46
Chapter.6 Differential Analysis of Fluid Flow Copyright Β© The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter. 6 Differential Analysis of Fluid Flow Potential Flow 이동근 Mκ΄€ 517호 [email protected] Reference: 1. Fluid Mechanics, Frank M White, 6 th Edition, 2008, McGraw Hill 2. Munson et al., Fundamentals of Fluid Mechanics, 5th Edition, 2006, John Wiley &Sons, Inc

Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Copyright Β© The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter. 6Differential Analysis of Fluid Flow

Potential Flow

이동근

Mκ΄€ 517호[email protected]

Reference:1. Fluid Mechanics, Frank M White, 6th Edition, 2008, McGraw Hill2. Munson et al., Fundamentals of Fluid Mechanics, 5th Edition, 2006, John Wiley &Sons, Inc

Page 2: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Inviscid Flow: Euler’s equations of motion

β€’ Flow fields in which the shearing stresses are zero are said to be inviscid, nonviscous, or frictionless. For fluids in which there are no shearing stresses the normal stress at a point is independent of direction:

β€’ For an inviscid flow in which all the shearing stresses are zero, and the normal stresses are replaced by –p, the Navier-Stokes Equations reduce to Euler’s equations

β€’ In Cartesian coordinates:

βˆ’π‘ = 𝜎π‘₯π‘₯ = πœŽπ‘¦π‘¦ = πœŽπ‘§π‘§

πœŒπ’ˆ βˆ’ πœ΅π‘ βˆ’ 0 = πœŒπœ•π‘½

πœ•π‘‘+ 𝑉 Β· 𝛻 𝑽

πœŒπ‘”π‘₯ βˆ’πœ•π‘

πœ•π‘₯= 𝜌

πœ•π‘’

πœ•π‘‘+ 𝑒

πœ•π‘’

πœ•π‘₯+ 𝑣

πœ•π‘’

πœ•π‘¦+ 𝑀

πœ•π‘’

πœ•π‘§

πœŒπ‘”π‘¦ βˆ’πœ•π‘

πœ•π‘¦= 𝜌

πœ•π‘£

πœ•π‘‘+ 𝑒

πœ•π‘£

πœ•π‘₯+ 𝑣

πœ•π‘£

πœ•π‘¦+ 𝑀

πœ•π‘£

πœ•π‘§

πœŒπ‘”π‘§ βˆ’πœ•π‘

πœ•π‘§= 𝜌

πœ•π‘€

πœ•π‘‘+ 𝑒

πœ•π‘€

πœ•π‘₯+ 𝑣

πœ•π‘€

πœ•π‘¦+ 𝑀

πœ•π‘€

πœ•π‘§

Page 3: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

The Bernoulli equation derived from Euler’s equations

β€’ Steady, incompressible, inviscid, along a streamline

Inviscid Flow: Euler’s equations of motion

𝑝

𝜌+

𝑉2

2+ 𝑔𝑧 = π‘π‘œπ‘›π‘ π‘‘

𝑝1

𝛾+

𝑉12

2𝑔+ 𝑧1 =

𝑝2

𝛾+

𝑉22

2𝑔+ 𝑧2

πœŒπ’ˆ βˆ’ πœ΅π‘ = πœŒπœ•π‘½

πœ•π‘‘+ 𝑉 Β· 𝛻 𝑽 = 𝜌 𝑉 Β· 𝛻 𝑽

𝑽 Β· 𝛻 𝑽 =𝟏

2𝛻 𝑽 Β· 𝑽 - 𝑽 x (𝛻x 𝑽)

πœŒπ’ˆ βˆ’ πœ΅π‘ Β· 𝑑𝒓 =𝟏

2πœŒπ›» 𝑽 Β· 𝑽 Β· 𝑑𝒓 βˆ’ πœŒπ‘½ x (𝛻x 𝑽) Β· 𝑑𝒓

dot product

Β· 𝑑𝒓

Vector identity

∡ 𝑉 β«½ 𝑑𝒓 π‘Žπ‘™π‘œπ‘›π‘” π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘šπ‘™π‘–π‘›π‘’

∡ π›»πœ™ Β· 𝑑𝒓 = dπœ™βˆ’ 𝑔𝑑𝑧 βˆ’π‘‘π‘

πœŒβˆ’ 𝑑

1

2𝑉2 = 0

& incompressible

Page 4: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

The Bernoulli equation derived from Euler’s equations

β€’ The Bernoulli equation can also be derived, starting from Euler’s equations. For inviscid, incompressible fluids, we end up with the same equation

β€’ It is often convenient to write the Bernoulli equation between two points (1) and (2) along a streamline and to express the equation in the β€œhead” form by dividing each term by 𝑔 so that

β€’ The Bernoulli equation is restricted to the following:

- Inviscid flow- Steady flow- Incompressible flow- Flow along a streamline

Inviscid Flow: Euler’s equations of motion

𝑝

𝜌+

𝑉2

2+ 𝑔𝑧 = π‘π‘œπ‘›π‘ π‘‘

𝑝1

𝛾+

𝑉12

2𝑔+ 𝑧1 =

𝑝2

𝛾+

𝑉22

2𝑔+ 𝑧2

Page 5: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

The Bernoulli equation for steady, incompressible, irrotational flow

Inviscid Flow: Euler’s equations of motion

πœŒπ’ˆ βˆ’ πœ΅π‘ = πœŒπœ•π‘½

πœ•π‘‘+ 𝑉 Β· 𝛻 𝑽 = 𝜌 𝑉 Β· 𝛻 𝑽

𝑽 Β· 𝛻 𝑽 =𝟏

2𝛻 𝑽 Β· 𝑽 - 𝑽 x (𝛻x 𝑽)

