25
Chapter 6 Stability of Ishikawa Iteration for Nonexpansive Type Condition This Chapter contains some results on stability of Ishikawa iteration procedures for pair of multi-valued maps satisfying nonexpansive type condition. The nonexpansive type condition used is a generalization of many well known contractive conditions. Our result generalizes many well established results on stability of ishikawa iterates available in the literature. Preliminaries Let (X, d) be a complete metric space, T a selfmap of X. Let ݔ X, ݔାଵ =f(T, ݔ ) denote an iteration procedure which yields a sequence of points { ݔ }. Suppose that { ݔ } converges to a fixed point p of T. Let { ݕ }, ߝ = ݕାଵ , (, ݕ ). If lim ߝ = 0, implies that ݕ =p, then the iteration procedure is said to be T stable. The study of iteration procedures was initiated by Urbe [144], however Harder and Hicks [46] gave a formal definition of stability of iterative procedures. From literature it appears that Ostrowski [91] was the first to discuss stability of iteration procedures in metric space. Because of increasing use of computational mathematics and revolution in computer programming convergency and stability results for certain classes of mappings have been extensively studied by many authors(see [14], [23], [24], [46], [47], [52], [57], [80], [81], [82], [89] and the references there in). Harder and Hicks [46], [47] pointed out that the study of stability is theoretically as well as numerically interesting. Estelar

Chapter 6 Stability of Ishikawa Iteration for Nonexpansive Type ...shodhganga.inflibnet.ac.in/bitstream/10603/26921/6/chapter 6.pdf · Stability of Ishikawa Iteration for nonexpansive

  • Upload
    ngotu

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Chapter 6 Stability of Ishikawa Iteration for Nonexpansive Type Condition

This Chapter contains some results on stability of Ishikawa iteration procedures

for pair of multi-valued maps satisfying nonexpansive type condition. The nonexpansive

type condition used is a generalization of many well known contractive conditions. Our

result generalizes many well established results on stability of ishikawa iterates available

in the literature.

Preliminaries

Let (X, d) be a complete metric space, T a selfmap of X. Let 푥 ∈ X,

푥 =f(T, 푥 ) denote an iteration procedure which yields a sequence of points

{푥 }. Suppose that {푥 } converges to a fixed point p of T. Let {푦 }⊂ 푋, 휀 =

푑 푦 , 푓(푇, 푦 ) . If lim휀 = 0, implies that 푦 =p, then the iteration procedure is

said to be T stable.

The study of iteration procedures was initiated by Urbe [144], however

Harder and Hicks [46] gave a formal definition of stability of iterative procedures.

From literature it appears that Ostrowski [91] was the first to discuss stability of

iteration procedures in metric space. Because of increasing use of computational

mathematics and revolution in computer programming convergency and stability

results for certain classes of mappings have been extensively studied by many

authors(see [14], [23], [24], [46], [47], [52], [57], [80], [81], [82], [89] and the

references there in). Harder and Hicks [46], [47] pointed out that the study of

stability is theoretically as well as numerically interesting.

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

104 | P a g e

Mann in 1953 introduced iterative schemes and employed this iterative

scheme to obtain the convergence of functions to fixed point. Rhoades [116]

established results which showed that continuous self maps of a closed and

bounded interval converges to a fixed point of the function but Mann iteration

process sometime fails to converge for Lipschitzian pseudo-contractive maps.

Ishikawa [57] introduced a new iterative process for the convergence of such

maps. In last decade an extensive work has been done by researcher around

convergence of Mann and Ishikawa iteration process for single-valued and

multivalued mappings under various contractive conditions (see [14], [23], [24],

[46], [47], [52], [57], [80], [81], [82], [89] and the references there in).

B.E. Rhoades [116] established the following result for the convergence of

Mann iteration procedure.

Theorem6.1. Let T be a self-map of a closed convex subset K of a real Banach

space (X, d). let {푥 } be a general Mann iteration of T that converges to a

point p ∈ X. If there exists the constants 훼,훽, 훾 ≥ 0,훿 < 1 such that

‖푇푥 − 푇푝‖ ≤ 훼‖푥 − 푝‖ + 훽‖푥 − 푇푥 ‖+ 훾‖푝 − 푇푥 ‖

+ 훿 max{‖푝 − 푇푝‖,‖푥 − 푝‖}

Then p is fixed point of T.

It is to be noted that, in above theorem, if T is continuous then Mann

iteration process converges to fixed point of T. But if it is not then there is no

guarantee that Mann iterative process converges and even if it converges, it will

not necessarily converge to a fixed point of T. Hu et.al [52] solved this problem

by extending above theorem to the Ishikawa iteration process.

Theorem6.2.[52]. Let K be a compact convex subset of a Hilbert space, 푇:퐾 →

퐾 a Lipschitzian pseudo-contractive map and 푥 ∈ 푋. Then the Ishikawa iteration

{푥 } defined as:

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

105 | P a g e

푥 = 훼 푇[훽 푇푥 + (1 − 훽 )푥 ] + (1− 훼 )푥 ,

where {훼 } and {훽 } are sequence of positive number that satisfy following

three conditions.

