25
6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same function that is used to define the element geometry is used to define the displacements within the element 2 Node Truss Element Linear geometry Linear displacements 3 Node Beam Element Quadratic geometry Quadratic displacements We assign the same local coordinate system to each element. This coordinate system is called the natural coordinate system. The advantage of choosing this coordinate system is 1) it is easier to define the shape functions and 2) the integration over the surface of the element is easier (we will use numerical integration which is much simpler in the natural coordinate systems and can be scaled to the actual area) The steps in deriving the elemental stiffness matrices are the same: Step 1 Select element type Step 2 Select displacement function Step 3 Define strain/displacement, stress/strain relation Step 4 Derive element stiffness matrix and equations

Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.1

ME 478 FINITE ELEMENT METHOD

Chapter 6. Isoparametric Formulation

Same function that is used to define the element geometry is usedto define the displacements within the element

2 Node Truss ElementLinear geometry Linear displacements

3 Node Beam ElementQuadratic geometry Quadratic displacements

We assign the same local coordinate system to each element. Thiscoordinate system is called the natural coordinate system.

The advantage of choosing this coordinate system is 1) it is easierto define the shape functions and 2) the integration over the surfaceof the element is easier (we will use numerical integration which ismuch simpler in the natural coordinate systems and can be scaledto the actual area)

The steps in deriving the elemental stiffness matrices are the same:Step 1 Select element typeStep 2 Select displacement functionStep 3 Define strain/displacement, stress/strain relationStep 4 Derive element stiffness matrix and equations

Page 2: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.2

1-D Truss ElementsFor 1-D linear truss elements the natural coordinate system for anelement is:

The natural coordinates are related to the global coordinatesthrough

saax 21 +=which we can solve for the a’s as:

[ ]21 )1()1(2

1xsxsx ++−=

or in matrix form as:

[ ]

=2

121 x

xNNx

where

2

1

2

121

sN

sN

+=−=

Now following the remainder of the steps becomes much simpler.

Step 2 Select a displacement function

[ ]

=2

121

x

x

u

uNNu

Step 3 Define u/εεεε and ε/σε/σε/σε/σ relationsRecall that we had the following relation:

dx

duxx =)(ε

Then by applying the chain rule of differentiation, we have

s=0 s=1s=-1

i j

Page 3: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.3

ds

dx

ds

duxx =)(ε

Thus,

Buεx =

−=

2

111x

x

LL

The stress/strain relation is expressed as:

xx Dε=σ where E=D

Thus: uBσx E=

Step 4. Derive the element stiffness matrix and equations

The stiffness matrix is

∫=L

Te dxAE BBK )(

which has an integral over x which we have to convert to anintegral over s. This is done through the transformation:

∫∫−

=1

10

)()( dsJsfdxxfL

where J is the Jacobian and for the simple truss element it is:

2/Lds

dxJ ==

−=

= ∫− 11

11

2

111

11

1

)(

L

AEds

L

LLL

LAEeK

And Voila!!

Page 4: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.4

CST Elements

we choose a natural coordinate system as shown and define thegeometry in terms of the natural coordinate system as:

mji

mji

ysysysy

xsxsxsx

654

321

++=

++=

which we can write in matrix form as:

=

3

2

11111

s

s

s

yyy

xxx

y

x

mji

mji

Which can be solved as:

=

=

y

xA

y

x

yyy

xxx

s

s

s

mmm

jjj

iii

mji

mji

1

2

11111

1

3

2

1

γβαγβαγβα

ij

m

x

y

si=1si=0.5

si=0

sj=0

sj=1

sj=0.5

sm=1

sm=1

sm=0

Page 5: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.5

In this case, these s’s are the shape functions

m

i

j

m

ii

m

jj

=

m

m

j

j

i

i

mji

mji

y

x

y

x

y

x

NNN

NNN

y

x

000

000

The sum of the shape functions anywhere on the element add to 1

1=++ mji NNNi

j

m

Note that in this case, the iN ’s are simply s1 s2 and s3.