πœŒπ’ˆ βˆ’ πœ΅π‘ Β· 𝑑𝒓 =𝟏

2πœŒπ›» 𝑽 Β· 𝑽 Β· 𝑑𝒓 βˆ’ πœŒπ‘½ x (𝛻x 𝑽) Β· 𝑑𝒓

dot product

Β· 𝑑𝒓

Vector identity

∡ π‘–π‘Ÿπ‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™

∴ π‘ π‘Žπ‘‘π‘–π‘ π‘“π‘–π‘’π‘‘ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘π‘Žπ‘‘β„Žπ‘ βˆ’ 𝑔𝑑𝑧 βˆ’π‘‘π‘

πœŒβˆ’ 𝑑

1

2𝑉2 = 0

Page 6: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

The Irrotational Flow and corresponding Bernoulli equation

β€’ If we make one additional assumption-that the flow is irrotational the analysis of inviscid flow problems is further simplified. The Bernoulli equation has exactly the same form at that for inviscid flows:

β€’ But it can now be applied between any two points in the flow field, not limited to applications along a streamline.

Inviscid Flow: Euler’s equations of motion

𝛻 Γ— 𝑉 = 0

𝑝1

𝛾+

𝑉12

2𝑔+ 𝑧1 =

𝑝2

𝛾+

𝑉22

2𝑔+ 𝑧2

Various regions of flow around bodies

Various regions of flow through channels

Page 7: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

The Velocity Potential

β€’ For an irrotational flow:

so we have

β€’ It follows that in this case the velocity components can be expressed in terms of a scalar function πœ™ π‘₯, 𝑦, 𝑧, 𝑑 , called velocity potential, as

In vector form

Inviscid Flow: Euler’s equations of motion

𝛻 Γ— 𝑽 =πœ•π‘€

πœ•π‘¦βˆ’

πœ•π‘£

πœ•π‘§ π’Š +

πœ•π‘’

πœ•π‘§βˆ’

πœ•π‘€

πœ•π‘₯ 𝒋 +

πœ•π‘£

πœ•π‘₯βˆ’

πœ•π‘’

πœ•π‘¦ π’Œ = 0

πœ•π‘€

πœ•π‘¦=

πœ•π‘£

πœ•π‘§,

πœ•π‘’

πœ•π‘§=

πœ•π‘€

πœ•π‘₯,

πœ•π‘£

πœ•π‘₯=

πœ•π‘’

πœ•π‘¦

𝑒 =πœ•πœ™

πœ•π‘₯, 𝑣 =

πœ•πœ™

πœ•π‘¦, 𝑀 =

πœ•πœ™

πœ•π‘§

𝑽 = π›»πœ™

Page 8: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

β€’ The velocity potential is a consequence of the irrotationality of the flow field, whereas the stream function is a consequence of conservation of mass. It is to be noted, however, that the velocity potential can be defined for a general three-dimensional flow, whereas the stream function is restricted to two-dimensional flow.

β€’ And therefore for incompressible, irrotational flow, it follows that

β€’ The velocity potential satisfies the Laplace equation.In Cartesian coordinates:

In cylindrical coordinates:

Inviscid Flow: Euler’s equations of motion

𝛻 βˆ™ 𝑽 = 0

𝛻2πœ™ = 0

πœ•2πœ™

πœ•π‘₯2+

πœ•2πœ™

πœ•π‘¦2+

πœ•2πœ™

πœ•π‘§2= 0

1

π‘Ÿ

πœ•

πœ•π‘Ÿπ‘Ÿ

πœ•πœ™

πœ•π‘Ÿ+

1

π‘Ÿ2

πœ•2πœ™

πœ•πœƒ2+

πœ•2πœ™

πœ•π‘§2= 0

Satisfy Laplace egn !!Linear & homogeneous‍ superposition allowed

Page 9: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.5 Some Basic, Plane Potential Flows

Laplace egn ; a linear & homogeneous partial differential equation

For simplicity, only plane (2-D) flows

(in Cartesian coord.)

(in Cylindrical coord.)

A stream function for plane flow is

or

Solution 1 πœ™1

Solution 2 πœ™2 Solution 3 πœ™3 = πœ™1 +πœ™2

𝑒 =πœ•πœ“

πœ•π‘¦, 𝑣 = βˆ’

πœ•πœ“

πœ•π‘₯

π‘£π‘Ÿ =1

π‘Ÿ

πœ•πœ“

πœ•πœƒ, π‘£πœƒ = βˆ’

πœ•πœ“

πœ•π‘Ÿ

x

y

𝑣 =πœ•πœ™

πœ•π‘¦

𝑒 =πœ•πœ™

πœ•π‘₯

x

y

ΞΈr

𝑉

π‘£π‘Ÿ =πœ•πœ™

πœ•π‘Ÿ

π‘£πœƒ =1

π‘Ÿ

πœ•πœ™

πœ•πœƒ

𝑒 =πœ•πœ™

πœ•π‘₯, 𝑣 =

πœ•πœ™

πœ•π‘¦

π‘£π‘Ÿ =πœ•πœ™

πœ•π‘Ÿ, π‘£πœƒ =

1

π‘Ÿ

πœ•πœ™

πœ•πœƒ

𝑉

Page 10: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

β€’ For potential flow, basic solutions can be simply added to obtain more complicated solutions because of the major advantage of Laplace equation that it is a linear PDE. For simplicity, only plane (two-dimensional) flows will be considered. Since we can define a stream function for plane flow,