I. 0 ≤ 훼 ≤ 훽 ≤ 1, for all positive integer n.

II. lim → 훽 = 0,

III. s∑ 훼 훽 = ∞,

converges strongly to a fixed point of T.

We need the following Lemma due to Nadler [88] for our main result.

Lemma6.1.[88]. If A, B ∈ CB(X) and a ∈ A, then for 휖 > 0 there exists b ∈ B

such that

d(a, b)≤ H(a, B) + 휖.

The Ishikawa iteration scheme for two multivalued mappings is defined as

follows:

Definition6.1. Let K is a nonempty subset of X. and S,T : 퐾 → 퐶퐵(푋). Ishikawa

iteration is defined as:

푥 ∈ 퐾 푦 = (1 − 훽 )푥 + 훽 푎 ,푎 ∈ 푇푥 푥 = (1 − 훼 )푥 + 훼 푏 , 푏 ∈ 푆푦

(6.1)

Where 0 ≤ 훼 , 훽 ≤ 1 for all n.

Recently for Ishikawa iterates for multivalued mappings on a Banach

space Rhoades [111] established a generic theorem with number of corollaries.

Theorem6.3. Let X be a Banach space, K a closed convex subset of X. S and T are

multivalued mappings from K to CB(X). Suppose that the Ishikawa iteration

scheme (6.1), with {훼 } satisfying:

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

106 | P a g e

(i) 0 ≤ 훼 , 훽 ≤ 1 for all n,

(ii) lim 푖푛푓훼 = 푑 > 0and {푎 },{푏 }, satisfying

‖푎 − 푏 ‖ ≤ 퐻(푇푥 ,푆푦 ) + 휖 with lim 휖 = 0 (6.2)

Converges to a point p. If there exists non-negative number 훼,훽, 훾, 훿 with 훽 ≤

1 such that for sufficiently large n, S and T satisfying

퐻(푇푥 푆푦 ) ≤ 훼‖푥 − 푏 ‖ + 훽‖푥 − 푎 ‖ (6.3)

and

퐻(푆푝,푇푥 ) ≤ 훼‖푥 − 푝‖ + 훾푑(푥 ,푇푥 ) + 훿푑(푝,푇푥 )

+훽 max {푑(푝, 푆푝),푑(푥 ,푆푝)} (6.4)

then p is a fixed point of S. If also

퐻(푆푝,푇푝) ≤ 훽[푑(푝,푇푝) + 푑(푝, 푠푝)]. (6.5)

then p is a common fixed point of S and T.

Recently Singh and Dimri [129] extended and generalized the

results of Hu et.al [52]and Rhoades [111], [116] and established a common fixed

point theorem for Ishikawa iterates for a pair of multivalued mappings in Banach

space satisfying nonexpansive type condition. Now we generalize the result of

Singh and Dimri [133] for more general nonexpansive type condition. Our result

serves as a generalization of results due to Hu et.al [52] Rhoades [111], [116] and

Singh and Dimri [129], as well as several well known results.

Main results

Theorem6.4. Let K be a nonempty, closed, convex subset of Banach space X and

T, S: → 퐶퐵(푋) satisfying

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

107 | P a g e

H(Tx, Ty) ≤ a ‖푥 − 푦‖ +b{d(x, Tx)+ d(y, Sy)}

+ c [d(x, Sy) + d(y, Tx)], (6.6)

Where a >0, 0 ≤ b<1,0 ≤ c<1 are such that

a+ b+ c = 1.

for all x, y ∈ K. If there exists 푥 ∈ 퐾 such that the {푥 }satisfying (6.1), (6.2)with

(i) 0 ≤ 훼 , 훽 ≤ 1 for all n,

(ii) lim 푖푛푓훼 = 푑 > 0 and {푎 }, {푏 }, satisfying

‖푎 − 푏 ‖ ≤ 퐻(푇푥 ,푆푦 ) + 휖

(iii)훽 =0

Converges to a point p, then p is a common fixed point of S and T.

Proof. Since in Theorem6.3 Rhaodes [111] showed that the conditions (6.3),(6.4)

and (6.5) are enough for the convergence of Ishikawa iteration. So for the proof of

our theorem it is sufficient to show that S and T satisfy the above mention

conditions,

From (6.6) we have

퐻(푇푥 ,푆푦 ) ≤ a ‖푥 − 푦 ‖ +b{d(푥 , T푥 )+ d(푦 , S푦 )}

+ c [d(푥 , S푦 ) + d(푦 , T푥 )], (6.7)

From (6.1) we have

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

108 | P a g e

⎩⎪⎪⎪⎨

⎪⎪⎪⎧‖푥 − 푦 ‖ = 훽 ‖푥 − 푎 ‖ 푑(푥 ,푇푥 ) ≤ ‖푥 − 푎 ‖ 푑(푦 ,푆푦 ) ≤ ‖푦 − 푏 ‖ ≤ ‖푦 − 푥 ‖+ ‖푥 − 푏 ‖

