 2,z n i nπ π= + ± = ± ± 【本題摘自:James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 6rd ed., Exercise 24, Problem 16, McGraw-Hill, Inc., 2005.】 H.W. 5 Find all roots of the equation cos 2z = . ( )12 cosh 2 or 2 ln 2 3 , 0, 1, 2,z n i n i nπ π−= + ± + = ± ± 【本題摘自:James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 6rd ed., Exercise 24, Problem 17, McGraw-Hill, Inc., 2005.】

  • 51

    §3-3 The Hyperbolic Functions

    1. Recall that when we study in the real variable, the hyperbolic functions have been defined as following:

    2sinh

    xx eex−−

    = , its graph is as shown in Fig. (a).

    and 2

    coshxx eex

    −+= , its graph is as shown in Fig. (b).

    2. Given any complex number z , we define

    2

    sinhzz eez

    −−= ,

    ieez

    zizi

    2sin

    −−=

    2

    coshzz eez

    −+= ,

    2cos

    zizi eez−+

    =

    1) 若取 z 為實數,則上述定義與實變函數中的雙曲線函數之定義可相符合。 2) zsinh and zcosh both have a fundamental period of 2π i . 3) zz sinh)sinh( −=−

    zz cosh)cosh( =−

    4) 1sinhcosh 22 =− zz

    5) sinh2

    z zd d e ezdz dz

    −⎛ ⎞−= ⎜ ⎟

    ⎝ ⎠

    zeezz

    cosh2

    )(=

    −−=

    )2

    (coshzz ee

    dzdz

    dzd −+

    =

    zeezz

    sinh2

    =−

    =−

    6) If Ininzz ∈=⇒= ,0sinh π . Since 0sinh =z

    ⇒ 02

    z ze e−⎛ ⎞−=⎜ ⎟⎜ ⎟

    ⎝ ⎠

    ⇒ zz ee −= Then, we have

    122 =+ yixe This means that

    y

    x 0

    3π i

    2π i

    π i

    −2π i

    −π i

    2sinh

    xx eexy−−

    ==

    -5

    -60

    -40

    -20

    20

    40

    60

    y

    0 5x

    Fig. (a)

    2cosh

    xx eexy−+

    ==

    -5

    -60

    -40

    -20

    20

    40

    60

    y

    0 5x

    Fig. (b)

  • 52

    1)2sin2(cos2 =+ yiye x 利用實部=實部,虛部=虛部,我們可得知 02sin =y ----------

    and 12cos2 =⋅ ye x ----------

    Since 02 >xe ⇒ 12cos =y ( 1− 不合) From , we can obtain that πny 22 = ⇒ πny = Again, we need

    12 =xe ⇒ 0=x So, if sinh 0z = , we conclude that

    iyxz += inin ππ =+= 0

    7) If 1cosh 0 ,2

    z z n i n Iπ⎛ ⎞= ⇒ = + ∈⎜ ⎟⎝ ⎠

    Since 02

    cosh =+=− zz eez ,

    ⇒ zz ee −−= ⇒ 12 −=ze ⇒ 1]2sin2[cos2 −=+− yiye x ⇒ 02sin =y

    Since 02 >xe ⇒ 12cos −=y ⇒ π)12(2 += ny

    故 1 ,2

    y n n Iπ⎛ ⎞= + ∈⎜ ⎟⎝ ⎠

    .

    Again we need 12 −=xe ⇒ 0=x So, if sinh 0z = , we conclude that

    iyxz += 12

    n iπ⎛ ⎞= +⎜ ⎟⎝ ⎠

    * 由(6)及(7)知,只有純虛數才能使 sinh z 和 cosh z 等於 0。

    3. Given the complex number z, we define the other hyperbolic functions as followings:

    1) sinh 1tanhcosh 2

    zz z n iz

    π⎛ ⎞= ≠ +⎜ ⎟⎝ ⎠

    , .

    2) coshcothsinh

    zz z n iz

    π= ≠, .

    3) 1 1seccosh 2

    h z z n iz

    π⎛ ⎞= ≠ +⎜ ⎟⎝ ⎠

    , .

    4) 1cscsinh

    h z z n iz

    π= ≠, .

    where In∈ in all cases. 5) Both ztanh and zcoth have a fundamental period of π i . 6) Both zhsec and zhcsc have a fundamental period of 2π i .