β€’ If we now impose the condition of irrotationality for 2D, it follows

and in terms of the stream function

𝑒 =πœ•πœ“

πœ•π‘¦, 𝑣 = βˆ’

πœ•πœ“

πœ•π‘₯

πœ•π‘’

πœ•π‘¦=

πœ•π‘£

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•πœ“

πœ•π‘¦=

πœ•

πœ•π‘₯βˆ’

πœ•πœ“

πœ•π‘₯

πœ•2πœ“

πœ•π‘₯2 +πœ•2πœ“

πœ•π‘¦2 = 0Satisfy Laplace egn !!=> Superposition allowed

6.5 Some Basic, Plane Potential Flows

Page 11: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

β€’ Thus, for a plane irrotational flow we can use either the velocity potential or the stream function - both must satisfy Laplace’s equation in two dimensions. It is apparent from these results that the velocity potential and the stream function are somehow related. It can be shown that lines of constant πœ™ (called equipotential lines) are orthogonal to lines of constant πœ“ (streamlines) at all points where they intersect. Recall that two lines are orthogonal if the product or their slopes is – 1, as illustrated by this figure

β€’ Along streamlines πœ“ = const:

β€’ Along equipotential lines πœ™ = const.

𝑑𝑦

𝑑π‘₯=

𝑣

𝑒Along πœ“=const

π‘‘πœ™ =πœ•πœ™

πœ•π‘₯𝑑π‘₯ +

πœ•πœ™

πœ•π‘¦π‘‘π‘¦ = 𝑒𝑑π‘₯ + 𝑣𝑑𝑦 = 0

𝑑𝑦

𝑑π‘₯= βˆ’

𝑒

𝑣Along πœ™=const

x

a

ba

b

y

π‘Ž

𝑏× βˆ’

𝑏

π‘Ž= βˆ’1

Lines of constant πœ™ lines of constant πœ“(equipotential lines) (stream lines)

Flow net: a family of streamlines andequipotential lines (see Fig. 6.15)

6.5 Some Basic, Plane Potential Flows

slope

∡ 𝑉 β«½ 𝑑𝒓 π‘Žπ‘™π‘œπ‘›π‘” π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘šπ‘™π‘–π‘›π‘’

π‘‘πœ“ =πœ•πœ“

πœ•π‘₯𝑑π‘₯ +

πœ•πœ“

πœ•π‘¦π‘‘π‘¦ = βˆ’π‘£π‘‘π‘₯ + 𝑒𝑑𝑦 = 0

Page 12: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Uniform flow at angle Ξ± with the π‘₯ axis

y

x

πœ“ = πœ“1

πœ™ = πœ™1 πœ™ = πœ™2

π‘ˆ

πœ“ = πœ“2

πœ“ = πœ“3

πœ“ = πœ“4

𝑒 = π‘ˆ =πœ•πœ™

πœ•π‘₯=

πœ•πœ“

πœ•π‘¦

𝑣 = 0 =πœ•πœ™

πœ•π‘¦= βˆ’

πœ•πœ“

πœ•π‘₯

∴ πœ™ = π‘ˆπ‘₯ +c = f(x)

πœ“ = π‘ˆπ‘¦ = f(y)

Set zero (arbitrary constant)

6.5 Some Basic, Plane Potential Flows

Page 13: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Uniform flow at angle Ξ± with the π‘₯ axis

Velocity potential:

Stream function:

Velocity components:

πœ™ = π‘ˆ π‘₯ cos 𝛼 + 𝑦 sin 𝛼

πœ“ = π‘ˆ 𝑦 cos 𝛼 βˆ’ π‘₯ sin 𝛼

𝑒 = π‘ˆ cos 𝛼 , 𝑣 = π‘ˆ sin 𝛼

y

x

Ξ±

π‘ˆ

πœ“ = πœ“1

πœ“ = πœ“2

πœ“ = πœ“3

πœ“ = πœ“4

πœ™ = πœ™1

πœ™ = πœ™2

6.5 Some Basic, Plane Potential Flows

𝑒 = π‘ˆ cos𝛼 =πœ•πœ™

πœ•π‘₯=

πœ•πœ“

πœ•π‘¦

𝑣 = π‘ˆ sin 𝛼 =πœ•πœ™

πœ•π‘¦= βˆ’

πœ•πœ“

πœ•π‘₯

πœ™ = π‘ˆπ‘₯ cos𝛼 + 𝑓 𝑦

𝑓′ 𝑦 =πœ•πœ™

πœ•π‘¦= π‘ˆ sin 𝛼

𝑓 𝑦 = π‘ˆπ‘¦ sin 𝛼 + 𝑐

Page 14: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.5.2 Source and sink (π‘š > 0 source; π‘š < 0 sink)

6.5 Some Basic, Plane Potential Flows

For the conservation of mass

or

and (purely radial flow)

2πœ‹π‘Ÿ π‘£π‘Ÿ = π‘š (the volume rate of flow) = const

π‘£π‘Ÿ =π‘š

2πœ‹π‘Ÿ

π‘£πœƒ = 0

βˆ΄πœ•πœ™

πœ•π‘Ÿ= πœˆπ‘Ÿ =

π‘š

2πœ‹π‘Ÿ,

1

π‘Ÿ

πœ•πœ™

πœ•πœƒ= πœˆπœƒ = 0

∴ πœ™ =π‘š

2πœ‹π‘™π‘› π‘Ÿ

1

π‘Ÿ

πœ•πœ“

πœ•πœƒ= πœˆπ‘Ÿ =

π‘š

2πœ‹π‘Ÿ, βˆ’