≤ 훽 ‖푥 − 푎 ‖ + ‖푥 − 푏 ‖,푑(푥 ,푆푦 ) ≤ ‖푥 − 푏 ‖ 푑(푦 ,푇푥 ) ≤ ‖푦 − 푎 ‖ = ‖푦 − 푥 ‖ + ‖푥 − 푎 ‖

≤ (1 + 훽 )‖푥 − 푎 ‖

(6.8)

Now using (6.8) we get

d(푥 , T푥 )+ d(푦 , S푦 ) ≤ ‖푥 − 푎 ‖ +훽 ‖푥 − 푎 ‖ + ‖푥 − 푏 ‖

≤ (1+ 훽 ) ‖푥 − 푎 ‖+ ‖푥 − 푏 ‖ (6.9)

Also

d(푥 , S푦 ) + d(푦 , T푥 ) ≤ ‖푥 − 푏 ‖ + (1 + 훽 )‖푥 − 푎 ‖ (6.10)

using (6.10), (6.9) and (6.8) in (6.7) we get

퐻(푇푥 ,푆푦 ) ≤ a‖푥 − 푎 ‖ + b {(1+ 훽 ) ‖푥 − 푎 ‖+ ‖푥 − 푏 ‖}

c{‖푥 − 푏 ‖ + (1 + 훽 )‖푥 − 푎 ‖ }

≤[ a+b+c] ‖푥 − 푎 ‖ +[ b+c] ‖푥 − 푏 ‖

and since a+b+c=1 implies b+c <1, we can say that (6.3) is satisfied. Again

using (6.6) we get

퐻(푇푥 ,푆푝) ≤ a ‖푥 − 푝‖ +b{d(푥 , T푥 )+ d(푝, S푝)}

+ c [d(푥 , S푝) + d(푝, T푥 )],

≤ a ‖푥 − 푝‖ +b{‖푥 − 푎 ‖ +d(푝, S푝)}

+ c [d(푥 , S푝) + d(푝, 푎 )] (6.11)

Since (6.3) is satisfied, therefore using (6.2), we get

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

109 | P a g e

‖푥 − 푎 ‖ ≤ ‖푥 − 푏 ‖ + ‖푏 − 푎 ‖

≤ ‖푥 − 푏 ‖ + 퐻(푇푥 ,푆푦 ) + 휖

≤ ‖푥 − 푏 ‖ + ‖푥 − 푏 ‖

+(푏 + 푐)‖푥 − 푎 ‖ + 휖

Since lim‖푥 − 푏 ‖= 0, we obtain

lim sup‖푥 − 푎 ‖ ≤ (푏 + 푐)lim 푠푢푝‖푥 − 푎 ‖

and since 0≤ (푏 + 푐) ≤ 1, which implies,

lim ‖푥 − 푎 ‖ = 0. (6.12)

Also

‖푝 − 푎 ‖ ≤ ‖푝 − 푥 ‖ + ‖푥 − 푎 ‖ (6.13)

Using (6.11), (6.12) and (6.13) we get

퐻(푇푥 ,푆푝) ≤ a ‖푥 − 푝‖+b d(푝, S푝) + c[d(푥 , S푝)+ ‖푝 − 푥 ‖ + ‖푥 − 푎 ‖]

≤ (푎 + 푐)‖푥 − 푝‖ + b d(푝, S푝) + c d(푥 , S푝). (6.14)

The conditions (푏 + 푐) > 0 and 0 ≤ b<1,0 ≤ c<1 implies that condition (6.4)

is a special case of (6.14). Hence (6.14) implies (6.4). Since (6.3) and (6.4) is

satisfied hence by Theorem 6.1 p is a fixed point of S. Also we can see that

condition (6.5) is also satisfied hence p is a common fixed point of S, T.

Estelar

Stability of Ishikawa Iteration for nonexpansive type condition

110 | P a g e

Remark1. It is remarkable that the nonexpansive type condition used in Theorem

6.3 contains the condition used in Singh and Dimri [129], and many

other contractive conditions.

Remark2. The result established by Singh and Dimri [129] and Rhoades

[111][116] are special cases of our result and can be obtained as

corollaries.

*****

Estelar

Bibliography

1. Aamri, M. and Moutawakil, D.: Common fixed points under contractive

conditions in symmetric spaces, Appl. Math. E-notes, 3(2003), 156-162.

2. Aamri, M. and Moutawakil, D.: Some new common fixed point

theorems under srrict contractive conditions, J. Math. Anal. Appl., 270

(2002), 181-188.

3. Aamri, M., Bassou, A. and Moutawakil, D.E.: Common fixed points for

weakly compatible maps in symmetric spaces with applications to

probabilistic spaces, Appl. Math. E-notes, 5(2005), 171-175.

4. Alghamdi, M.A., Radenovic, S., Shahzad, N.: On some generalizations

of commuting mappings, Abstr. Appl. Anal., 2012 (2012).

5. Aliouche, A. and Merghadi, F.: A common fixed point theorem via a

generalized contractive condition, Annal. Math. info., 36(2009), 3-14.