Step 2: Choose the displacement functionwe can simply write the element displacement as a function ofnodal dof in the same form as used to describe the geometry:

Ni NjNm

Page 6: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.6

=

ym

xm

yj

xj

yi

xi

mji

mji

y

x

u

u

u

u

u

u

NNN

NNN

yxu

yxu

000

000

),(

),(

or NuΨ =

Step 3: Strain/displacement and stress/strain relations

In 2-D the strain displacement relations are:

x

uxx ∂

∂=ε , y

u yy ∂

∂=ε

, and x

u

y

u yxxy ∂

∂+

∂∂

or in matrix form as:

∂∂

∂∂

∂∂

∂∂

=

∂∂

∂∂

∂∂

∂∂

=

ym

xm

yj

xj

yi

xi

mji

mji

y

x

xy

y

x

u

u

u

u

u

u

NNN

NNN

xy

y

x

u

u

xy

y

x

000

0000

0

0

0

γεε

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

ym

xm

yj

xj

yi

xi

mmjjii

mji

mji

xy

y

x

u

u

u

u

u

u

x

N

y

N

x

N

y

N

x

N

y

Ny

N

y

N

y

Nx

N

x

N

x

N

000

000

γεε

Buε =In 2-D the stress/strain relations are:

DBuDεσ ==Where D depends on whether plane stress or plane strainconditions prevails(see Chapter 5 for details)

Page 7: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.7

Since the shape functions are functions of the natural coordinate si

and not x and y, we apply the chain rule as:

x

s

s

N

x

s

s

N

x

s

s

N

x

N iiii

∂∂

∂∂+

∂∂

∂∂+

∂∂

∂∂=

∂∂ 3

3

2

2

1

1 y

s

s

N

y

s

s

N

y

s

s

N

y

N iiii

∂∂

∂∂

+∂∂

∂∂

+∂∂

∂∂

=∂

∂ 3

3

2

2

1

1

Let us consider the following

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=100

010

001

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

s

N

s

N

s

Ns

N

s

N

s

Ns

N

s

N

s

N

oB

then for the derivatives of the shape functions with respect to theglobal coordinate system we simply have:

mmm

jjj

iii

mmm

jjj

iii

y

s

y

N

y

s

y

N

y

s

y

N

x

s

x

N

x

s

x

N

x

s

x

N

γγγ

βββ

=∂

∂=∂

∂=∂∂

=∂

∂=

∂∂=

∂∂

=∂

∂=∂

∂=∂∂

=∂

∂=

∂∂=

∂∂

,,

,,

And the strains are written as:

=

ym

xm

yj

xj

yi

xi

mmjjii

mji

mji

xy

y

x

u

u

u

u

u

u

Aβγβγβγγγγ

βββ

γεε

000

000

2

1

Step 4. Derive the element stiffness matrix and equationsLastly, we use the PMPE to obtain the stiffness equations as:

0=−−− ∫∫∫ ∫∫∫∫∫V S

tractT

bodyT

V

T dSdVdv TNXNPDBuB

Since all the terms in B are constant and assuming the thicknessand material properties are constant over the element we have:

fuK = where DBBK TtA=

Page 8: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.8

Linear Strain Triangle (LST) ElementsAgain we choose the same natural coordinate system as for theCST

we define the geometry in terms of the natural coordinate systemthrough the shape functions as:

665544332211

665544332211

yNyNyNyNyNyNy

xNxNxNxNxNxNx

+++++=+++++=

Which we can solve for the shape functions in terms of the naturalcoordinates as follows:

Let Ni be a quadratic function of s1 and s2 (Nt we can expresss3 as a function of s1 and s2 as: s3=1-s1-s2)