πœ•πœ“

πœ•π‘Ÿ= πœˆπœƒ = 0 ∴ πœ“ =

π‘š

2πœ‹πœƒ

source flow ; π‘š > 0sink flow ; π‘š < 0magnitude of m; the strength

From the stream function for the source

x

y

πœ“ = π‘π‘œπ‘›π‘ π‘‘

π‘£π‘Ÿ

πœ™ = π‘π‘œπ‘›π‘ π‘‘

ΞΈ

r

Page 15: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.5.2 Source or sink (π‘š > 0 for source; π‘š < 0 for sink)

Velocity potential:

Stream function:

Velocity components:

πœ™ =π‘š

2πœ‹ln π‘Ÿ

πœ“ =π‘š

2πœ‹πœƒ

π‘£π‘Ÿ =π‘š

2πœ‹π‘Ÿ, π‘£πœƒ = 0

y

x

r

ΞΈ

πœ™ = constantπœ“ = constant

π‘£π‘Ÿ

6.5 Some Basic, Plane Potential Flows

π‘π‘œπ‘‘β„Ž π‘’π‘žπ‘’π‘– βˆ’ 𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’ π‘œπ‘Ÿπ‘‘β„Žπ‘œπ‘”π‘œπ‘›π‘Žπ‘™

Page 16: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 17: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

= 4π‘Ÿπ‘π‘œπ‘ 2πœƒ

Page 18: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 19: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

- Fully developed 2-dimensioanl channel flow- Height h, and both plates are fixed- 𝑑pβˆ•π‘‘π‘₯<0 and constant- Steady, incompressible, 2-D (in x-y plane)

6.5.2 Source and Sink

cf)

h

u(y)

x

y

𝑒 =1

2πœ‡

𝑑𝑝

𝑑π‘₯𝑦2 βˆ’ β„Žπ‘¦ and 𝑣 = 0

πœ•πœ“

πœ•π‘¦= 𝑒 =

1

2πœ‡

𝑑𝑝

𝑑π‘₯(𝑦2 βˆ’ β„Žπ‘¦)

integration

πœ“ =1

2πœ‡

𝑑𝑝

𝑑π‘₯

𝑦3

3βˆ’

β„Žπ‘¦2

2+ 𝑔(π‘₯)

0 = 𝜈 = βˆ’πœ•πœ“

πœ•π‘₯= βˆ’π‘”β€²(π‘₯) ∴ 𝑔 π‘₯ = 𝑐

πœ“ =1

2πœ‡

𝑑𝑝

𝑑π‘₯

𝑦3

3βˆ’

β„Žπ‘¦2

2+ 𝑐 ,

πœ“ =1

2πœ‡

𝑑𝑝

𝑑π‘₯

𝑦3

3βˆ’

β„Žπ‘¦2

2, πœ“π‘‘π‘œπ‘ = βˆ’

1

12πœ‡

𝑑𝑝

𝑑π‘₯β„Ž3

Derive the Stream function πœ“ along the dashed line.For simplicity, let’s put πœ“ = 0 on the bottom wall, but what is πœ“ on the top wall?

integration

B.C.; along y=0, πœ“ = 0 so that ∴ c = 0

at y = h

Page 20: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 21: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.5.3. Vortex (concentric circles)

; Interchange the velocity potential πœ™ & stream function πœ“ for the source.

πœ™ = πΎπœƒ πœ“ = βˆ’πΎ ln π‘Ÿ , 𝐾=const

π‘£πœƒ =1

π‘Ÿ

πœ•πœ™

πœ•πœƒ= βˆ’

πœ•πœ“

πœ•π‘Ÿ=

𝐾

π‘Ÿ

π‘£π‘Ÿ = 0

(rotational vortex)

(irrotational vortex)

ex) the motion of a liquid contained in a tank that is rotated about this axis

ex) the swirling motion of the water as it drains from a bathtub

π‘£πœƒ = πœ”π‘Ÿ

π‘£πœƒ =𝐾

π‘Ÿ

π‘Ÿ ≀ π‘Ÿ0

π‘Ÿ > π‘Ÿ

and

Forced vortex ; the fluid is rotating as a rigid body

Free vortex ; irrotational motion

Combined vortex ; a forced vortex as a central core and a free vortex outside the core

zr

zr

r

r

FrFFzr

iiri

r

1Fx

F

r

1)rF(

rr

1F

if

r

1i

r

ff

0

0K0zr

iiri

r

1Vx

zr

π‘–π‘Ÿπ‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™

Irrotational flow

Page 22: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

- For an irrotational flow, so that𝑉 = π›»πœ™ 𝑉 βˆ™ 𝑑𝑠 = π›»πœ™ βˆ™ 𝑑𝑠 = π‘‘πœ™

𝛀 = 𝑐

π‘‘πœ™ = 0

𝜞 β‰  𝟎

𝛀 = 0

2πœ‹ 𝐾

π‘Ÿπ‘Ÿπ‘‘πœƒ = 2πœ‹πΎ

- 𝛀 (Circulation) ; the line integral of the tangential component of the velocity taken around a closed curve in the flow field

𝛀 = 𝑐

𝑉 βˆ™ 𝑑 𝑠

if there are singularities enclosed within the curve.

ex) the free vortex with π‘£πœƒ = 𝐾 π‘Ÿ

Page 23: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Free vortex (𝛀 > 0 counterclockwise; 𝛀 < 0 clockwise)