    4. ztanh , zcoth , zhsec and zhcsc are analytic functions of z,其中 z 值不可為上述重點 3

    所限制的各不允許值,則

    1) 2 1(tanh ) sech2

    d z z z n idz

    π⎛ ⎞= ≠ +⎜ ⎟⎝ ⎠

    2) 2(coth ) cschd z z z n idz

    π= − ≠,

    y

    x0

    3π i

    2π i

    π i

    −π i

    −2π i

    iπ23

    iπ21

    iπ21

    iπ23

    iπ25

  • 53

    3) 1(sech ) sech tanh2

    d z z z z n idz

    π⎛ ⎞= ≠ +⎜ ⎟⎝ ⎠

    4) (csch ) csch cothd z z z z n idz

    π= − ≠,

    where In∈ in all cases.

    5. If iyxz += , then 1) xyixyz coshsinsinhcossinh += 2) xyiyyz sinhsincoshcoscosh +=

    1) 2

    sinhzz eez

    −−=

    ( ) ( )

    21 [ (cos sin ) (cos sin )]2

    cos sin2 2

    cos sinh sin cosh

    x i y x i y

    x x

    x x x x

    e e

    e x i y e y i y

    e e e ey i y

    y x i y x

    + − +

    − −

    −=

    = + − −

    − += +

    = +

    2) zcosh 同理可證,亦可仿 §3-2 3.之 2) 證之。

    6. If iyxz += , then a) zizi sin)(sinh = , zizi sinh)(sin = b) zzi cos)(cosh = , zzi cosh)(cos =

    c) sinh sinhz z= , cosh coshz z=

    d) xyz 222 sinhsin|sinh| +=

    xyz 222 sinhcos|cosh| += H.W. 1 (a) Where on the line x y= is the equation sin sinh 0z i z+ = satisfied?

    (b) Using MATLAB, obtain a three-dimensional plot of sin sinhz i z+ and verify that the surface obtained has zero height at points in Part (a). Include 0z = and at least one other solution, on the line, of the given equation.

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.3, Problem 20, Pearson Education, Inc., 2005.】 (a) Since sin sinh 0z i z+ = , we have

    sin cosh cos sinh [sinh cos cosh sin ] 0x y i x y i x y i x y+ + + = ---------- (A) Using Re = Re and Im =Im, gives

    sin cosh cosh sin 0x y x y− = Put x y= in the preceding equation, yields

    sin cosh cosh sinx x x x= ---------- satisfied! Equating the imaginary part in Eq.(A), gives

    cos sinh sinh cos 0x y x y+ = Put x y= in the preceding equation, yields

    2sinh cos 0x x =

    ⇒ 0x = or 2

    , 0, 1, 2, 3,x n nππ⎡ ⎤= ± + =⎢ ⎥⎣ ⎦. Also, y x= in this case.

    (b) MATLAB commands:

    x=[0:0.05:2]; y=[0:0.05:2] ; [X,Y]=meshgrid(x,y); Z=X+i*Y;

  • 54

    w=sin(Z)+i*sinh(Z); wm=abs(w); meshz(X,Y,wm);view(150,70)

    H.W. 2 Find all roots of the equation (a) 1

    2cosh z = , (b) sinh z i= , and (c) cosh 2z = − .

    【本題摘自:James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 6rd ed., Exercise 25, Problem 14, Pearson Education, Inc., 2005.】

    (a) ( )132 , 0, 1, 2,n i nπ± = ± ± (b) ( )122 , 0, 1, 2,n i nπ+ = ± ± (c) ( )ln 2 3 (2 1) , 0, 1, 2,n i nπ± + + + = ± ±

  • 55

    §3-4 The Logarithmic Function

    1. For any complex number 0≠z , there exists complex numbers w such that 0≠= zew . In particular, one of such w’s is the complex number as shown below:

    θizw += ||ln

    Let θierz = , where rz =|| . Hence, we have

    ln| |

    ln

    ln

    w z i

    r i

    r i

    i

    e eee er ez

    θ

    θ

    θ

    θ

    +

    +=

    =

    = ⋅

    ==

    Thus, we can define that

    zizizzarg||ln

    ||lnln+=+= θ

    1) Define πθπθ ≤

  • 56

    2 2 2 2

    2 21

    #

    x yix y x yx i y z

    z z zx y

    = −+ +−

    = = =⋅+

    ii) Polar coordinate method: Let )(zfw = and (cos sin )z x iy r iθ θ= + = + , then