2152

242

132211 ssasasasasaaN iiiiioii +++++=

which means that there are 6 unknown coefficients to bedetermined for each shape function

x

y

s1=1s1=0.5

s1=0

s2=0

s2=1

s2=0.5

s3=1

s3=0.5

s3=0

1

54

3

26

Page 9: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.9

Using the following information that at node i we want Ni=1 and allother Nj≠i= 0, then we get 6 equations for each shape function andwe can solve for the coefficients and we have:

216

135

324

333

222

111

4

4

4

)12(

)12(

)12(

ssN

ssN

ssN

ssN

ssN

ssN

===

−=−=

−=

or recognizing that 213 1 sss −−= , then we have

216

1215

2124

21213

222

111

4

)1(4

)1(4

)1)1(2)(1(

)12(

)12(

ssN

sssN

sssN

ssssN

ssN

ssN

=−−=

−−=−−−−−=

−=−=

In this case, these look like

1

5

4

6

2

3

1

5

4

6

2

3

The sum of the shape functions anywhere on the element add to 11654321 =+++++ NNNNNN

N1N6

Page 10: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.10

Incidentally, the shape functions in the global coordinate system fora nice element with sides aligned with the x and y axes would looksomething like this:

226

225

4

223

222

22221

/4)/(4/4

/4)/(4/4

)/(4

/2/

/2/

/2)/(4/2/3/31

bxbhxybxN

hybhxyhyN

bhxyN

hhhyN

bxbxN

hybhxybxhybxN

−−=

−−=

=+−=

+−=

+++−−=

This is why we use the Isoparametric formulation!!!

Step 2: Choose the displacement functionWe can simply write the element displacement as a function ofnodal dof in the same form as used to describe the geometry:

=

6

6

5

5

4

4

3

3

2

2

1

1

654321

654321

000000

000000

),(

),(

y

x

y

y

y

y

y

x

y

x

y

x

y

x

u

u

u

u

u

u

u

u

u

u

u

u

NNNNNN

NNNNNN

yxu

yxu

or NuΨ =

Page 11: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.11

Step 3: Strain/displacement and stress/strain relationsIn 2-D the strain/displacement relations are:

x

uxx ∂

∂=ε , y

u yy ∂

∂=ε

, and x

u

y

u yxxy ∂

∂+

∂∂

or in matrix form as:

∂∂

∂∂

∂∂

∂∂

=

y

x

xy

y

x

u

u

xy

y

x

0

0

γεε

In 2-D the stress/strain relations are:DBuDεσ ==

Where D depends on whether plane stress or plane strainconditions prevails(see Chapter 5 for details)

So how do we construct the B matrix?Let us define the following matrix

−−−−+−

−−−−+−=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

1121211

2212211

2

6

2

5

2

4

2

3

2

2

2

1

1

6

1

5

1

4

1

3

1

2

1

1

44844344140

44844344014

sssssss

sssssss

s

N

s

N

s

N

s

N

s

N

s

Ns

N

s

N

s

N

s

N

s

N

s

N

oB

and let the Jacobian matrix be (note that it is a 2by2)

Page 12: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.12

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

66

55

44

33

22

11

2

6

2

5

2

4

2

3

2

2

2

1

1

6

1

5

1

4

1

3

1

2

1

1

yx

yx

yx

yx

yx

yx

s

N

s

N

s

N

s

N

s

N

s

Ns

N

s

N

s

N

s

N

s

N

s

N

J

Then the terms in the B matrix are simply extracted from theproduct

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=−

y

N

y

N

y

N

y

N

y

N

y

Nx

N

x

N

x

N

x

N

x

N

x

N

o654321

654321

1BJ

Step 4. Derive the element stiffness matrix and equationsLastly, we use the PMPE to obtain the stiffness equations as:

0=−−− ∫∫∫ ∫∫∫∫∫V S

tractT

bodyT

V

T dSdVdv TNXNPDBuB

We use Gaussian quadrature to perform the integration over theelement

(Note that B and N in the above are functions of the naturalcoordinates s1 and s2)

Page 13: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.13

Gaussian Quadrature (Numerical Integration)

As we saw, the derivation of the stiffness requires that we perform anintegration over the element (this comes from the definition of the internalstrain energy and when we assemble the force vector). Often this is difficultto do explicitly, unless you are using Mathematica so we turn to numericalintegration techniques.