6. Altun, I and Durmaz, G.: Some fixed point theorems on ordered cone

metric spaces, Rend. Cir. Mat. Palero, 58 (2009), 319-325.

7. Altun, I., Damjanovic, B. and Doric, D.: Fixed point and common fixed

point theorems on ordered cone metric spaces, Appl. Math. Lett., 23

(2010), 310-316.

8. Amini-Harandi, A. and Emami, H.: A fixed point theorem for

contraction type maps in partially ordered metric spaces and application to

ordinary differential equations, Nonlinear Anal., 72 (2010), 2238-2242.

Estelar

Bibliography

112 | P a g e

9. Azam, A. and Arshad, M.: Fixed points of a sequence of locally

contractive multivalued maps, Comput. Math. Appl., 57 (2009), 96-100.

10. Babu, G.V.R., Alemayehu, G.M.: Common fixed point theorems for

occasionally weakly compatible maps satisfying property (E. A) using an

inequality involving quadratic terms, Appl. Math. Lett., 24(2011), 975–

981.

11. Balasubrmaniam, P., Murlishankar, S.M. and Pant, R.P.: Common

Fixed Points of Four Mappings in a Fuzzy Metric Space, J. Fuzzy Math.,

10-2 (2002), 379-384.

12. Barros, L. C., Bassanezi, R. C., Tonelli, P. A.: Fuzzy modeling in

population dynamics. Ecol Model., 128(2000), 27–33.

13. Beg, I. and Butt, A. R.: Common fixed point for generalized set valued

contractions satisfying an implicit relation in partially ordered metric

spaces, Math.Commun., 15 (2010), 65-75.

14. Berinde, V.: Iterative approximation of fixed points, Fditura Efemeride,

Baia Mare, 2002.

15. Bhatt A., Chandra H. and Sahu D.R.: Common fixed point theorems for

occasionally weakly compatible mappings under relaxed conditions,

Nonlinear Anal., 73 (2010), 176– 182. 16. Bonsall, F. F.: Lectures on some fixed point theorems of functional

analysis, Tata Institute, Bombay, 1962.

17. Bouhadjera, H. and Godet-Thobie, C.: Common fixed point theorems

for pair of subcompatible maps, 17 June 2009, arXiv: 0906.3159v1 [math.

FA].

Estelar

Bibliography

113 | P a g e

18. Boyce, W. B.: Commuting functions with common fixed point, Trans.

Amer. Math. Soc., 137 (1969), 77-92.

19. Boyd, D. W. and Wong, J. S.: On nonlinear contractions, Proc. Amer.

Math. Soc., 20 (1969), 458-464.

20. Browder, F. E.: Fixed point theorems for non-compact mappings in

Hilbert space, Proc. Natl. Acad. Sci. USA, 53 (1965), 1272–1276.

21. Caristi, J.: Fixed point theorems for mappings satisfying inwardness

conditions, Trans. Amer. Math. Soc., 215(1976), 241–251.

22. Chandra, M., Mishra, S.N., Singh, S.L., and Rhoades, B.E.:

Coincidence and fixed points of nonexapansive type multi-valued and

single-valued maps, Indian J. pure Appl. Math., 26(5)(1995), 393-401.

23. Chidume, C.E. and Osilike, M.O.: Fixed point iterations for quasi-

contractive maps in uniformly smooth Banach spaces, Bull. Kor. Math.

Soc., 30(1993), 201-212.

24. Chidume, C.E.: Approximation of fixed points of quasi-contractive

mappings in ܮ spaces, Indian J. Pure appl. Math., 22(1991), 273-286.

25. Cho, S.H.: On common fixed points in fuzzy metric space, Int. Math.

Forum, 1(10) 2006, 471-479.

26. Cho, Y.J., Pathak, H.K., Kang, S.M. and Jung, J.S.: Common Fixed

Points of Compatible Maps of Type () on Fuzzy Metric Spaces, Fuzzy

Sets and Systems, 93 (1998), 99-111.

Estelar

Bibliography

114 | P a g e

27. Chugh, R. and Kumar, S.: Common Fixed Point Theorem in Fuzzy

Metric Spaces, Bull. Calcutta Math. Soc., 94(1)(2002), 17-22.

28. Chugh, Renu and Kumar, Sanjay: Minimal commutativity and common

fixed points, J. Indian Math. Soc., 70(1-4)(2003), 169-177.

29. Chugh, Renu and Savita: Common fixed points of four R-weakly

commuting mappings, J. Indian Math. Soc., 70(1-4) (2003), 185-189.

30. Ciric, Lj. B.: A generalization of Banach contraction principle, Proc.

Amer. Math. Soc., 45(1974), 267-273.

31. Ciric, Lj. B.: Fixed Point for generalized multivalued contraction, Math.

Vesnik, 9(1972), 265-272.

32. Ciric, Lj. B.: On some nonexpansive type mappings and fixed points,

Indian J. Pure Appl. Math., 24(1993), 145-149.