    ⎩⎨⎧

    ==

    θθ

    sincos

    ryrx

    In Chapter 2, we have derived the formula as shown below:

    rwi

    zdwd

    ∂∂

    −= )sin(cos θθ

    Note that θizzzfw +=== ||lnLn)(

    θir += ln

    ⇒ rwi

    zdwd

    ∂∂

    −= )sin(cos θθ

    1(cos sin )

    1(cos sin )

    1

    ir

    r i

    z

    θ θ

    θ θ

    = − ⋅

    =⋅ +

    =

    ----------- Q.E.D.

    2. In the real variable analysis, we know that if 01 >x and 02 >x , then

    2121 lnlnln xxxx +=⋅ However, in the complex variable analysis, the following 2121 LnLnLn zzzz +=⋅ may be not true. For example: Let iziz +−== 1, 21 then izz −−=⋅ 121 First, we have

    iz LnLn 1 =

    ln | |2

    2

    i i

    i

    π

    π

    = +

    =

    and )1Ln(Ln 2 iz +−= 3ln | 1 |4

    3ln 24

    i i

    i

    π

    π

    = − + +

    = +

    But 1 2Ln( ) Ln ( 1 )z z i⋅ = − − 3ln | 1 | ( )4

    3ln 24

    i i

    i

    π

    π

    = − − + −

    = −

    Hence, iizz ππ432ln

    2LnLn 21 ++=+

    iπ452ln +=

  • 57

    1 2Ln( ) #z z≠ ⋅

    ♣ But, the following theorems are still satisfied.

    3. If the complex numbers 1z , 2z , 3z are different from zero, then the principal values of the arguments and logarithms of the product, quotient, and powers among these complex numbers are given by

    1) )(),(2argarg)(Arg 2111121 azznzzzz -π++=⋅ )(),(2LnLn)(Log 2112121 bzznizzzz -π++=⋅

    where 1n is assumed to be the values of 1, 0, 1− as following:

    ⎪⎪⎩

    ⎪⎪⎨

    −≤+

  • 58

    where 2n is assumed to be the values of 1, 0, 1− as followings:

    ⎪⎪⎩

    ⎪⎪⎨

    −≤−

  • 59

    Example 3 Find )22(Ln i+ .

    Ln ( 2 2)ln | 2 2 | arg( 2 2)

    ln 24

    ii i i

    i π

    += + + +

    = +

    Example 4 Find the principal value of i

    ieπ3

    )31(2 ⎥⎦

    ⎤⎢⎣⎡ −− .

    3

    3

    33

    1 3 1 33 ln arg2 2

    ( 1 3)2

    1 3( )2

    1 32

    [cos3 sin 3 ]

    i

    i

    ii

    i ii i

    e i

    ie

    ie

    i e

    π

    π

    ππ

    ππ π

    ⎡ ⎤⎛ ⎞− − − −+⎢ ⎥⎜ ⎟

    ⎢ ⎥⎝ ⎠⎣ ⎦

    ⎡ ⎤− −⎢ ⎥⎣ ⎦

    ⎡ ⎤− −= ⎢ ⎥⎣ ⎦

    ⎛ ⎞− −= ⎜ ⎟

    ⎝ ⎠

    = +

    2

    23 ln13

    233

    2

    ( 1)i i

    i i

    e

    e

    e

    ππ

    ππ

    π

    ⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    ⎛ ⎞−⎜ ⎟⎝ ⎠

    = − ⋅

    = −

    = −

    5. If 0≠z , w and λ are any complex number,

    then kizwz w π2Ln)(Ln += ----------- (1)

    kiww ezz λπλλ 2)( ⋅= ----------- (2) where k is the integer given by bracket function