Note that in the element formulation, we are choosing the function form ofthe displacement (hence indirectly the form of the strains and stress whichappear in the internal strain energy) – The principle behind GaussianQuadrature is that if we know the functional form of what we are trying tointegrate, then there is certain number of points where we need to evaluatethe function which will give us an exact representation of the integral.

Gauss Formula:

∑∫=−

==int

1

1

1

)()(n

iii xfWIdxxfI

We evaluate an integral by evaluating the function we want to integrate atdiscrete point nint and multiply this by an appropriate weight

Rule:

nint integration point rule ⇒ 2 • nint – 1 order accuracy

Examples:1 integration point will integrate a 1st order polynomial exactly

s = -1 s = 1s = 0

snint = 1s1 = 0W1 = 2

Page 14: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.14

2 integration points will integrate a 3rd order polynomial exactly

Gauss Formula in 2-Dimensions:

∑∑∑∑

∫ ∑∫ ∫

=

=

==− =− −

i jjiji

ji

iij

j

iii

tsfWWtsfWW

dttsfWdtdstsfI

),(),(

),(),(1

1 1

1

1

1

1

Example: CST (constant strain triangle)Here we assumed a linear displacement function – which means that

the strain field (and the stress field) is constant over the element. The findthe integral of a constant, i.e. the area under the curve, we need onlyevaluate that function at one point. For a CST, this point is located in thecenter of the triangle, in the natural coordinate system, this point is locatedat s1=s2=s3= 0.333 and the corresponding weight is 1.

3-node versus 6-node triangular elements

s

s = 1s = 1s = -1

3/1−=s 3/1=s

nint = 2

3/12,1 ±=s

W1 = W2 =1

Page 15: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.15

Returning to the six node LST element, we had B and N whichwere expressed in terms of the natural coordinates. For theseelements we have 3 Gauss points with location and weights as:

333.0666.0,1666.03

333.0666.0,1666.02

333.0666.0,1666.01

3321

2231

1132

============

Wsssgp

Wsssgp

Wsssgp

This gives us a degree of precision of 2 (integrates a 2nd orderpolynomial exactly) so we now have for the stiffness matrix

( )

( ) ( ) ( )321

1

2

33.0

2

33.0

2

33.0

221

gp

T

gp

T

gp

T

iiT

n

ii

ssplanes

T

yxplaneyx

Te

ttt

Wt

dAtdAti

JDBBJDBBJDBB

JDBBJDBBDBBk

++=

=== ∑∫∫∫∫=−−

where the Jacobian has already been constructed (when weformed the B matrix) as:

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

66

55

44

33

22

11

2

6

2

5

2

4

2

3

2

2

2

1

1

6

1

5

1

4

1

3

1

2

1

1

det

yx

yx

yx

yx

yx

yx

s

N

s

N

s

N

s

N

s

N

s

Ns

N

s

N

s

N

s

N

s

N

s

N

J

Similarly, we can perform the integrals appearing in the force vector

Note: the factor of ½ comes from the areaof the triangle in s1 – s2 space

Page 16: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.16

2-D Brick ElementsNatural coordinate systemFor each element we assign a local coordinate system represented by s andt which both span the range from –1 to 1 over the area of the element

Linear displacement function Quadratic displacement function(4 noded) (8 noded)

4 Node Bricks – BiLinear Quads

we choose a natural coordinate system as shown and define thegeometry in terms of the natural coordinate system as:

stbtbsbby

statasaax

4321

4321

+++=+++=

s

t

s

t

t

t=1

t=-1

s=1s=-1

Page 17: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.17

or rather in terms of the shape functions and the nodal coordinatesas:

