39
Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Embed Size (px)

Citation preview

Page 1: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Chapter 5:

Multiplexing: Sharing a Medium

Data Communications andComputer Networks: A Business User’s ApproachThird Edition

Page 2: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 2

Objectives

After reading this chapter, you should be able to:

•Describe frequency division multiplexing and list its applications, advantages, and disadvantages

•Describe synchronous time division multiplexing and list its applications, advantages, and disadvantages

•Outline the basic multiplexing characteristics of both T-1 and ISDN telephone systems

Page 3: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 3

Objectives (continued)

•Describe statistical time division multiplexing and list its applications, advantages, and disadvantages

•Cite the main characteristics of wavelength division multiplexing and its advantages and disadvantages

•Describe the basic characteristics of discrete multitone

•Cite the main characteristics of code division multiplexing and its advantages and disadvantages

•Apply a multiplexing technique to a typical business situation

Page 4: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 4

Introduction

•Under the simplest conditions, a medium can carry only one signal at any moment in time

•For multiple signals to share one medium, the medium must somehow be divided, giving each signal a portion of the total bandwidth

•The current techniques that can accomplish this include frequency division multiplexing, time division multiplexing, and wavelength division multiplexing

Page 5: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 5

Frequency Division Multiplexing

•Assignment of non-overlapping frequency ranges to each “user” or signal on a medium

•Thus, all signals are transmitted at the same time, each using different frequencies

•A multiplexor

•Accepts inputs and assigns frequencies to each device

•Is attached to a high-speed communications line

Page 6: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 6

Frequency Division Multiplexing(continued)

•Corresponding multiplexor, or demultiplexor

•Is on the end of the high-speed line

•Separates the multiplexed signals

Page 7: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 7

Frequency Division Multiplexing(continued)

Page 8: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 8

Frequency Division Multiplexing(continued)

•Analog signaling is used to transmit signals

•Broadcast radio and television, cable television, and AMPS cellular phone systems use frequency division multiplexing

•Oldest multiplexing technique

•Involves analog signaling more susceptible to noise

Page 9: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 9

Time Division Multiplexing

• Sharing signal is accomplished by dividing available transmission time on a medium among users

• Digital signaling is used exclusively

• Time division multiplexing comes in two basic forms:

1. Synchronous time division multiplexing

2. Statistical, or asynchronous time division multiplexing

Page 10: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 10

Synchronous Time Division Multiplexing

•The original time division multiplexing

•Multiplexor

•Accepts input from attached devices in a round-robin fashion

•Transmits data in a never ending pattern

•T-1 and ISDN telephone lines are common examples of synchronous time division multiplexing

Page 11: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 11

Synchronous Time Division Multiplexing(continued)

Page 12: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 12

Synchronous Time Division Multiplexing(continued)

•If one device generates data at a faster rate than other devices, then the multiplexor must either

•Sample incoming data stream from that device more often than it samples other devices

•OR•Buffer faster incoming stream

•If a device has nothing to transmit, •Multiplexor must still insert a piece of data from that device into the multiplexed stream

Page 13: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 13

Synchronous Time Division Multiplexing(continued)

Page 14: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 14

Synchronous Time Division Multiplexing(continued)

Page 15: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 15

Synchronous Time Division Multiplexing(continued)

So that the receiver may stay synchronized with the incoming data stream, the transmitting multiplexor can insert alternating 1s and 0s into the data stream

Page 16: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 16

T-1 Multiplexing

•T-1 multiplexor stream is a continuous series of frames

Page 17: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 17

ISDN Multiplexing

•ISDN multiplexor stream is also a continuous stream of frames•Each frame contains various control and sync info

Page 18: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 18

SONET/SDH Multiplexing

Page 19: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 19

Statistical Time Division Multiplexing

•Statistical multiplexor - transmits only the data from active workstations

•If a workstation is not active, no space is wasted on the multiplexed stream

•A statistical multiplexor

•Accepts incoming data streams

•Creates a frame containing only the data to be transmitted

Page 20: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 20

Statistical Time Division Multiplexing (continued)

Page 21: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 21

Statistical Time Division Multiplexing (continued)

To identify each piece of data, an address is included

Page 22: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 22

Statistical Time Division Multiplexing (continued)

If data is of variable size, length is also included

Page 23: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 23

Statistical Time Division Multiplexing (continued)

More precisely, the transmitted frame contains a collection of data groups

Page 24: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 24

Wavelength Division Multiplexing

•Wavelength division multiplexing multiplexes multiple data streams onto a single fiber optic line