33. Ciric´, Lj., Bessem, S. and Calogero, V.: Common fixed point theorems

for families of occasionally weakly compatible mappings, Math. Comput.

Modell., 53(2011), 631–636.

34. Collatz, L.: Functional analysis and numerical mathematics, Academic

Press, New York, 1966.

35. Connell, E. H.: Properties of fixed point spaces, Proc. Amer. Math. Soc.,

10 (1959), 974–979

36. Doric, D.,Kadelburg, Z.,Radenovic, S.: A note on occasionally weakly

compatible mappings and common fixed points, Fixed Point Theory

(2013).

37. Dugundji, J. and Granas, A.: Fixed Point Theory, vol. 1, PWNPolish

Scientific Publishers, Warszawa 1982.

Estelar

Bibliography

115 | P a g e

38. Feng, Y. and Liu, S.: Fixed Points theorems for multi-valued contractive

mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl.,

317(2006), 103-112.

39. Gairola, Ajay, Singh, Jay and Joshi, M.C.: Coincidence and Fixed Point

for Weakly Reciprocally Continuous Single-Valued and Multi-Valued

Maps, (in press) Demonstratio mathematica.

40. George, A. and Veeramani, P.: On Some Results in Fuzzy Metric

Spaces, Fuzzy Sets and Systems, 64(1994), 395-399.

41. George, A. and Veeramani, P.: On some results of analysis for the fuzzy

metric space, Fuzzy sets and systems, 90(1997), 365-368.

42. Giles, R. A.: A computer program for fuzzy reasoning, Fuzzy Sets Syst.

4(2000), 221–234.

43. Gopal, D. and Imdad, M.: Some new common fixed point theorems in

fuzzy metric spaces, Ann Univ Ferrara (2011), doi: 10.1007/s11565-011-

0126-4.

44. Gopal, D., Pant, R. P. and Ranadive, A. S.: Common fixed Points of

absorbing maps, Bulletin of the Marathwada Math. Soc., 9(1) (2008), 43-

48.

45. Grabiec, M., Fixed Points in Fuzzy Metric Space, Fuzzy Sets and

Systems, 27(1988), 385-389.

46. Harder, A. M., and Hicks, T. L.: A stable iteration procedure for

nonexpansive mappings, Math. Japonica, 33(1988), 693-706.

Estelar

Bibliography

116 | P a g e

47. Harder, A. M., and Hicks, T. L.: A stable iteration procedure for

nonexpansive mappings, Math. Japonica, 33(5)(1988), 687-692.

48. Harder, A.M.: Fixed point theory and stability results for fixed point

iterative procedures, Ph.D. thesis, University of Missouri-Rolla, Missouri,

1987.

49. Harjani, J. and Sadarangani, K.: Generalized contractions in partially

ordered metric spaces and applications to ordinary differential equations,

Nonlinear Anal., 72 (2010), 1188-1197.

50. Hicks, T.L. and Rhoades, B.E.: Fixed point in symmetric space with

application to probabilistic space, Nonlinear analysis, 36 (1999), 331-344.

51. Hicks, T.L: Fixed Point theorem for multivalued mappings, Indian J. Pure

Appl. Math., 29(2)(1998), 133-137.

52. Hu, T., Chi, Huang, j. and Rhoades, B.E.: A general principle for

Ishikawa iteration for multivalued mappings, Indian J. Pure Appl. Math.,

28(8)(1997), 1091-1098.

53. Hussain, N., Khamsi, M. A. and Latif, A.: Common fixed points for

JHoperators and occasionally weakly biased pairs under relaxed

conditions, Nonlinear Anal., 74 (2011), 2133-2140.

54. Imdad, M. and Ali, Javid: Reciprocal continuity and common fixed

points of nonself mappings, Taiwanese Journal of Mathematics, 13(5)

(2009), 1457-1473.

55. Imdad, M., Ali, Javid and Khan, Ladlay: Coincidence fixed points in

symmetric spaces under strict contractions, J. Math. Anal. Appl., 320

(2006), 352 – 360.

Estelar

Bibliography

117 | P a g e

56. Imdad, M., Ali, Javid and Tanveer, M.: Remarks on some recent

metrical common fixed point theorems, Appl. Math. Lett., (2011), doi:

10.1016/j.aml.2011.01.045.

57. Ishikawa, S.I.: Fixed point by new iteration method, Proc. Am. Math.

Soc., 143(1974), 147-150.

58. Itoh, S. and Takahashi, W.: Single-valued mappings, multivalued

mappings and fixed point theorems, J. Math. Anal. Appl., 59(1977), 514-

521.

59. Joshi, M. C. and Bose, R. K.: Some topics on nonlinear functional

analysis, Wiley East, Ltd, New Delhi, (1985).

60. Joshi, M.C., Joshi, L.K. and Dimri, R.C.: Fixed Point theorems for

multivalued mappings in symmetric spaces, Demonstratio mathematica,

XL(3)(2007), 733-738.