44332211

44332211

yNyNyNyNy

xNxNxNxNx

+++=+++=

which we can write in matrix form as:

=

4

3

2

1

4321

4321

11111

N

N

N

N

yyyy

xxxx

y

x

Here the shape functions are

)1)(1(4

1

)1)(1(4

1

)1)(1(4

1

)1)(1(4

1

4

3

2

1

tsN

tsN

tsN

tsN

+−=

++=

−+=

−−=

Thus we have

=

4

4

3

3

2

2

1

1

4321

4321

0000

0000

y

x

y

x

y

x

y

x

NNNN

NNNN

y

x

The sum of the shape functions anywhere on the element add to 1

Page 18: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.18

Step 2: Choose the displacement functionwe can simply write the element displacement as a function ofnodal dof in the same form as used to describe the geometry:

=

4

4

3

3

2

2

1

1

4321

4321

0000

0000

),(

),(

y

x

y

x

y

x

y

x

y

x

u

u

u

u

u

u

u

u

NNNN

NNNN

yxu

yxu

or NuΨ =

Step 3: Strain/displacement and stress/strain relations

Again the 2-D strain displacement relations are:

x

uxx ∂

∂=ε , y

uyy ∂

∂=ε

, and x

u

y

u yxxy ∂

∂+

∂∂

or in matrix form as:

∂∂

∂∂

∂∂

∂∂

=

∂∂

∂∂

∂∂

∂∂

=

4

4

3

3

2

2

1

1

4321

4321

0000

00000

0

0

0

y

x

y

x

y

x

y

x

y

x

xy

y

x

u

u

u

u

u

u

u

u

NNNN

NNNN

xy

y

x

u

u

xy

y

x

γεε

Page 19: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.19

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

4

4

3

3

2

2

1

1

44332211

4321

4321

0000

0000

21

y

x

y

x

y

x

y

x

xy

y

x

u

u

u

u

u

u

u

u

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

Ny

N

y

N

y

N

y

Nx

N

x

N

x

N

x

N

Aγεε

Buε =In 2-D the stress/strain relations are:

DBuDεσ ==Where D depends on whether plane stress or plane strainconditions prevails (again see Chapter 5 for details)

But iN ’s are functions of s and t and not x and y so we have toapply the chain rule of differentiation again. This time we have:

y

t

t

N

y

s

s

N

y

Nx

t

t

N

x

s

ds

N

x

N

iii

iii

∂∂

∂∂

+∂∂

∂∂

=∂

∂∂∂

∂∂

+∂∂∂

=∂

Or in matrix form as:

∂∂∂

∂∂

∂∂

∂∂

∂∂

=

∂∂∂

t

Ns

N

y

t

y

sx

t

x

s

y

Nx

N

i

i

i

i

but y

t

y

s

x

t

x

s

∂∂

∂∂

∂∂

∂∂

and,,, are difficult to evaluate, but t

y

t

x

s

y

s

x

∂∂

∂∂

∂∂

∂∂

and,,,

are not so we can write:

Page 20: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.20

∂∂

∂∂−

∂∂

∂∂=

∂∂

s

y

t

N

t

y

s

N

Jx

N iii 1and

∂∂

∂∂+

∂∂

∂∂−=

∂∂

s

x

t

N

t

x

s

N

Jy

N iii 1

where the determinant of the Jacobian, J is:

s

y

t

x

t

y

s

x

t

y

s

yt

x

s

x

J∂∂

∂∂−

∂∂

∂∂=

∂∂

∂∂

∂∂

∂∂

= det

So we get a new B which equals B but is now a function of s and t.