Velocity potential:

Stream function:

Velocity components:

πœ™ =𝛀

2πœ‹πœƒ

πœ“ = βˆ’π›€

2πœ‹ln π‘Ÿ

π‘£π‘Ÿ = 0, π‘£πœƒ =𝛀

2πœ‹π‘Ÿ

y

r

ΞΈ

πœ“ = constant

πœ™ = constant

π‘£πœƒ

6.5.3. Vortex (concentric circles)

Page 24: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 25: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.5.4. Doublet ; Combination of a source and sink

The source – sink pair

πœ“ = βˆ’π‘š

2πœ‹(πœƒ1 βˆ’ πœƒ2)

π‘‘π‘Žπ‘› βˆ’2πœ‹πœ“

π‘š= π‘‘π‘Žπ‘›(πœƒ1 βˆ’ πœƒ2)

x

y

π‘Ÿ2

π‘Ÿ1r

π‘Ž

πœƒ2 πœƒ πœƒ1

=π‘‘π‘Žπ‘›πœƒ1 βˆ’ π‘‘π‘Žπ‘›πœƒ2

1 + π‘‘π‘Žπ‘›πœƒ1π‘‘π‘Žπ‘›πœƒ2

π‘‘π‘Žπ‘›πœƒ1 =π‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿπ‘π‘œπ‘ πœƒ βˆ’ π‘Ž

π‘‘π‘Žπ‘›πœƒ2 =π‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿπ‘π‘œπ‘ πœƒ + π‘Ž

=2π‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿ2 βˆ’ π‘Ž2

∴ πœ“ = βˆ’π‘š

2πœ‹π‘‘π‘Žπ‘›βˆ’1

2π‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿ2 βˆ’ π‘Ž2

2π‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

πœ‹(π‘Ÿ2 βˆ’ π‘Ž2)

πœ“ = βˆ’π‘š

2πœ‹

2π‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿ2 βˆ’ π‘Ž2= βˆ’

π‘šπ‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

πœ‹(π‘Ÿ2 βˆ’ π‘Ž2)

For small values of

π‘Ž

m↑ ‍ 2πœ‹πœ“/m↓ ‍ 2π‘Žπ‘Ÿπ‘ π‘–π‘›πœƒ

π‘Ÿ2βˆ’π‘Ž2 ↓

Page 26: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Doublet (with strength 𝐾 = π‘šπ‘Ž/πœ‹)

Velocity potential:

Stream function:

Velocity components:

πœ™ =𝐾 π‘π‘œπ‘  πœƒ

π‘Ÿ

πœ“ = βˆ’πΎ 𝑠𝑖𝑛 πœƒ

π‘Ÿ

π‘£π‘Ÿ = βˆ’πΎ π‘π‘œπ‘  πœƒ

π‘Ÿ2 , π‘£πœƒ = βˆ’πΎ 𝑠𝑖𝑛 πœƒ

π‘Ÿ2

6.5.4. Doublet ; Combination of a source and sink

Doublet ; letting the source and sink approach one another (π‘Ž β†’ 0) while increasing the strength (m β†’βˆž)

∴ πœ“ = βˆ’πΎπ‘ π‘–π‘›πœƒ

π‘Ÿ, 𝐾 =

π‘šπ‘Ž

πœ‹(strength of

doublet)

πœ™ =πΎπ‘π‘œπ‘ πœƒ

π‘Ÿ

Streamlines for a doublet

πœˆπ‘Ÿ =1

π‘Ÿ

πœ•πœ“

πœ•πœƒ, πœˆπœƒ = βˆ’

πœ•πœ“

πœ•π‘Ÿ

π‘£π‘Ÿ =πœ•πœ™

πœ•π‘Ÿ, π‘£πœƒ =

1

π‘Ÿ

πœ•πœ™

πœ•πœƒ

Page 27: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Doublet (with strength 𝐾 = π‘šπ‘Ž/πœ‹)

Stream function: πœ“ = βˆ’πΎ 𝑠𝑖𝑛 πœƒ

π‘Ÿ

6.5.4. Doublet ; Combination of a source and sink

x

y

πœ“1π‘Ÿ2 = βˆ’πΎπ‘Ÿ 𝑠𝑖𝑛 πœƒ = βˆ’πΎπ‘¦

πœ“1 = βˆ’πΎπ‘¦

(π‘₯2+𝑦2)

π‘₯2 + 𝑦2 +𝐾

πœ“1

𝑦 +𝐾

2πœ“1

2 =𝐾

2πœ“1

2

Page 28: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 29: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.1 Source in a Uniform Stream-Half-Body

Flow around a half-body is obtained by the addition of a source to a uniform flow.

y

x

b

U

Stagnation

point

Source

r

ΞΈ

Stagnation point

b

ψ = Ο€π‘π‘ˆ

π𝑏

π𝑏

6.6 Superposition of Basic, Plane Potential Flows

At the stagnation point (π‘₯ = βˆ’π‘;πœƒ = πœ‹)

πœ“ = πœ“π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š π‘“π‘™π‘œπ‘€ + πœ“π‘ π‘œπ‘’π‘Ÿπ‘π‘’