61. Jungck, G., and Rhoades, B. E.: Fixed point theorems for occasionally

weakly compatible mappings, Fixed Point Theory, 7(2)(2006), 287-296.

62. Jungck, G., and Rhoades, B. E.: Fixed points for set-valued functions

without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.

63. Jungck, G., Commuting mappings and fixed points, Amer. Math.

Monthly ,83(4)(1976), 261-263.

64. Jungck, G.: Common fixed points for non-continuous non-self maps on

nonmetric spaces, Far East Journal of Mathematical Sciences, 4(1996),

199- 215.

Estelar

Bibliography

118 | P a g e

65. Jungck, G.: Compatible mappings and common fixed points, Internat. J.

Math. Sci., 9(1986), 771-779.

66. Kaleva, O.: The completion of fuzzy metric spaces, J. Math. Anal. Appl.,

109(1985), 194-198.

67. Kamran, T.: Coincidence and fixed points for hybrid strict contractions,

J. Math. Anal. Appl., 299 (2004), 235-283.

68. Kamran, T.: Fixed points of asymptotically regular noncompatible maps,

Demonstrato Math., XXXVIII (2) (2005), 485-494.

69. Kaneko, H., Sessa, S.: Fixed point for compatible multivalued and single-

valued mappings, Internat. J. Math. Math. Sci., 12(2)(1989), 257-262.

70. Kaneko, H.: A common fixed point of weakly commuting multivalued

mappings, Math. Japon., 33(5)(1988), 741-744.

71. Kannan, R.: Some results on fixed points - II, Amer. Math. Month., 76

(1969), 405-408.

72. Kannan, R.: Some results on fixed points, Bull. Cal. Math. Soc., 60

(1968), 71-76.

73. Kirk, W. and Sims, B.: Handbook of Metric Fixed Point Theorey,

Kluwer Academic Publishers, Dordrecht (2001).

74. Klim, D. and Wardowski, D.: Fixed point theorems for set-valued

contractions in complete metric spaces, J. Math. Anal. Appl.,

334(1)(2007), 132–139.

Estelar

Bibliography

119 | P a g e

75. Kramosil, O. and Michalek, J.: Fuzzy Metric and Statistical Metric

Spaces, Kybernetika, 11(1975), 326-334.

76. Kumar S. and Pant, B. D.: A common fixed point theorem in

probabilistic metric space using implicit relation, Filomat, 22(2008), 43-

52.

77. Kumar, S. and Chugh, R.: Common fixed point theorems using minimal

commutativity and reciprocal continuity conditions in metric space,

Scientiae Mathematicae Japonicae, 56 (2)(2002), 269-275.

78. Liu, Z., Sun Wei, Kang Shin Min, Ume, Jeong Sheok: On Fixed Point

theorem for multivalued Contraction, Fixed Point theory and applications,

2010.

79. Lopez, J.R. and Romaguera, S.: The Hausdorff fuzzy metric on compact

sets, fuzzy Sets and Systems, 147(2004), 273-283.

80. Mann, W.R.: Mean value methods in iteration, Proc. Amer., Math., Soc.,

4(1953), 506-510.

81. Mathpal, P.C.: Existence of Coincidence and fixed points of mappings

and stability of iterative procedure, PhD thesis, G.B. P.U. Ag. &Tech.

(2010).

82. Matkowski, J. and Singh, S.L.: Round-off stability of functional

iteration on product spaces, Indian J. Math., 39(3)(1997), 275-286.

83. Meir, A. and Keeler, E.: A theorem on contraction mappings, J. Math.

Anal. Appl., 28 (1969), 326 – 329.

Estelar

Bibliography

120 | P a g e

84. Mihet, D.: A note on a paper of Hicks and Rhoades, Nonlinear Analysis,

65(7) (2006), 1411-1413.

85. Moutawakil, D.: A fixed point theorem for multi-valued mappings in

symmetric spaces, Appl. Math. E-Notes, 4(2004), 26-32.

86. Muralisankar, S. and Kalpana, G.: Common fixed point theorem in

intuitionistic fuzzy metric space using general contractive condition of

integral type, Int. J. Cont. Math. Sci., 4(11)( 2009), 505 – 518.

87. Murthy, P. P.: Important tools and possible applications of metric fixed

point theory, Nonlinear Analysis, 47 (2001), 3479-3490.

88. Nadler, S.B. Jr.: Multi-valued Contraction mappings, Pacific J. Math.

30(1969), 475-488.

89. Ortega, J.M. and Rheinboldt, W.C.: Iterative solution of nonlinear

equations in several variables, Academic Press, New York, 1970.

90. Oslike, M.O.: Stability results for fixed point iterative procedures, J. Nig.

Math. Soc., 14/15(1995/1996), 17-29.

91. Ostrowski, A.M.: The round –off stability of iterations, Z. Angew. Math.

Mech., 47(1967), 177-181.

92. Pant, R. P. and Bisht, R. K.: Common fixed point theorems under a new

continuity condition, Ann Univ Ferrara, DOI: 10.1007/S 11565-011-0141-

5.

