30
Chapter 6: Meteor ages and Chapter 6: Meteor ages and origins origins

Chapter 6: Meteor ages and origins

Embed Size (px)

DESCRIPTION

Chapter 6: Meteor ages and origins. Review. From the velocity and deceleration of a meteor, we can estimate its mass:. Meteors can be either entirely broken up, or gradually ablated, during their passage through the atmosphere. Only the slower-moving meteors will survive to the ground - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 6: Meteor ages and origins

Chapter 6: Meteor ages and Chapter 6: Meteor ages and originsorigins

Page 2: Chapter 6: Meteor ages and origins

ReviewReview

•From the velocity and deceleration of a meteor, we can estimate its mass:

M

vR

dt

dv a22

• Meteors can be either entirely broken up, or gradually ablated, during their passage through the atmosphere. Only the slower-moving meteors will survive to the ground Heating is restricted to the outer layers; inner regions remain cool.

• Change of state (gas, liquid solid) depends on temperature, pressure Sublimation is the process of solid transforming directly to a gas Solids are classified as ices or rocks depending on their condensation

temperature; rocks remain solid at higher T.

Page 3: Chapter 6: Meteor ages and origins

Carbonaceous ChondritesCarbonaceous Chondrites

• High abundance of carbon, mostly in the form of graphite grains, silicon carbide and mixtures of organic molecules

• Lowest temperature condensates – formed at low temperature and have not been altered since.

Unusually high concentration of volatiles and organic compounds (which would boil off at high T)

Low densities Contain heavier elements in nearly original proportions No evidence for heating above 500 K

• Only account for 5% of falls, but they are more common in space: Easily broken up in atmosphere Dominant type of meteorite in

lunar soil

• Probably come from outer asteroid belt or comets (>2.5 AU) based on spectral analysis of distant bodies

Page 4: Chapter 6: Meteor ages and origins

Carbonaceous ChondritesCarbonaceous Chondrites

CI• Closest to solar composition• Higher volatile content (up

to 22% water bound to other minerals)

• Low density, only 2200 kg/m3

• No heating, but high brecciation

• Actually: have no chondrules!

CM and CV• 2-16% bound water• Breccias are

common

CO• Only about

1% bound water

• Breccias are rare

Page 5: Chapter 6: Meteor ages and origins

Ordinary ChondritesOrdinary Chondrites

•Most numerous meteorites•Similar chemical composition to CCs; also have not been melted•Do not have the carbon and water-bearing matrix•Slightly more processed than CCs•Probably formed among terrestrial planets

Spectra of inner asteroids indicate they have similar compositions Same proportions of O isotopes in Earth, Moon and Mars rocks

Page 6: Chapter 6: Meteor ages and origins

Parent bodies of chondritesParent bodies of chondrites

•Minor heating did affect some chondrites Cooling rate can be deduced from the properties of individual

crystals in the metal particles In a large body, the outer layers act as insulation: the deeper

inside you go, the longer the cooling time.

•Chondritic material was typically insulated by overlying material up to about 50 km thick.

Fits the theory that chondrites are fragments of asteroids

Page 7: Chapter 6: Meteor ages and origins

AchondritesAchondrites

•Coarse crystal structure, which indicates slow cooling in insulated surroundings

•Most similar to terrestrial igneous rocks.•Non-solar chemical compositions•Iron and other metals is purely metallic

•Produced when parent material (probably a chondrite) melted

Melting would destroy chondrules

Iron would drain away leaving the silicate material typical of achondrites

Page 8: Chapter 6: Meteor ages and origins

EucritesEucrites

• A type of achondrite that is lavalike, basaltic igneous rock

Formed from the solidification of molten material

Probably from the asteroid 4 Vesta, which is the only asteroid whose spectrum shows it has a eucritelike lava surface

• HST found evidence for a huge crater on 4Vesta, supporting this theory

Page 9: Chapter 6: Meteor ages and origins

Iron meteoritesIron meteorites

•Iron meteorites commonly present large-sized crystals, being compounds of two iron-nickel alloy varieties.

•The large-sized crystals indicate that they cooled more slowly – probably deep inside a larger, parent body.

Page 10: Chapter 6: Meteor ages and origins

Falls and FindsFalls and Finds

Falls are meteoroids seen in their flight through the atmosphere and located on Earth by following that trajectory.

