21
Chapter 6 Connectivity and Flow 大大大大 大大大大大 大大大 2010.11

Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

Embed Size (px)

Citation preview

Page 1: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

Chapter 6 Connectivity and Flow

大葉大學 資訊工程系 黃鈴玲2010.11

Page 2: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

6.1 Edge Cuts 6.2 Edge Connectivity and Connectivity 6.3 Blocks in Separable Graphs 6.4 Flows in Networks 6.5 The Theorems of Menger

2

Page 3: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

3

Definition 6.1

Remark 6.2

Lemma 6.5

Page 4: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

4

S={e4, e9} is an edge cut.

Page 5: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

5

Definition 6.11

Remark 6.12

Page 6: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

6

S={e4, e9} is an edge cut.

'(G) 2

G has no bridges '(G) 2

'(G) = 2

Page 7: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

7

Definition 6.14

Example 6.15

(G1) = 1

'(G1) = 1(G2) = 1

'(G2) = 2

Page 8: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

8

Example 6.17

Page 9: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

9

v1

v2

v3 v7

v4

v5 v6

Exercise Exercise

1. Determine (G) and ’(G) for the following graph.

2. Determine (Km,n) and ’(Km,n), where 1mn.

v8

v9

v10

Page 10: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

10

Definition 6.19

Theorem 6.20

Note 6.21

Page 11: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

11

Definition 6.23

Page 12: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

12

Lemma 6.27

Definition 6.29 (Block-cutpoint graph)

Page 13: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

13

Definition 6.29

Corollary 6.32

Theorem 6.33

Page 14: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

14

v1

v2

v3v7

v4

v5 v6

Exercise Exercise

Find the block cut-point graph for the following graph.

v10

v14v13

v8

v9

v11 v12

Page 15: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

15

Definition 6.35

Definition 6.36

Page 16: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

16

Example 6.38 ( 鱈魚 )

Page 17: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

17

<< 以下改用另一份投影片 , 舊版 ch5>>

1600

1900

1500

2000

Val(f)=3500

Page 18: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

18

Definition: u, v V(G), Q1 : u,v-path, Q2: u,v-path

Q1, Q2 are edge-disjoint if E(Q1) E(Q2) = ,

Q1, Q2 are (internally) vertex disjoint if V (Q1) V(Q2) = { u, v }

Menger’s Theorem (directed edge version): Let G be a directed graph and u, v V(G). The

maximum number of edge-disjoint directed u, v-paths is equal to the minimum number of edges needed to be removed from G to destroy all u, v-paths.

Page 19: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

19

Menger’s Theorem (edge version): Let G be a graph and u, v V(G). The maximum

number of edge-disjoint u, v-paths in G is equal to the minimum number of edges needed to be removed from G to disconnect u from v.

Theorem 6.59 A connected graph G is k-edge-connected if, and

only if, there are at least k edge-disjoint paths between each pair of G’s vertices.

Page 20: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

20

Menger’s Theorem (directed vertex version): Let G be a directed graph and u, v V(G). The

maximum number of vertex-disjoint directed u, v-paths is equal to the minimum number of vertices, other than u and v, needed to be removed from G to destroy all directed u, v-paths.

Menger’s Theorem (vertex version): Let G be a graph and u, v V(G). The maximum

number of vertex-disjoint u, v-paths in G is equal to the minimum number of vertices needed to be removed from G to disconnect u from v.

Page 21: Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲 2010.11

21

Ex1. Let G be an n-connected graph of p vertices. Show that p n (diam(G) 1) + 2. Ex1. Let G be an n-connected graph of p vertices. Show that p n (diam(G) 1) + 2.

Ex2. Let G be an n-edge-connected graph of q edges. Show that q n diam(G). Ex2. Let G be an n-edge-connected graph of q edges. Show that q n diam(G).

Theorem 6.58 A connected graph G is k-connected if, and only

if, there are at least k vertex-disjoint (excluding endvertices) paths between each pair of G’s vertices.