    ⎥⎦⎤

    ⎢⎣⎡ +−=

    π2Arg)Re(||ln)Im(

    21 zwzwk

    Denote wz by α , zarg by θ , and let viuw += , then

    zww ez Ln==α

    ]||ln[||ln

    ]||][ln[

    θθ

    θ

    uzvivzu

    izviu

    ee

    e

    +−

    ++

    ⋅=

    =

    Thus,

    ⎪⎩

    ⎪⎨⎧

    ++=

    = −

    kuzvz

    e vzu

    πθ

    α θ

    2||lnarg

    || ||ln ------------ (3)

    where k is the integer such that ππθπ ≤++

  • 60

    ⎥⎦⎤

    ⎢⎣⎡ +−=

    ⎥⎦⎤

    ⎢⎣⎡ +−=+=

    π

    πθ

    2arg)Re(||Ln)Im(

    21

    2||Ln

    21]1[

    zwzw

    uzvtk

    Now, using Eq. (3), we see that

    kizw

    kiizviu

    kuzvivzu

    kuzvie

    i

    z

    vzu

    w

    π

    πθ

    πθθ

    πθ

    αα

    α

    θ

    2Ln

    2)||)(ln(

    ]2||ln[||ln

    ]2||ln[][Ln

    arg||ln

    Ln)(Ln

    ||ln

    +=

    +++=

    +++−=

    +++=

    +=

    =

    故(1)式已被證得。 同理,可證得(2)式。

    H.W. 1 Consider the identity ln lnnz n z= , where n is an integer, which is valid for appropriate choice of

    the logarithms on each side of the equation. Let 1z i= + and 5n = . (a) Find the values of ln nz and ln z that satisfy ln lnnz n z= . (b) For the given z and n, is ln lnnz n z= satisfied? (c) Suppose n = 2 and z is unchanged. Is ln lnnz n z= then satisfied?

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3.4, Problem 26, Pearson Education, Inc., 2005.】

    (a) 54

    5ln ln 5 Ln 2z z i π⎡ ⎤= = +⎢ ⎥⎣ ⎦

    (b) No. (c) Yes.

    6. Definition (Branch):

    A branch of a multivalued function is a single-valued function analytic in some domain. At every point of the domain, the single-valued function must assume exactly one of the various possible values that the multivalued function can assume.

    Definition (Branch cut) A line used to create a domain of analyticity is called a branch line or branch cut.

    Definition (Branch point) Any point that must lie on a branch cut ⎯ no matter what branch used ⎯ is called a branch point of a multivalued function.

    Ex. (1) Ln z ≡ principal value of ln z, which is defined for all z except z = 0. (2) Ln z is also used to denote the principal branch of the logarithm function, which is defined for all

    z except z = 0 and values of z on the negative real axis. (3) ( ) Lnf z r iθ= + , where 3 / 2 / 2π θ π− < ≤ .

    ⇒ It is discontinuous at the origin and at all points on the positive imaginary axis. (4) ( ) Lnf z r iθ= + , where 3 / 2 2 / 2 2 , 0, 1, 2,k k kπ π θ π π− + < ≤ + = ± ± , are, for each k,

    analytic branches, provided z is confined to the domain D1. Example 5 (a) Find the largest domain of analyticity of ( ) Ln[ (3 4 )]f z z i= − + .

    (b) Find the numerical value of (0)f .

    (a) For the given function, the non-analytic points are located at:

  • 61

    Im 0, Re 0w w= ≤

    If (3 4 )w z i= − + , these two conditions can be rewritten as

    [ ]Im ( ) (3 4 ) 0 4x iy i y+ − + = ⇒ = [ ]Re ( ) (3 4 ) 0 3x iy i x+ − + ≤ ⇒ ≤

    So, the full domain of analyticity is shown in the following Fig. (a).

    (b) (0) Ln( 3 4 ) Ln(5) arg( 3 4 )f i i i= − − = + − − , where arg( 3 4 )iπ π− < − − < .

    ⇒ (0) Ln(5) 2.214f i= − ⇒ Fig. (b).

    H.W. 2 (a) Show that ( )Ln Ln( )z is analytic in the domain consisting of the z-plane with a branch cut along

    the line 0, 1y x= ≤ . (See below) (b) Find ( )Ln Ln( )d z dz within the domain of analyticity found in part (a). (c) What branch cut should be used to create the maximum domain of analyticity for

    ( )Ln Ln Ln( )z⎡ ⎤⎣ ⎦ ? 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3-5, Problem 15, Pearson Education, Inc., 2005.】

    H.W. 3 The complex electrostatic potential ( , ) Ln(1/ )x y i zφ ψΦ = + = , where 0z ≠ , can be created by an

    electric line charge located at 0z = and lying perpendicular to the xy-plane. (a) Sketch the streamlines for this potential. (b) Sketch the equipotentials for 1, 0, 1, 2φ = − .

    jy

    x

    − 4i

    − 3

    − 2.214 (approx.)

    jy

    x

    Branch cut y = 4, x ≤ 3

    3 + 4i

    Fig. (a)Fig. (b)

    jy

    x.