93. Pant, R. P. and Pant, V.: Some fixed point theorem in fuzzy metric

space, J. Fuzzy Math., 16(3)(2008), 599-611.

Estelar

Bibliography

121 | P a g e

94. Pant, R. P., Bisht, R. K. and Arora, D.: Weak reciprocal continuity and

fixed point theorems, Ann Univ Ferrara, 57 (1)(2011), 181-190.

95. Pant, R. P.: A common fixed point theorem under a new condition, Indian

J. Pure Appl. Math., 30(2)(1999), 147-152.

96. Pant, R. P.: Common fixed point of two pairs of commuting mappings,

Indian J. Pure Appl. Math., 17(1986), 187-192.

97. Pant, R. P.: Common fixed points of Lipschitz type mapping pairs, J.

Math. Anal. Appl., 240(1999), 280-283.

98. Pant, R. P.: Common fixed points of noncommuting mappings, J. Math.

Anal. Appl., 188 (1994), 436-440.

99. Pant, R. P.: Discontinuity and fixed points, J. Math. Anal. Appl., 240

(1999), 284-289.

100. Pant, R.P., Bisht, R.K.: Occasionally Weakly Compatible Mappings and

Fixed Point, Bull. Belg. Math. Soc., 19(2012), 655-661.

101. Pant, R.P.: Non-compatible mappings and common fixed points,

Soochow J. Math., 26(2000), 29-35.

102. Pant, R.P: Common fixed points of four mappings, Bull. Cal. Math. Soc.,

90(1998), 281-286.

103. Pant, R.P: Common fixed points of non-commuting mappings, J. Math.

Anal. Appl., 188(1994), 436-440.

104. Park, S. and Rhoades, B.E.: Meir- Keeler type contractive conditions.

Math. Japon., 26(1981),13-20.

Estelar

Bibliography

122 | P a g e

105. Pathak, H. K. and Khan, M. S.: A comparison of various types of

compatible maps and common fixed points, Indian J. Pure Appl. Math.,

28(4) (1997), 477–485.

106. Pathak, H. K., Cho, Y. J. and Kang, S. M.: Remarks on R-weakly

commuting mappings and common fixed point theorems, Bull. Korean

Math. Soc., 34 (1997), 247-257

107. Popa, V.: Some fixed point theorems for weakly compatible mappings,

Radovi Matimaticki, 10 (2001), 245-252.

108. Regan, D. O. and Shahzad, N.: Coincidence points and invariant

approximation results for multi maps, Acta Mathematica Sinica English

Ser. 2369 (2007), 1600- 1610.

109. Rhaodes, B.E. and Saliga, L.: Some Fixed point iterative procedures, II,

Nonlinear Anal. Forum, 6(1) (2001), 193-217.

110. Rhaodes, B.E.: A common fixed point theorem for a sequence of fuzzy

mappings, Internat. J. Mat. & Math. Sci., 3(1995), 447-450.

111. Rhaodes, B.E.: A general principle for Ishikawa iterations, 5th IWAA

Proceeding.

112. Rhoades, B. E., Park, S. and Moon, K. B.: On generalizations of the

Meir-Keeler type contraction maps, J. Math. Anal. Appl., 146(1990), 482

– 494.

113. Rhoades, B. E.: A comparison of various definitions of contractive

mappings, Amer. Math. Soc., 226(1977), 257-290.

Estelar

Bibliography

123 | P a g e

114. Rhoades, B.E., Singh, S.L., Kulshrestha, C.: Coincidence theorem for

some multivalued mappings, Int. J. Math. Math. Sci., 7 (1984), 429-434.

115. Rhoades, B.E.: Comments on two fixed point iteration methods, J. Math.

Anal. Appl., 56(1976), 741-750.

116. Rhoades, B.E.: Fixed point iterations using infinite matrices, Trans. Am.

Math. Soc., 196(1974), 161-176.

117. Rhoades, B.E.: Fixed Points theorems and stability results for Fixed Point

iteration procedures, Ind. J. Pure Appl. Math., 21(1990), 1-9.

118. Rhoades, B.E.: Fixed Points theorems and stability results for Fixed Point

iteration procedures, Indian J. Pure Appl. Math., 24(1993), 691-703.

119. Rhoades, B.E.: Some fixed Point iteration procedures, Inter. J. Math.

Math. Sci., 14(1991), 1-16.

120. Rus, I.A.: Fixed point theorem for multivalued mappings in complete

metric spaces, Math Japon., 20(1995), 21-24.

121. Sastry, K. P. R. and Murthy, S. R. K.: Common fixed points of two

partially commuting tangential selfmaps on a metric space, J. Math. Anal.

Appl., 250 (2000), 731-738.

122. Schweizer, B. and Sklar, A.: Statistical Metric Spaces, Pac. J. Math., 10

(1960), 314-334.

123. Sessa S.: On a weak commutativity condition in fixed point

considerations, Publ. Inst. Math. (Beograd) (NS), 34 (46) (1982), 149-153.