Step 4. Derive the element stiffness matrix and equationsLastly, we use the PMPE to obtain the stiffness equations as:

0=−−− ∫∫∫ ∫∫∫∫V S

tractT

bodyT

A

T dSdVdAt TNXNPDBuB

in which we transform the integrals in the x-y plane to integrals overthe s-t plane from –1 to 1 through the transformation and useGaussian Quadrature to perform the integration

( )ii

Tn

ii

A

WdtdsJsfdydxxf JDBB∑∫ ∫∫=− −

==1

1

1

1

1

4)()(

Page 21: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.21

8-Node Brick ElementsNatural coordinate systemFor each element we assign a local coordinate system represented by s andt which both span the range from –1 to 1 over the area of the element

Quadratic displacement function

the shape functions are:

)1)(1)(1(2

1)1)(1)(1(

2

1

)1)(1)(1(21

)1)(1)(1(21

)1)(1)(1(41

)1)(1)(1(41

)1)(1)(1(4

1)1)(1)(1(

4

1

87

65

43

21

ttsNsstN

ttsNsstN

tstsNtstsN

tstsNtstsN

+−−=+−−=

+−+=+−+=

−+−+−=−+++=

−−−+=−−−−−=

alternatively we choose a natural coordinate system as shown anddefine the geometry in terms of the natural coordinate system as:

28

27

26

254321

28

27

26

254321

stbtsbtbsbstbtbsbby

statsatasastatasaax

+++++++=

+++++++=

Note that this is an incomplete quadratic polynomial.

s

2

t

11

6

7

8

4

3

5

Page 22: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.22

Gauss points at 4 node and 8 node brick elementsRecall that we had assumed the form of the displacements as:

∑∑

=+++=

=+++=

yiiy

xiix

uNstbtbsbbu

uNstatasaau

4321

4321

This is a bilinear approximation, it is not linear in every direction,and so perhaps 1 point is not sufficient

Quads tend to exhibit instabilities.

The following modes have no strains

Therefore, we use more points.

s

t

t=1

t=-1

s=1s=-1

s

t

t=1

t=-1

s=1s=-1

Page 23: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.23

Validity of Isoparametric Elements

PATCH TEST

Critical test for validity is the patch testServes as a necessary and sufficient condition for the correctconvergence of a finite element formulation

Basic idea is to assemble a small number of elements so that atleast one node within the patch is shared by more than twoelements. The boundary nodes of the model are loaded by a set ofconsistently derived nodal loads corresponding to a state ofconstant stress.

Example

A patch test must be performed for all constant stress statesdemanded of the element

A successful patch test reveals that the element- will display a state of constant strain- will not strain when subjected to a rigid body motion- is compatible with adjacent elements when subjected to a

state of constant strain

F

2F

F

A patch test forσy for 4-nodeelements

F

Page 24: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.24

Numerical example of LSTSpecify the nodal coordinatesxccord= 881.5, 1<, 84, 2<, 82, 3<, 83, 2.5<, 81.75, 2<, 82.75, 1.5<<;Material properties and plain stress D matrixplainstress;

E1 = 100.;

ν1 = 0.3;

Dmat =E1

1 − ν12 :81, ν1, 0<, 8ν1, 1, 0<, :0, 0, 1 − ν1

2>>;

Specify the shape functionss3= 1− s1− s2;

n1= s1H2s1− 1L;n2= s2H2s2− 1L;n3= s3H2s3− 1L;n4= 4s2s3;

n5= 4s1s3;

n6= 4s1s2;

Form the Bnot matrix and determine the JacobianMatrixForm@Bnot= 88D@n1, s1D, D@n2, s1D, D@n3, s1D, D@n4, s1D, D@n5, s1D, D@n6, s1D<,8D@n1, s2D, D@n2, s2D, D@n3, s2D, D@n4, s2D, D@n5, s2D, D@n6, s2D<<DJ −1 + 4 s1 0 1 − 4 H1 − s1− s2L −4 s2 −4 s1 + 4 H1 −s1 − s2L 4 s2

0 −1 + 4 s2 1 − 4 H1 − s1− s2L 4 H1 − s1 − s2L − 4 s2 −4 s1 4 s1N

MatrixForm@Jmat= [email protected] êê ChopDJ −0.5 −22 −1.