    Domain of analytic of Ln z (shaded)

    jy

    x

    Branch cut Domain D1

    jy

    x

    Branch cut

    1

    Fig. HW-2

  • 62

    (c) Find the components of the electric field at an arbitrary point (x, y). 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3-5, Problem 16,

    Pearson Education, Inc., 2005.】 (a) Since ( , ) Ln(1/ ) Lnx y i z zφ ψΦ = + = = −

    ⇒ 2 2( , ) Lnx y x yφ ⎛ ⎞= − +⎜ ⎟⎝ ⎠

    , ( )1( , ) tan yxx yψ −= − , where ψ ’s are ramp emanating from origin. (b) Since 2 21 Ln 1x y φ⎛ ⎞− = − + = = −⎜ ⎟

    ⎝ ⎠, therefore

    2 2x y e+ = if 1φ = −

    Also, when 2 20 Ln 0x y φ⎛ ⎞= − + = =⎜ ⎟⎝ ⎠

    , therefore

    2 2 1x y+ = if 0φ =

    When 2 21 Ln 1x y φ⎛ ⎞= − + = =⎜ ⎟⎝ ⎠

    , therefore

    2 2 1/x y e+ = if 1φ = The electric field is

    x ydE iEdzΦ⎛ ⎞+ = −⎜ ⎟

    ⎝ ⎠

    ⇒ 2 2xxE

    x y=

    + and 2 2y

    yEx y

    =+

    (c) MATLAB commands:

    % HW (c) x=[-2.5:0.02+0.001:2.5]; y=x; [X,Y]=meshgrid(x,y); Z=X+i*Y; w=log(Z-1-1*i); %wm=real(w); % for real part wm=imag(w); % for imag part Meshz(X,Y,wm); % for imag part and real View(45,45);

    H.W. 4 Let

    3( )( ) 10 zf z = . This function is evaluated such that ( )f z′ is real when 1z = . Find (1 )f i′ + . Where in the complex plane is ( )f z analytic?

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3-6, Problem 24, Pearson Education, Inc., 2005.】

    ψ = π/4

    ψ = −π/4

    ψ = −3π/4

    x

    y

    x

    yφ = 1

    φ = 0

    φ = − 1

  • 63

    (1 ) 0.137 0.0148f i i′ + = − ; ( )f z is an entire function.

    (a) real part

    (b) imaginary part

    H.W. 5 Let ( )( ) 10

    zef z = . This function is evaluated such that 2( / 2)f i e ππ −= . Find ( )f z′ and ( / 2)f iπ′ .

    【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3-6, Problem 24, Pearson Education, Inc., 2005.】

    [ ][Ln(10) 2 ]( ) Ln(10) 2zi e zf z e i eπ π+′ = + and ( / 2) 0.00464 0.01f i iπ′ = −

  • 64

    §3-5 Inverse Trigonometric and Hyperbolic Functions

    1. 1) Let sinz w= , then ( )1/ 21 2sin ln 1z i zi z− ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

    Since 2

    iw iwe ezi

    −−= , assume that iwp e= and 1/ iwp e−= , then we have

    1/2

    p pzi

    −=

    ⇒ 22 1izp p= −

    ⇒ 2 2 1 0p izp− − = Solve this equation for p:

    ( )1/ 221p zi z= + − or ( )1/ 221iwe zi z= + − ⇒ ( )1/ 221 ln 1w zi zi

    ⎡ ⎤= + −⎢ ⎥⎣ ⎦

    Since 1sinw z−= , we have

    ( )1/ 21 21sin ln 1z zi zi− ⎡ ⎤= + −⎢ ⎥⎣ ⎦

    2) Other inverse trigonometric functions:

    ( )1/ 21 21cos ln 1z z zi− ⎡ ⎤= + −⎢ ⎥⎣ ⎦

    1tan ln2i i zz

    i z− +⎛ ⎞= ⎜ ⎟−⎝ ⎠

    2. Inverse of Hyperbolic function

    1) ( )1/ 21 2sinh ln 1z z z− ⎡ ⎤= + +⎢ ⎥⎣ ⎦

    2) ( )1/ 21 2cosh ln 1z z z− ⎡ ⎤= + −⎢ ⎥⎣ ⎦

    3) 1 1 1tanh ln2 1

    zzz

    − +⎛ ⎞= ⎜ ⎟−⎝ ⎠

    3. Derivative of inverse trigonometric functions:

    1) ( )( )