Estelar

Bibliography

124 | P a g e

124. Shahabudin, Md: Study of applications of Banach’s fixed point theorem,

Chiiiagong Univ. Stud., Part II Sci., 11 (1987), 85-91.

125. Shahzad, N., Kamran, T.: Coincidence points and R-weakly commuting

maps, Arch. Math. (Brno), 37(2001), 179-183.

126. Sharma, B.K., Sahu, D.R. and Bounias, M.: Common Fixed Point

Theorems for a Mixed Family of Fuzzy and Crisp Mappings, Fuzzy Sets

and Systems, 125 (2002), 261-268.

127. Sharma, S.: Common Fixed Point Theorems in Fuzzy Metric Spaces,

Fuzzy Sets and Systems, 127(2002), 345-352.

128. Simmons, G. F.: Introduction to topology and modern analysis, Tata

McGraw-Hill.

129. Singh, Amit and Dimri, R.C.:On the convergence of Ishikawa iterates to

a common fixed point for a pair of nonexpansive mappings in Banach

space, Mathematica Moravica, 14(1)(2010), 113-119.

130. Singh, Brijendra and Chauhan, M.S.: Common Fixed Points of

Compatible Maps in Fuzzy Metric Spaces, Fuzzy Sets and Systems, 115

(2000), 471-475.

131. Singh, S. L. and Mishra, S. N.: Coincidences and fixed points of

reciprocally continuous and compatible hybrid maps, Int. J. Math. Math.

Sci., 30(10)(2002), 627-635.

132. Singh, S. L. and Tomar, Anita: Weaker forms of commuting maps and

existence of fixed points, J. Korea Soc. Math. Educ. (Pure Appl. Math.), 3

(2003), 145–161.

Estelar

Bibliography

125 | P a g e

133. Singh, S. L., Cho, Y. J. and Kumar, A.: Fixed points of Meir-Keeler

type hybrid contractions, Pan American Mathematical Journal,

16(4)(2006), , 35-54.

134. Singh, S.L. and Chadha, V.: Round- off stability of iterations for

multivalued operators, C.R. Math. Rep. Acad. Sci., XVII(5)(1995), 187-

192.

135. Singh, S.L. and Kulsrestha, C.: Coincidence Theorems, Indian J. Phy.

Natur. Sci., (1983), 5-10.

136. Singh, S.L. and Mishra, S.N.: Coincidence and fixed points of non-self

hybrid contraction, J. Math. Anal. Appl., 256(2001), 486-497.

137. Singh, S.L., Bhatnagar, C. and Mishra, S.N.: Stability of Jungck-type

iterative procedures, Int. J. math. Math. Sci., 2005(2005), 3035-3043.

138. Singh, S.L., Hematalin, A. and Prashad, B.: Fixed Point theorem to

hybrid maps in symmetric spaces, Tamsui Oxford Journal of Information

and Mathematical Sciences, 27 (4)(2011), 429-448.

139. Singh, S.L.: Applications of fixed point theorems to nonlinear integro

differential equations, Riv. Mat. Univ. Parm., 4(16)(1990), 205-212.

140. Smart, D. R.: Fixed point theorems, Cambridge Univ. Press, 1980.

141. Song, G.: Comments on A Common Fixed Point Theorem in Fuzzy

Metric Space, Fuzzy Sets and Systems, 135(2003), 409-413

Estelar

Bibliography

126 | P a g e

142. Sujuki, T.: A generalized Banach contraction principle that characterizes

metric completeness, Proceedings of the American Math. Society,

136(5)(2008), 1861-1869.

143. Thagafi, A., Shahzad, N.: Generalized I- nonexapansive self maps and

invariant approximations, Acta. Math. Sin., 24(2008), 867-876.

144. Urbe, M.: Convergence of numerical iteration in solution of equations, J.

Sci. Hiroshima Univ. Ser. A., 19(1956), 479-489.

145. Vasuki, R.: A Common Fixed Point Theorem in Fuzzy Metric Space,

Fuzzy Sets and Systems, 97(1998), 395-397.

146. Vasuki, R.: Common Fixed Points for R-weakly Commuting Maps in

Fuzzy Metric Spaces, Indian J. Pure Appl. Math., 30(1999), 419-423.

147. Weiczorek, A.: Applications of fixed point theorems in game theory and

mathematical economics (Polish)., Wiadom. Math., 28(1988), 25-34.

148. Wilson, W.A.: On Semi-metric spaces, Amer. J. Math., 53(1931), 361-

373.

149. Zadeh, L.A.: Fuzzy Sets, Inform. and Control, 8(1965), 338-353.

150. Zhang, S.S., and Luo, Q.: Set-valued Caristi fixed point theorem and

Ekeland’s variational principle, Appl. Math.Mech. 10 (2) (1989) 111–113

(in Chinese), English translation: Appl. Math. Mech. (English Ed.) 10 (2)

(1989)119–121.

151. Zhang, X.: Fixed point theorems of multivalued monotone mappings in

ordered metric spaces, Appl. Math. Lett., 23 (2010), 235-240.

Estelar

Bibliography

127 | P a g e

*****

Estelar