Finds are meteorites discovered serendipitously.

MeteoriteType

Falls

%Falls

Finds

%Finds

Total

%Total

Irons 42 5% 681 27% 723 22%

Stony-Irons 9 1% 59 2% 68 2%

Stones781 94%

1741

71%252

276%

Total832 100%

2481

100%331

3100%

Of the Stones:

Chondrites712 91%

1667

96%237

994%

Achondrites 69 9% 74 4% 143 6%Note that stones represent a much larger % of falls than finds;

presumably this is because stones are more likely to be eroded by wind, water etc. and they are also more similar in appearance to normal Earth rocks.

Page 11: Chapter 6: Meteor ages and origins

Impact RatesImpact Rates

• Estimate of total meteoroid flux range from 107-109 kg/yr.

i.e. At least ~1 kg every second !

• Most are very small, micrometeorites that do not hit the ground

• Objects large enough to hit the ground subsonically and form craters occur about once per year

• Giant explosions about once per century• Most (6/7) falls occur over oceans or poles so

go unnoticed.

Page 12: Chapter 6: Meteor ages and origins

Impact RateImpact Rate

Page 13: Chapter 6: Meteor ages and origins

Primeval impact ratesPrimeval impact rates

•Analysis of lunar surface: compare dates of surface rock to the number of craters to determine how impact rate changes with time.

•Little information about conditions <4 Gyr ago, before the oldest surfaces were formed.

Page 14: Chapter 6: Meteor ages and origins

BreakBreak

Page 15: Chapter 6: Meteor ages and origins

Radioactive decay age measurementRadioactive decay age measurement

•Many elements have several isotopic forms, some of which are unstable and decay into other elements.

•Radioactive decay obeys a simple law: the probability that a given isotope will decay into its “daughter” isotope is constant, independent of time and the original number of atoms.

•Mathematically: dn/dt = -λn where λ is the decay constant (units=#/sec).

Integrating this from t=0 to t=t gives a classical exponential relation: n(t) = n(0)e-λt.

In a given sample we can measure n(t) and we know λ for a given decay process; if we can somehow determine n(0) we can find t.

Page 16: Chapter 6: Meteor ages and origins

Radioactive decay age measurementRadioactive decay age measurement

•Consider two isotopes r (the radiogenic/unstable) and s (the stable decay product).

•Initially (t=0) the sample will start with some atoms of the unstable isotope, r0, and some of the stable, s0.

•When we measure the sample at some later time (t) it contains fewer atoms of the unstable isotope:

1)()(

)(

0

0

t

t

etrsts

ertr

and more of the stable:

Page 17: Chapter 6: Meteor ages and origins

Radioactive decay age measurementRadioactive decay age measurement

•If we measure s and r for different pieces of a given meteorite, we could make a plot which has (hopefully) a linear slope given by et-1

However, we cannot be sure that r0 and s0 were the same throughout the sample.

So compare the abundances to a stable isotope of the daughter (s), call it s.

1)()(

)(

0

0

t

t

etrsts

ertr

1)(

)(

)()(

)( 0

tets

tr

ts

s

ts

ts

Page 18: Chapter 6: Meteor ages and origins

Rubidium-Strontium SystemRubidium-Strontium System

•One common method uses isotopes of Rubidium and Strontium

•87Rb is a radioactive element that decays into 87Sr with a half-life of 48.8 Gyr

Measure abundances relative to the stable isotope 86Sr

Page 19: Chapter 6: Meteor ages and origins

Half-lifeHalf-life

Decay constants are usually given in terms of the half-life, the time it takes for the sample to decay to half its initial mass. What is the relationship between half-life and the decay constant ?

Page 20: Chapter 6: Meteor ages and origins

ExampleExample

1993 observations of chondrules in the Allende meteorite, which fell as a 2 ton fireball in Mexico, 1969.

Analysis of the whole rock indicates an age of 4.5 Gyr.

Suggests in this case the chondrules were disturbed by a later event.

Page 21: Chapter 6: Meteor ages and origins

AgesAges

•Ages for the oldest meteorites are found to be 4.566±0.002 Gyr.

•There is a significant difference between the oldest ordinary chondrites at 4.563±0.001 Gyr and the oldest achondrites at 4.558±0.001 Gyr.

