Chapter 7 Slides modelling subject

Embed Size (px)

Citation preview

  • 8/18/2019 Chapter 7 Slides modelling subject

    1/24

    1/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    CHAPTER 7 

    ENTROPY

    Prepared by:

    Saiful Hasmady Abu Hassan, Dr.

     Adapted from:

    Yunus A. Cengel and Michael A. Boles, Thermodynamics: AnEngineering Approach, 8th Edition in SI Units, McGraw-Hill, 2015

    2/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Chapter 7 Outcomes

    At the end of the chapter, you should be able to:

    • Apply the second law of thermodynamics to processes

    • Define a new property called entropy to quantify the second-law

    effects

    • Establish the increase of entropy principle

    • Calculate the entropy changes that take place during processes for

    pure substances, incompressible substances, and ideal gases

    • Examine a special class of idealized processes, called isentropic

    processes, and develop the property relations for these processes

    • Derive the reversible steady-flow work relations

    • Develop the isentropic efficiencies for various steady-flow devices

    • Introduce and apply the entropy balance to various systems

  • 8/18/2019 Chapter 7 Slides modelling subject

    2/24

    3/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy

    Clausius Inequality

    Reversible, irreversible

    Internally reversible

    Formal Definition of Entropy

    [kJ/K]

    4/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    EntropyEntropy Change of Internally Reversible Heat

    Transfer Process

    Entropy change of thermal

    energy reservoirs

  • 8/18/2019 Chapter 7 Slides modelling subject

    3/24

    5/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    The Increase of Entropy Principle

    From Clausius Inequality,

    To make the ‘>’ sign becomes ‘=‘,

    ?

    6/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Sgen: Entropy Generation

    • Some entropy is generated or created during

    an irreversible process, and this generation is

    due entirely to the presence of irreversibilities

    • The entropy generation Sgen is always a

    positive quantity or zero

  • 8/18/2019 Chapter 7 Slides modelling subject

    4/24

    7/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Sgen: Isolated Systems

    8/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Some Remarks about Entropy1. Processes can occur in a certain direction

    only, not in any direction• A process must proceed in the direction of

    increasing entropy (Sgen ≥ 0)

    • A process that violates this principle isimpossible

    2. Entropy is a non-conserved property , andthere is no such thing as the conservationof entropy principle

    • Entropy is conserved during the idealizedreversible processes only

    • Entropy increases during all actualprocesses

    3. Entropy generation is a measure of themagnitudes of the irreversibilities duringthat process• Sgen is a measure of performance

    degradation of engineering devices

  • 8/18/2019 Chapter 7 Slides modelling subject

    5/24

    9/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Pure Substances

    The T-s Diagram (for

    water)

    [kJ/K]

    10/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Processes

    [kJ/(kgK)]

    !

  • 8/18/2019 Chapter 7 Slides modelling subject

    6/24

    11/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Property Diagrams Involving Entropy

    • On a T-S diagram, the areaunder the process curverepresents the heat transferfor internally reversibleprocesses

    1. The T-s (or T-S) Diagram

    For internally reversible,

    isothermal process:

    12/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Property Diagrams Involving Entropy1. The T-s (or T-S) Diagram

  • 8/18/2019 Chapter 7 Slides modelling subject

    7/24

    13/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Property Diagrams Involving Entropy

    2. The h-s (or Mollier ) Diagram

    14/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    What is Entropy?

    A pure crystalline substance at absolute

    zero temperature is in perfect order, and

    its entropy is zero (the third law of

    thermodynamics)

  • 8/18/2019 Chapter 7 Slides modelling subject

    8/24

    15/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    What is Entropy?

    16/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    What is Entropy?

  • 8/18/2019 Chapter 7 Slides modelling subject

    9/24

    17/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    The T dS RelationsWhy? To determine the entropy change Δs of solids, liquids and ideal gases

    Since and

    Substituting and rearranging,

    Per unit mass,

    The First T ds Relation (Gibbs Equation)

    18/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    The T dS Relations

    The Second T ds Relation

    From the enthalpy definition,

    Applying Chain Rule to the above,

    And knowing the First T ds Relation to be

    Why? To determine the entropy change Δs of solids, liquids and ideal gases

  • 8/18/2019 Chapter 7 Slides modelling subject

    10/24

    19/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    The T dS Relations

    • Differential changes in entropy in terms of other properties

    • Will be used to find Δs of solids and liquids, and ideal gases

    Why? To determine the entropy change Δs of solids, liquids and ideal gases

    20/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Liquids and Solids

    From the First T ds Relation,

    Liquids and solids can be approximated as incompressible substances since

    their specific volumes remain nearly constant during a process. Thus:

    Knowing that and for solids and liquids,

    LIQUIDS AND SOLIDS:

    For isentropic process of an

    incompressible substance:

  • 8/18/2019 Chapter 7 Slides modelling subject

    11/24

    21/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases1. From the First T ds Relation

    Knowing

    and

    2. From the Second T ds Relation

    Knowing

    and

    The TWO equations above can be used for IDEAL GASES. However, the INTEGRAL sign remains.