= π‘ˆπ‘Ÿπ‘ π‘–π‘›πœƒ +π‘š

2πœ‹πœƒ

πœ™ = π‘ˆπ‘Ÿπ‘π‘œπ‘ πœƒ +π‘š

2πœ‹π‘™π‘› π‘Ÿ

π‘£π‘Ÿ = 0 β†’ π‘ˆ =π‘š

2πœ‹π‘

∴ 𝑏 = π‘š 2πœ‹π‘ˆ ∴ πœ“π‘ π‘‘π‘Žπ‘”π‘›π‘Žπ‘‘π‘–π‘œπ‘› =π‘š

2πœ‹πœƒ

πœƒ=πœ‹=

π‘š

2= πœ‹π‘π‘ˆ

(Stream function of uniform flow)

∴ πœ“ = π‘ˆ(π‘¦π‘π‘œπ‘ π›Ό βˆ’ π‘₯𝑠𝑖𝑛𝛼)

If 𝛼 = 0Β° and 𝑦 = π‘Ÿπ‘ π‘–π‘›πœƒ then πœ“ = π‘ˆπ‘Ÿ π‘ π‘–π‘›πœƒSee (6.97~98)

πœˆπ‘Ÿ =1

π‘Ÿ

πœ•πœ“

πœ•πœƒ=

π‘š

2πœ‹π‘Ÿfor the source only

𝒓 = 𝒃

π‘ˆ : uniform flow

Page 30: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.1 Source in a Uniform Stream-Half-Body

∴ πœ“π‘ π‘‘π‘Žπ‘”π‘›π‘Žπ‘‘π‘–π‘œπ‘› = πœ‹π‘π‘ˆ = π‘ˆπ‘Ÿπ‘ π‘–π‘›πœƒ + π‘π‘ˆπœƒ (Streamline passing through SP)

π‘Ÿ =𝑏(πœ‹ βˆ’ πœƒ)

π‘ π‘–π‘›πœƒ[0 ≀ πœƒ ≀ 2πœ‹]

π‘£π‘Ÿ =1

π‘Ÿ

πœ•πœ“

πœ•πœƒ= π‘ˆπ‘π‘œπ‘ πœƒ +

π‘š

2πœ‹π‘Ÿ

π‘£πœƒ = βˆ’πœ•πœ“

πœ•π‘Ÿ= βˆ’π‘ˆπ‘ π‘–π‘›πœƒ ∴ 𝑉2 = πœˆπ‘Ÿ

2 + πœˆπœƒ2 = π‘ˆ2 +

π‘ˆπ‘šπ‘π‘œπ‘ πœƒ

πœ‹π‘Ÿ+ (

π‘š

2πœ‹π‘Ÿ)2

𝑏 = π‘š 2πœ‹π‘ˆ

𝑉2 = π‘ˆ2(1 + 2𝑏

π‘Ÿπ‘π‘œπ‘ πœƒ +

𝑏2

π‘Ÿ2)

or

See the figures above- The width of the half-body ~ 2πœ‹π‘

𝑦 = π‘Ÿπ‘ π‘–π‘›πœƒ = 𝑏 πœ‹ βˆ’ πœƒ

π‘¦π‘šπ‘Žπ‘₯ = π‘πœ‹ πœƒ β†’ 0 2πœ‹

from eq (6-100)

as or

- To get the velocity components at any points,

and

and since

π‘£π‘Ÿ =1

π‘Ÿ

πœ•πœ“

πœ•πœƒ, π‘£πœƒ = βˆ’

πœ•πœ“

πœ•π‘Ÿ

π‘£π‘Ÿ =πœ•πœ™

πœ•π‘Ÿ, π‘£πœƒ =

1

π‘Ÿ

πœ•πœ™

πœ•πœƒ

eq (6-100)

Page 31: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.1 Source in a Uniform Stream-Half-Body

Flow around a half-body is obtained by the addition of a source to a uniform flow.

The flow around a half-body: (a) superposition of a source and a uniform flow; (b) replacement of streamline πœ“ = πœ‹π‘π‘ˆ with solid boundary to form half-body.

Velocity potential:

Stream function:

Velocity components:

πœ™ = π‘ˆπ‘Ÿ cos πœƒ +π‘š

2πœ‹ln π‘Ÿ

πœ“ = π‘ˆπ‘Ÿ 𝑠𝑖𝑛 πœƒ +π‘š

2πœ‹πœƒ

π‘£π‘Ÿ = π‘ˆπ‘π‘œπ‘ πœƒ +π‘š

2πœ‹π‘Ÿ, π‘£πœƒ = βˆ’π‘ˆ sin πœƒ

y

x

b

U

Stagnation

point

Source

r

ΞΈ

Stagnation point

b

ψ = Ο€π‘π‘ˆ

π𝑏

π𝑏

Page 32: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.2 Source & Sink in a Uniform Stream – Rankine ovals

- Given the reference pressure 𝑃0 and velocity π‘ˆ, you can obtain the pressure at any point from BE (Bernoulli eqn)

- Important Note!!

Inviscid flow β†’ neglecting viscosityβ†’ the fluid β€œslips” on the bodyβ†’ the tangential velocity on the body is not β€œ Zero”→ β€œSlip” condition ! applied for viscous flow

If flow separation doesn’t occur, it’s reasonable!!

- Rankine ovals (an oval shape) ; a uniform flow + a source + a sink

Β· What’s the egn for streamline passing through SP.Β· The width of the Ranking ovalsΒ· Velocity at any points

𝑃0 +1

2πœŒπ‘ˆ2 = 𝑃 +

1

2πœŒπ‘‰2

Given reference Solved above

πœ“ = πœ“π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š π‘“π‘™π‘œπ‘€ + πœ“π‘ π‘œπ‘’π‘Ÿπ‘π‘’ + πœ“π‘ π‘–π‘›π‘˜

Equal strength

= π‘ˆπ‘Ÿπ‘ π‘–π‘›πœƒ +π‘š

2πœ‹(πœƒ2 βˆ’ πœƒ1)

a a

ΞΈ1

ΞΈ3

ΞΈ2m

?