•Thus the formation of planetesimals began within a few million years of the earliest grains condensing out of the protosolar nebula and the planetesimals themselves formed over a period of ~10Myr.

Page 22: Chapter 6: Meteor ages and origins

Short-halflife isotopesShort-halflife isotopes

•The elements most useful for SS age dating are those with long half-lives of around 1 Gyr.

•But radiogenic dating on shorter time scales is also useful. One example is 26Al (t1/2=720,000yr) → 26Mg.

In many meteorites we observe a correlation between the abundance of aluminum and an excess of 26Mg/24Mg; but in these samples we also see that the abundance of 25Mg/24Mg (both non-radiogenic isotopes) is normal.

This is strong evidence that 26Al was present in the early SS nebula, requiring a short time between the nucleosynthesis reactions producing it and the formation of solid bodies – on the order of a few million years or less.

This strongly suggests that a supernova occurred in our vicinity ≤106yr before formation of the Sun and SS.

Another possible explanation for the presence of 26Al in the protoplanetary disk is bombardment of stable 26Mg by energetic photons associated with powerful flares from the early Sun.

Page 23: Chapter 6: Meteor ages and origins

Where do they come from?Where do they come from?

•There are few places in the Solar System where small bodies could have survived for so long.

•Even on circular orbits, in between large planets, most small bodies will be perturbed onto planet-crossing orbits.

Page 24: Chapter 6: Meteor ages and origins

Where do they come from?Where do they come from?

• There are few places in the Solar System where small bodies could have survived for so long.

1. Asteroid belt Between Mars and

Jupiter

2. Trojans Lagrangian points

along Jupiter’s orbit

3. Kuiper belt Outside Neptune’s orbit

4. Oort cloud Huge reservoir of

comets outside heliosphere

Page 25: Chapter 6: Meteor ages and origins

Origins of meteoritesOrigins of meteorites

•Orbits of Earth-approaching meteors have been measured for some using networks of automatic cameras

All are found to have aphelia in or near asteroid belt

Page 26: Chapter 6: Meteor ages and origins

Orbit reconstructionOrbit reconstruction• The fireball producing the Tagish Lake meteorite on 18 Jan 2000 was

witnessed at dawn in the Yukon and NWT. • 70 eyewitnesses interviewed• 24 still photos and 5 videos were obtained; a subset of these had

sufficient foreground structure to permit angular measurements• From a synthesis of various data, the orbital parameters could be

measured:

semimajor axis 2.1 AU

eccentricity 0.57

perihelion distance

0.891

aphelion distance 3.3 AU

inclination 1.4 degrees

orbital period 1072 days

entry velocity 15.8 km/s

Page 27: Chapter 6: Meteor ages and origins

Collisions in the asteroid beltCollisions in the asteroid belt

• How do meteors get out of the asteroid belt?

• What is the typical collision time between asteroids?

• Requires 3 stages1. Initial collision ejects fragments2. Fragments 0.1-10 m diameter would drift due to Yarkovsky

effect Sunlight warms one side of a larger body. The warm side rotates away from the Sun and radiates thermal

energy as photons which provide a “thrust” This can move particles either in or out

3. Hit an orbital resonance which send them into orbits intersecting Earth’s

Page 28: Chapter 6: Meteor ages and origins

Lunar meteoritesLunar meteorites

•Found in Antarctica, just following the American and Russian trips to the moon

Subsequently found in hot deserts: Australia, Africa, Oman

•Mostly originate from the far side of the moon, and other regions we have not directly sampled

Page 29: Chapter 6: Meteor ages and origins

Martian meteoritesMartian meteorites

• Lavalike types: shergotites, nakhlites, chassignites (SNC)• Most examples are basaltic and only 1.3 Gyr old• Oxygen isotopes ratios show they are not from Earth or

moon. Asteroids cooled too early to produce such young lava.

• Contain N and noble gases matching those found on Mars by the Viking lander

• Crater counts on Mars indicate widespread basaltic lava flows 1.3 Gyr ago

• Simulations show 8% of particles knocked off Mars in a big collision would impact Earth.

Page 30: Chapter 6: Meteor ages and origins

Next Lecture: AsteroidsNext Lecture: Asteroids

•Spatial and size distribution•Shapes, rotation and composition•Heating and cooling