    IDEAL GASES #1: IDEAL GASES #2:

    22/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases

    • To ‘remove’ the integral, entropy change of

    ideal gases can be found from two kinds of

    analyses:

    1. Approximate Analysis (or the Constant Specific

    Heat Method)

    2. Exact Analysis (or the Variable Specific HeatMethod)

  • 8/18/2019 Chapter 7 Slides modelling subject

    12/24

    23/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases1. APPROXIMATE ANALYSIS (CONSTANT SPECIFIC HEAT METHOD)

    24/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases1. APPROXIMATE ANALYSIS (CONSTANT SPECIFIC HEAT METHOD)

    Summary: Entropy change of an ideal gas on a unit –mass basis [kJ/(kgK)]

    Summary: Entropy change of an ideal gas on a unit –mole basis [kJ/(kmolK)]

  • 8/18/2019 Chapter 7 Slides modelling subject

    13/24

    25/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases2. EXACT ANALYSIS (VARIABLE SPECIFIC HEAT METHOD)

    We choose absolute zero as the reference

    temperature and define a function s° as

    Therefore

    From the Second T ds Relation,

    26/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Change of Ideal Gases

  • 8/18/2019 Chapter 7 Slides modelling subject

    14/24

    27/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Processes of Ideal Gases

    Similar to entropy change, the propertiesduring isentropic processes of ideal gases can

    be numerically related from the two analyses:

    1. Approximate Analysis (or the Constant Specific

    Heat Method)

    2. Exact Analysis (or the Variable Specific Heat

    Method)

    s2 – s1 = 0 is set

    28/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Processes of Ideal Gases1. APPROXIMATE ANALYSIS (CONSTANT SPECIFIC HEAT METHOD)

    Rearranging, we arrive at three relations:

    For isentropic, ideal gas and constant specific heats

  • 8/18/2019 Chapter 7 Slides modelling subject

    15/24

    29/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Processes of Ideal Gases2. EXACT ANALYSIS (VARIABLE SPECIFIC HEAT METHOD)

    Isentropically,

    Which leads to

    Rearranging,

    For isentropic, ideal gas, and variable specific heats,

    (relative pressure)

    (relative specific volume)

    30/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Processes of Ideal Gases2. EXACT ANALYSIS (VARIABLE SPECIFIC HEAT METHOD)

    For isentropic, ideal gas, and variable specific heats,

  • 8/18/2019 Chapter 7 Slides modelling subject

    16/24

    31/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Reversible Steady-flow Work

    Energy balance:

    Since

    Substituting and rearranging,

    Reversible Work:

    (in the absence of KE and PE)

    Therefore,

    (constant v )

    32/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Reversible Steady-flow WorkEXAMPLE: Compressing a Substance in

    the Liquid versus Gas Phases

  • 8/18/2019 Chapter 7 Slides modelling subject

    17/24

    33/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices

    1. ISENTROPIC EFFICIENCY OF TURBINES

    34/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices1. ISENTROPIC EFFICIENCY OF TURBINES

  • 8/18/2019 Chapter 7 Slides modelling subject

    18/24

    35/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices

    2. ISENTROPIC EFFICIENCY OF COMPRESSORS AND PUMPS

    Compressors

    Pumps

    Compressors are

    sometimesintentionally cooled

    to minimize the work

    input

    36/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices2. ISENTROPIC EFFICIENCY OF COMPRESSORS AND PUMPS

    Compressors

  • 8/18/2019 Chapter 7 Slides modelling subject

    19/24

    37/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices

    3. ISENTROPIC EFFICIENCY OF NOZZLES

    If the inlet velocity of the fluid is small relative

    to the exit velocity, the energy balance is

    38/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Isentropic Efficiencies of Steady-flow Devices3. ISENTROPIC EFFICIENCY OF NOZZLES

  • 8/18/2019 Chapter 7 Slides modelling subject

    20/24

    39/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Balance

    40/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy BalanceMECHANISMS OF ENTROPY TRANSFER, Sin and Sout

    1. HEAT TRANSFER

    (T = constant)

    By the way,

  • 8/18/2019 Chapter 7 Slides modelling subject

    21/24

    41/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy BalanceMECHANISMS OF ENTROPY TRANSFER, Sin and Sout

    2. MASS FLOW

    42/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy BalanceENTROPY GENERATION, Sgen

  • 8/18/2019 Chapter 7 Slides modelling subject

    22/24

    43/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Balance

    The entropy of a substance always increases

    (or remains constant in the case of a reversibleprocess) as it flows through a single-stream,

    adiabatic, steady-flow device

    44/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy BalanceEntropy balance for heat transfer

    through a wall 

    Entropy balance for a throttling process

  • 8/18/2019 Chapter 7 Slides modelling subject

    23/24

    45/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy BalanceEntropy Generated when a Hot Block Is Dropped in a Lake

    or

    Entropy Generation in a Heat Exchanger 

    46/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Balance

    Entropy Generation Associated with

    Heat Transfer 

  • 8/18/2019 Chapter 7 Slides modelling subject

    24/24

    47/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    Entropy Balance

    Entropy generation associated with a heat transfer process

    48/48© U N I V E R S I T I T E N A G A N A S I O N A L , 2 0 1 5

    M E H B 2 1 3 T H E R M O D Y N A M I C S 1 : C H A P T E R 7

    What we covered

    • Entropy• The Increase of entropy principle• Entropy change of pure substances• Isentropic processes• Property diagrams involving entropy• What is entropy?• The T ds relations

    • Entropy change of liquids and solids• The entropy change of ideal gases• Reversible steady-flow work• Minimizing the compressor work• Isentropic efficiencies of steady-flow devices• Entropy balance