NMatrixForm@Bno= Simplify@[email protected]−0.888889s1 −0.444444+1.77778s2 −0.666667+0.888889s1+0.888889s2 1.77778−1.77778s1−2.66667s2 −0.888889+0.s1+0.888889s2 1.77778s1−0.888889s20.444444−1.77778s1 0.111111−0.444444s2 1.66667−2.22222s1−2.22222s2 −0.444444+0.444444s1+2.66667s2 −1.77778+4.s1+1.77778s2 −0.444444s1−1.77778s2

NForm the B matrixMatrixForm@Bmat= 88Bno@@1, 1DD, 0, Bno@@1, 2DD, 0, Bno@@1, 3DD, 0, Bno@@1, 4DD, 0,

Bno@@1, 5DD, 0, Bno@@1, 6DD, 0<,80, Bno@@2, 1DD, 0, Bno@@2, 2DD, 0, Bno@@2, 3DD, 0, Bno@@2, 4DD, 0,Bno@@2, 5DD, 0, Bno@@2, 6DD<,8Bno@@2, 1DD, Bno@@1, 1DD, Bno@@2, 2DD, Bno@@1, 2DD, Bno@@2, 3DD,Bno@@1, 3DD, Bno@@2, 4DD, Bno@@1, 4DD, Bno@@2, 5DD, Bno@@1, 5DD,Bno@@2, 6DD, Bno@@1, 6DD<<Dik0.222222−0.888889s1 0 −0.444444+1.77778s2 0 −0.666667+0.888889s1+0.888889s2 0 1.77778−1.77778s1−2.66667s2 0 −0.888889+0.s1+0.888889s2 0 1.77778s1−0.888889s2 0

0 0.444444−1.77778s1 0 0.111111−0.444444s2 0 1.66667−2.22222s1−2.22222s2 0 −0.444444+0.444444s1+2.66667s2 0 −1.77778+4.s1+1.77778s2 0 −0.444444s1−1.77778s20.444444−1.77778s10.222222−0.888889s10.111111−0.444444s2−0.444444+1.77778s2 1.66667−2.22222s1−2.22222s2 −0.666667+0.888889s1+0.888889s2−0.444444+0.444444s1+2.66667s2 1.77778−1.77778s1−2.66667s2 −1.77778+4.s1+1.77778s2 −0.888889+0.s1+0.888889s2−0.444444s1−1.77778s2 1.77778s1−0.888889s2

y{Start forming the stiffness matrixMatrixForm@Kj@s1_, s2_D = Det@JmatD Simplify@[email protected] numerical integration(evaluate at the gauss points)MatrixForm@Kloc= 1ê3.2ê2 [email protected], .16666D + [email protected], .6666D + [email protected], .16666DLDi

k

5.86064 3.17451 1.34302 1.01744 0.610504 0.0407003 0.0000338645 0.0000369036 −2.442 −0.162835 −5.3722 −4.069863.17451 10.6224 0.834302 −0.244186 0.223851 3.78512 0.0000251813 −0.000110059 −0.895414 −15.1401 −3.33728 0.9768671.34302 0.834302 9.97885 −1.58685 1.98319 −1.3628 −7.93367 5.45212 0.000310882 −0.000485298 −5.3717 −3.336291.01744 −0.244186 −1.58685 4.02816 −1.54587 1.58655 6.18451 −6.34714 −0.000561474 0.000452564 −4.06867 0.9761630.610504 0.223851 1.98319 −1.54587 7.78358 −3.9681 −7.93483 6.18568 −2.44125 −0.895912 −0.00119246 0.0003511190.0407003 3.78512 −1.3628 1.58655 −3.9681 16.1166 5.45303 −6.34514 −0.163268 −15.1394 0.000439018 −0.003679