Page 33: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Stagnation point

b

ψ = Ο€π‘π‘ˆ

π𝑏

π𝑏

Page 34: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 35: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

β€’ Rankine ovals are formed by combining a source and sink with a uniform flow.

β€’ The flow around a Rankine oval: (a) superposition of source-sink pair and a uniform flow; (b) replacement of streamline πœ“ = 0 with solid boundary to form Rankine oval.

Velocity potential:

Stream function:

Body half length:

Body half width: from y axis-πœ“=0 intersection

πœ™ = π‘ˆπ‘Ÿ π‘π‘œπ‘  πœƒ βˆ’π‘š

2πœ‹π‘™π‘› π‘Ÿ1 βˆ’ 𝑙𝑛 π‘Ÿ2

πœ“ = π‘ˆπ‘Ÿ sin πœƒ βˆ’π‘š

2πœ‹π‘‘π‘Žπ‘›βˆ’1

2π‘Žπ‘Ÿ sin πœƒ

π‘Ÿ2 βˆ’ π‘Ž2= π‘ˆπ‘¦ βˆ’

π‘š

2πœ‹π‘‘π‘Žπ‘›βˆ’1

2π‘Žπ‘¦

π‘₯2 + 𝑦2 βˆ’ π‘Ž2

𝑙 =π‘šπ‘Ž

πœ‹π‘ˆ+ π‘Ž2

1/2from stag point (π‘£πœƒ = π‘£π‘Ÿ=0) at y=0 or πœƒ= πœ‹

β„Ž =β„Ž2 βˆ’ π‘Ž2

2π‘Žπ‘‘π‘Žπ‘›

2πœ‹π‘ˆβ„Ž

π‘š

SourceSink

r π‘Ÿ1

πœƒ1

π‘Ÿ2

πœƒ2 πœƒ

x

yU

Stagnation

PointStagnation

Pointψ =0

h

h

+m -m

𝓡 𝓡

a a

a a

6.6.2 Source & Sink in a Uniform Stream – Rankine ovals

(6.105)

Page 36: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 37: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 38: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.3 Flow around a Circular Cylinder

; a Uniform flow + a Doublet

In order to get the streamlines around a circular cylinder,

(doublet strength)

πœ“ = π‘ˆπ‘Ÿπ‘ π‘–π‘›πœƒ βˆ’πΎπ‘ π‘–π‘›πœƒ

π‘Ÿ= π‘ˆ βˆ’

𝐾

π‘Ÿ2 π‘Ÿπ‘ π‘–π‘›πœƒ

πœ™ = π‘ˆπ‘Ÿπ‘π‘œπ‘ πœƒ +πΎπ‘π‘œπ‘ πœƒ

π‘Ÿ

πœ“ = π‘π‘œπ‘ π‘‘π‘Žπ‘›π‘‘ at π‘Ÿ = π‘Ž

πœ“ = 0 for π‘Ÿ = π‘Ž 𝑖𝑓 π‘ˆ βˆ’πΎ

π‘Ž2 = 0

𝐾 = π‘ˆπ‘Ž2

∴ πœ“ = π‘ˆπ‘Ÿ 1 βˆ’π‘Ž2

π‘Ÿ2 π‘ π‘–π‘›πœƒ

∴ πœ™ = π‘ˆπ‘Ÿ 1 +π‘Ž2

π‘Ÿ2 π‘π‘œπ‘ πœƒ see Figure 6.26

Velocity components?

Page 39: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.2 Flow around a Circular Cylinder

The velocity components

On the surface of the cylinder (π‘Ÿ = π‘Ž)

The pressure distribution on the cylinder surface from the Bernoulli equation

The resultant force (per unit length)

π‘£π‘Ÿ =πœ•πœ™

πœ•π‘Ÿ=

1

π‘Ÿ

πœ•πœ“

πœ•πœƒ= π‘ˆ 1 βˆ’

π‘Ž2

π‘Ÿ2π‘π‘œπ‘ πœƒ

π‘£πœƒ =1

π‘Ÿ

πœ•πœ™

πœ•πœƒ= βˆ’

πœ•πœ“

πœ•π‘Ÿ= βˆ’π‘ˆ 1 +

π‘Ž2

π‘Ÿ2 π‘ π‘–π‘›πœƒ

π‘£π‘Ÿ = 0, π‘£πœƒπ‘  = βˆ’2π‘ˆπ‘ π‘–π‘›πœƒ

𝑃0 +1

2πœŒπ‘ˆ2 = 𝑃𝑠 +

1

2πœŒπ‘£πœƒπ‘ 

2

∴ 𝑃𝑠 = 𝑃0 +1

2πœŒπ‘ˆ2(1 βˆ’ 4𝑠𝑖𝑛2πœƒ)

𝐹π‘₯ = βˆ’ 0

2πœ‹

π‘ƒπ‘ π‘π‘œπ‘ πœƒπ‘Žπ‘‘πœƒ

𝐹𝑦 = βˆ’ 0

2πœ‹

π‘ƒπ‘ π‘ π‘–π‘›πœƒπ‘Žπ‘‘πœƒ

; drag

; liftdβ€²Alembertβ€²s paradox;In the potential theory, the drag and the lift are both zero in a uniform stream. However, there is a significant drag developed on a cylinder when it is placed in a moving fluid.