•Different wavelength lasers (called lambdas) transmit the multiple signals

•Each signal carried on the fiber can be transmitted at a different rate from the other signals

Page 25: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 25

Wavelength Division Multiplexing (continued)

•Dense wavelength division multiplexing combines many (30, 40, 50, 60, more?) onto one fiber

•Coarse wavelength division multiplexing combines only a few lambdas

Page 26: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 26

Wavelength Division Multiplexing (continued)

Page 27: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 27

Discrete Multitone (DMT)

•A multiplexing technique commonly found in digital subscriber line (DSL) systems

•DMT combines hundreds of different signals, or subchannels, into one stream

•Each subchannel is quadrature amplitude modulated

•recall - eight phase angles, four with double amplitudes

•Theoretically, 256 subchannels, each transmitting 60 kbps, yields 15.36 Mbps

•Unfortunately, there is noise

Page 28: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 28

Code Division Multiplexing

•Also known as code division multiple access

•Advanced technique that allows multiple devices to transmit on the same frequencies at the same time

•Each mobile device is assigned unique 64-bit code •Chip spreading code

•To send a binary 1, mobile device transmits the unique code

•To send a binary 0, mobile device transmits the inverse of code

Page 29: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 29

Code Division Multiplexing (continued)

•Receiver

•Gets summed signal

•Multiplies it by receiver code

•Adds up resulting values

•Interprets as a binary 1 if sum is near +64

•Interprets as a binary 0 if sum is near –64

Page 30: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 30

Code Division Multiplexing Example

•For simplicity, assume 8-chip spreading codes

•3 different mobiles use the following codes:

-Mobile A: 10111001

-Mobile B: 01101110

-Mobile C: 11001101

-Assume Mobile A sends a 1, B sends a 0, and C sends a 1

Page 31: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 31

Code Division Multiplexing Example (continued)

•Signal code: 1-chip = +N volt; 0-chip = -N volt

•Three signals transmitted:

•Mobile A sends a 1, or 10111001, or +-+++--+

•Mobile B sends a 0, or 10010001, or +--+---+

•Mobile C sends a 1, or 11001101, or ++--++-+

•Summed signal received by base station: +3, -1, -1, +1, +1, -1, -3, +3

Page 32: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 32

Code Division Multiplexing Example (continued)

Base station decode for Mobile A:

Signal received: +3, -1, -1, +1, +1, -1, -3, +3

Mobile A’s code: +1, -1, +1, +1, +1, -1, -1, +1

Product result: +3, +1, -1, +1, +1, +1, +3, +3

Sum of Product results: +12

Decode rule: For result near +8, data is binary 1

Page 33: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 33

Code Division Multiplexing Example (continued)

Base station decode for Mobile B:

Signal received: +3, -1, -1, +1, +1, -1, -3, +3

Mobile B’s code: -1, +1, +1, -1, +1, +1, +1, -1

Product result: -3, -1, -1, -1, +1, -1, -3, -3

Sum of Product results: -12

Decode rule: For result near -8, data is binary 0

Page 34: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 34

Comparison of Multiplexing Techniques

Page 35: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 35

Business Multiplexing in Action

•XYZ Corporation has two buildings separated by a distance of 300 meters

•A 3-inch diameter tunnel extends underground between the two buildings

•Building A has a mainframe computer and Building B has 66 terminals

•List some efficient techniques to link the two buildings

Page 36: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 36

Business Multiplexing in Action (continued)

Page 37: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 37

Business Multiplexing in Action (continued)

•Possible Solutions:

•Connect each terminal to mainframe computer using separate point-to-point lines

•Connect all terminals to mainframe computer using one multipoint line

•Connect all terminal outputs and use microwave transmissions to send data to the mainframe

•Collect all terminal outputs using multiplexing and send data to mainframe computer using conducted line

Page 38: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 38

Summary

•Frequency division multiplexing

•Synchronous time division multiplexing

•Basic multiplexing characteristics of T-1 and ISDN telephone systems

•Statistical time division multiplexing

•Wavelength division multiplexing

•Discrete multitone

Page 39: Chapter 5: Multiplexing: Sharing a Medium Data Communications and Computer Networks: A Business User’s Approach Third Edition

Data Communications & Computer Networks: A Business User's Approach, Third Edition 39

Summary (continued)

•Code division multiplexing

•Applying multiplexing techniques to typical business situations