0.0000338645 0.0000251813 −7.93367 6.18451 −7.93483 5.45303 31.4979 −3.17146 −10.7473 −7.40719 −4.88214 −1.058910.0000369036 −0.000110059 5.45212 −6.34714 6.18568 −6.34514 −3.17146 41.0168 −7.40715 1.94975 −1.05922 −30.2742

−2.442 −0.895414 0.000310882 −0.000561474 −2.44125 −0.163268 −10.7473 −7.40715 31.5022 −3.17387 −15.872 11.6403−0.162835 −15.1401 −0.000485298 0.000452564 −0.895912 −15.1394 −7.40719 1.94975 −3.17387 41.0245 11.6403 −12.6952−5.3722 −3.33728 −5.3717 −4.06867 −0.00119246 0.000439018 −4.88214 −1.05922 −15.872 11.6403 31.4992 −3.17556−4.06986 0.976867 −3.33629 0.976163 0.000351119 −0.003679 −1.05891 −30.2742 11.6403 −12.6952 −3.17556 41.02

y

{

Page 25: Chapter 6. Isoparametric Formulationhome.cc.umanitoba.ca/~labossip/4510/notes/ch6.pdf · 2017-03-28 · 6.1 ME 478 FINITE ELEMENT METHOD Chapter 6. Isoparametric Formulation Same

6.25

Apply the boundary conditionsRx2 = 1;

Ry2 = 0;

Rx2 = 1;

Ry3 = 0;

Rx4 = 0.5;

Ry4 = 0;

Ry5 = 0;

Rx6 = .5;

Ry6 = 0;

ux1 = 0;

uy1 = 0;

ux3 = 0;

ux5 = 0;

MatrixForm@fvect= 88Rx1<, 8Ry1<, 8Rx2<, 8Ry2<, 8Rx3<, 8Ry3<, 8Rx4<, 8Ry4<, 8Rx5<,8Ry5<, 8Rx6<, 8Ry6<<DMatrixForm@uvect= 88ux1<, 8uy1<, 8ux2<, 8uy2<, 8ux3<, 8uy3<, 8ux4<, 8uy4<, 8ux5<,8uy5<, 8ux6<, 8uy6<<[email protected]== fvectD88ux2 → 0.210567, ux4 → 0.0729666, ux6 → 0.074885, uy2 → 0.0483552,

uy3 → −0.0211898, uy4 → −0.00110893, uy5 → −0.00970086, uy6 → 0.0198336,

Rx1 → −0.150302, Rx3 → −0.150302, Ry1 → −4.23449×10−17, Rx5 → −1.6994<<MatrixForm@fvect= 88Rx1<, 8Ry1<, 8Rx2<, 8Ry2<, 8Rx3<, 8Ry3<, 8Rx4<, 8Ry4<, 8Rx5<,8Ry5<, 8Rx6<, 8Ry6<<DMatrixForm@uvect= 88ux1<, 8uy1<, 8ux2<, 8uy2<, 8ux3<, 8uy3<, 8ux4<, 8uy4<, 8ux5<,8uy5<, 8ux6<, 8uy6<<Di

k

−0.150302010

−0.15030200.50

−1.699400.50

y

{

i

k

00

0.2105670.0483552

0−0.02118980.0729666

−0.001108930

−0.009700860.0748850.0198336

y

{MatrixForm@stressvect@s1_, s2_D = [email protected] 3.5683 + 0.341056 s1 + 11.455 s2

−0.149976 + 0.0000323908 s1+ 0.449932 s2−0.374859 + 0.674735 s1+ 0.449883 s2

y{Determine the stresses at the Gauss pointsMatrixForm@[email protected], .166DDMatrixForm@[email protected], .666DDMatrixForm@[email protected], .166DDik 5.69697

−0.07526580.149195

y{ ,

ik 11.25390.1496840.0367692

y{ , and

ik 5.52644−0.075282−0.188172

y{