see Figure 6.27

Page 40: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.2 Flow around a Circular Cylinder

- Adding a free vortex to the flow around a cylinder

and

- The tangential velocity, 𝑣θ, on the surface of the cylinder (π‘Ÿ = π‘Ž)

Resemble the flow in a uniform stream with a rotating cylinder

𝛀 ; - the circulation and the vortex strength- can change the streamlines patterns

Let’s determine the location of stagnation points(πœƒ = πœƒπ‘ π‘‘π‘Žπ‘” where 𝑣θ = 0 in above egn)

πœ“ = π‘ˆπ‘Ÿ 1 βˆ’π‘Ž2

π‘Ÿ2 π‘ π‘–π‘›πœƒ βˆ’π›€

2πœ‹ln π‘Ÿ

πœ™ = π‘ˆπ‘Ÿ 1 +π‘Ž2

π‘Ÿ2 π‘π‘œπ‘ πœƒ +𝛀

2πœ‹πœƒ

π‘£πœƒπ‘  = βˆ’πœ•πœ“

πœ•π‘Ÿπ‘Ÿ=π‘Ž

= βˆ’2π‘ˆπ‘ π‘–π‘›πœƒ +𝛀

2πœ‹π‘Ž

π‘ π‘–π‘›πœƒπ‘ π‘‘π‘Žπ‘” =𝛀

4πœ‹π‘ˆπ‘Ž

1)

2) ; some other location on the surface

3) ; located away from the cylinder

𝛀 = 0; πœƒπ‘ π‘‘π‘Žπ‘” = 0 π‘œπ‘Ÿ πœ‹

𝛀

4πœ‹π‘ˆπ‘Žβ‰€ 1

𝛀

4πœ‹π‘ˆπ‘Ž> 1

see Figure 6.27

Page 41: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 42: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

6.6.2 Flow around a Circular Cylinder

- To get the force per unit length on the cylinder.consider 𝑃𝑠 from the Bernoulli egn

or

ex) ; π‘ˆ + tive & 𝛀 + tive Fy downward

π‘ˆ + tive & 𝛀 - tive Fy upward

𝑃0 +1

2πœŒπ‘ˆ2 = 𝑃𝑠 +

1

2𝜌(βˆ’2π‘ˆπ‘ π‘–π‘›πœƒ +

𝛀

2πœ‹π‘Ž)2

𝑃𝑠 = 𝑃0 +1

2πœŒπ‘ˆ2 1 βˆ’ 4𝑠𝑖𝑛2πœƒ +

2π›€π‘ π‘–π‘›πœƒ

πœ‹π‘Žπ‘ˆβˆ’

𝛀2

4πœ‹2π‘Ž2π‘ˆ2

∴ 𝐹π‘₯ = βˆ’ π‘Ž

2πœ‹

π‘ƒπ‘ π‘π‘œπ‘ πœƒπ‘Žπ‘‘πœƒ = 0

𝐹𝑦 = βˆ’ 0

2πœ‹

π‘ƒπ‘ π‘ π‘–π‘›πœƒπ‘Žπ‘‘πœƒ = βˆ’πœŒπ‘ˆπ›€

Fy -tive

(lift)

∡ π‘ π‘–π‘›πœƒ & 𝑠𝑖𝑛2πœƒ π‘Žπ‘Ÿπ‘’ π‘ π‘¦π‘šπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘€π‘Ÿπ‘‘ πœƒ = πœ‹/2

Page 43: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Flow around a Circular Cylinder

β€’ A doublet combined with a uniform flow can be used to represent flow around a circular cylinder.

Velocity potential:

Stream function:

Velocity components:

πœ™ = π‘ˆπ‘Ÿ π‘π‘œπ‘  πœƒ +𝐾 π‘π‘œπ‘  πœƒ

π‘Ÿ

πœ“ = π‘ˆπ‘Ÿ sin πœƒ βˆ’πΎ sin πœƒ

π‘Ÿ

π‘£π‘Ÿ = π‘ˆ 1 βˆ’π‘Ž1

π‘Ÿ2cos πœƒ , π‘£πœƒ = βˆ’π‘ˆ 1 +

π‘Ž2

π‘Ÿ2sin πœƒ

U

2U

a

πœ“ =0r

ΞΈ

6.6 Superposition of Basic, Plane Potential Flows

Page 44: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 45: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Page 46: Chapter. 6 Differential Analysis of Fluid Flow Potential Flow

Chapter.6 Differential Analysis of Fluid Flow

Assignments (Chapter 6) – 6th Edition

β€’ P6.4, P6.6, P6.8, P6.9, P6.10, P6.14, P6.16, P6.18

β€’ P6.24, P6.27, P6.28, P6.32, P6.34, P6.36, P6.37, P6.39, P6.41

β€’ P6.45, P6.46, P6.47, P6.49, P6.53, P6.54, P6.55

β€’ P6.62, P6.64, P6.67, P6.70, P6.80, P6.84

β€’ P6.92, P6.93, P6.95, P6.101, P6.105

Assignments (Chapter 6) – 7th Edition

β€’ P6.4, P6.6, P6.8, P6.9, P6.10, P6.13, P6.15, P6.17

β€’ P6.24, P6.28, P6.29, P6.33, P6.35, P6.36, P6.37, P6.39, P6.41

β€’P6.46, P6.47, P6.49, P6.55, P6.56, P6.57

β€’ P6.66, P6.70, P6.75, P6.77, P6.85, P6.88

β€’ P6.94, P6.95, P6.97, P6.104, P6.108