    1/ 21 21/ 22

    1 1sin ln 11

    d dz zi zdz dz i z

    − ⎧ ⎫⎡ ⎤= + − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭ −

    2) ( )

    11/ 22

    1cos1

    d zdz z

    − −=−

    3) ( )

    12

    1tan1

    d zdz z

    − =+

    4. Derivative of inverse hyperbolic functions:

    1) ( )

    11/ 22

    1sinh1

    d zdz z

    − =+

    2) ( )

    11/ 22

    1cosh1

    d zdz z

    − =−

  • 65

    3) ( )

    12

    1tanh1

    d zdz z

    − =−

    Example 1 Find 1sin (1/ 2)− .

    1/ 21 1 3sin (1/ 2) ln

    2 4i

    i− ⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

    ⎝ ⎠⎢ ⎥⎣ ⎦

    Taking ( )1/ 23/ 4 3 / 2= , the above expression becomes

    ( )1 1 3sin (1/ 2) ln ln 1 ( / 6) 2 , 0, 1, 2,2 2 6i i k k

    iππ π−

    ⎡ ⎤= + = − ∠ = + = ± ±⎢ ⎥

    ⎣ ⎦

    Taking ( )1/ 23/ 4 3 / 2= − , the above expression becomes

    ( )1 1 3 5sin (1/ 2) ln ln 1 (5 / 6) 2 , 0, 1, 2,2 2 6i i k k

    iππ π−

    ⎡ ⎤= − = − ∠ = + = ± ±⎢ ⎥

    ⎣ ⎦

    Example 2 Find all the numbers whose sine is 2.

    This question is to solve sin 2z = . Thus, we have

    ( )1/ 21 1sin (2) ln 2 3ii

    − ⎡ ⎤= + −⎢ ⎥⎣ ⎦

    Taking ( )1/ 23 3i− = + , the above expression becomes

    ( ) ( )( )

    12

    2

    1sin (2) ln 2 3 Ln 2 3 2

    2 1.317, 0, 1, 2,

    i i i i ki

    k i k

    π

    π

    π

    π

    − ⎡ ⎤⎡ ⎤= + = − + + +⎣ ⎦ ⎢ ⎥⎣ ⎦

    = + − = ± ±

    Taking ( )1/ 23 3i− = − , the above expression becomes

    ( ) ( )( )

    12

    2

    1sin (2) ln 2 3 Ln 2 3 2

    2 1.317, 0, 1, 2,

    i i i i ki

    k i k

    π

    π

    π

    π

    − ⎡ ⎤⎡ ⎤= − = − − + +⎣ ⎦ ⎢ ⎥⎣ ⎦

    = + + = ± ±

    Example 3 Find all the numbers whose sine is i.

    This question is to solve sin z i= . Thus, we have

    ( )1/ 21 21sin ( ) ln 2 ln(1 2)i i ii

    − ⎡ ⎤= + = − ±⎢ ⎥⎣ ⎦

    Taking ( )1/ 23 3i− = + , the above expression becomes

    ( ) ( )( ) ( ) ( )

    1Ln 2 1 2 2 Ln 2 1

    sin ( ) ln 1 2Ln 2 1 2 2 Ln 2 1

    i i k k ii i

    i i k k i

    π π

    π π π π−

    ⎧ ⎡ ⎤− − + = − −⎪ ⎣ ⎦⎡ ⎤= − − ± = ⎨⎣ ⎦ ⎡ ⎤− + + + = + − +⎪ ⎣ ⎦⎩

    where 0, 1, 2,k = ± ± . H.W. 1 Show that ( )1 1sin ( ) ( 1) ln 1 2ni n iπ− += + − + . 【本題摘自:James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 6rd ed., Section 29, Example 1, McGraw-Hill, Inc., 2005.】 H.W. 2 Show that ( ) ( )1tanh (1/ 2) ln cot / 2ie iθ θ− = ⎡ ⎤⎣ ⎦ . 【本題摘自:A. David Wunsch, Complex Variable with Applications, 3rd ed., Exercise 3-7, Problem 16,

  • 66

    Pearson Education, Inc., 2005.】

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice