Chapter 5 - Gas Laws-Student

Embed Size (px)

Citation preview

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    1/48

    DAS 12203

    Chapter 5: Gas Laws5.1 Objective5.2 Introduction5.3 Particles Arrangement and Gas Properties5.4 Boyle’s Law 5.5 Charles’s Law 5.6 Combined Gas Law5.7  Avogadro’s Law 5.8 Ideal Gas Law5.9 Molar Mass and Gas Density5.10 Dalton’s Law 5.11 Graham’s Law 5.12 Exercise Questions

    1

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    2/48

    DAS 12203

    5.1 Objectives

     At the end of lecture on this chapter, students willbe able

    to explain the arrangement of

    particles/molecules and properties of gases,

    to explain Boyle, Charles, Avogadro, CombinedGas, Ideal Gas, Dalton and Graham Laws,

    to solve numerical problems on gas laws.

    2

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    3/48

    DAS 12203

    5.2 Introduction

    Elements (light blue) that exist as gases at 25 oCand 1 atmosphere

    3

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    4/48

    DAS 12203

    Some Substances Found as Gasesat 1 atm and 25 oC

    4

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    5/48

    DAS 12203

    In the gas phase, particles/molecules arerelatively far apart and move randomly compare

    to liquid and solid phases.

    This makes gases very compressible andexpandable to fill the volume of its container.

    Gases exert a pressure on the walls of theircontainer.

    5.3 Particles Arrangement

    and Properties of Gas

    5

    http://localhost/var/www/apps/conversion/Sem%202%20Sesi%202009%202010/Cd%20Hj%20Zul%20-%20e%20module/States%20of%20Matter.htmhttp://localhost/var/www/apps/conversion/Sem%202%20Sesi%202009%202010/Cd%20Hj%20Zul%20-%20e%20module/container.gifhttp://localhost/var/www/apps/conversion/Sem%202%20Sesi%202009%202010/Cd%20Hj%20Zul%20-%20e%20module/container.gifhttp://localhost/var/www/apps/conversion/Sem%202%20Sesi%202009%202010/Cd%20Hj%20Zul%20-%20e%20module/States%20of%20Matter.htm

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    6/48

    DAS 12203

    Collisions causePressure

    The pressure of a gas is caused by thecollision of molecules against the sides ofthe container. The force of the collisionagainst the container can be calculatedby Newton’s Second Law of Motion:

    F = ma  

    where F = force, m  = mass in kg and a isthe acceleration in m/s2.

    6

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    7/48

    DAS 12203

    Pressure

    Pressure is defined as force, F  per unit area, A :

    Pressure units:

    1 pascal (Pa) = 1 N/m2 

    1 atm = 760 mmHg = 760 torr

    1 atm = 101,325 Pa = 101.325 kPa 

    F P= 

     A 

    7

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    8/48

    DAS 12203

     Atmospheric Pressure  The atmospheric pressure can be measured using a barometer.

      The standard atmosphere is defined as the pressure exerted by

    a mercury column of exactly 76 cm in height when the

    density of mercury equals 13.6 g/cm3.

    Units of Standard Atmospheric Pressure

    1.00 atm

    76 cm Hg = 760 mm Hg = 760 torr101.325 kPa

    1.01325 bar

    8

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    9/48

    DAS 12203

    Problem 1

    If the barometer reads 753.3 mm Hg, what is

    the atmospheric pressure in (i) atm and (ii) kPa?

    =100.4 kPa

    753.3 mm Hg

    0.9912 atm

    X

    Solution:

    X

    (i)

    (ii)

    = 0.9912 atmHgmm760atm1

    1 atm

    101.325 kPa

    9

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    10/48

    DAS 12203

    The gas laws are experimental relationships among

    pressure (P ), volume (V ), temperature (T ), andmoles (n ) for individual gas.

     All gases behave similarly. The gas laws assume

    ideal behavior that one exhibits simple linearrelationships among volume, pressure, temperatureand gas quantity .

    Gases only approach ideal behavior at low pressure(< 1 atm) and high temperature

    10

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    11/48

    DAS 12203

    Units You Have To Be FamiliarWhen Using Gas Laws

      Pressure: atm, mmHg, torr, Pa1 atm =760 mmHg =760 torrs =101,325 Pa =101.325 kPa

      Volume: L = dm3, mL = cc = cm3, m3

    1 L = 1 dm3 = 1000 cc =1000 cm3 =1000 mL 

      Temperature : Kelvin, K where T(K) =T( oC)+273

      Gas quantity : Mole,n  where

    =mass (g)

    molar mass (g/mole) n

    11

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    12/48

    DAS 12203

    Lord Kelvin proposed an absolute temperature scaledefined by:

    T(K) = T(

    O

    C) + 273

    12

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    13/48

    DAS 12203

    Standard Temperature Pressure (STP)

     Known as standard state.

     The values are P = 1 atm, T = 273 K.  Applied to all gases at ideal state.

    13

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    14/48

    DAS 12203

    5.4 Boyle’s Law 

    P V = P V  1 1 2 2

      V   1/P ; when P V  and if P V  So, PV = k (k  is a constant)

    For initial (1) and final (2) states:

      In 1662, Robert Boyle discovered that volume is inversely

    proportional to pressure (V   1/P )

    Boyle’s Law states that at constant temperature (T ) thevolume (V ) of a fixed amount of gas (n ) is inversely

    proportional to its pressure (P ).

    14

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    15/48

    DAS 12203

    Graphs of:

    (b) 1/V vs P  (a) V vs P

    15

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    16/48

    DAS 12203

     A sample of chlorine gas occupies a volume of 946 mL at apressure of 726 mmHg. What is the pressure of the gas (in

    mmHg) if the volume is reduced at constant temperature to154 mL?

    P 1V 

    1= P 

    2V 

    2 P 1 = 726 mmHg  P 2= ? 

    V 1 = 946 mL  V 2= 154 mL 

    P 2= P 1x V 1 

    V  2 

    726 mmHg x 946 mL154 mL

    = = 4460 mmHg

    PROBLEM 3

    SOLUTION:

    16

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    17/48

    DAS 12203

    Chemistry in Action:

    Scuba Diving and the Gas Laws

    P V

    Depth (ft) Pressure(atm)

    0 1

    33 2

    66 3

    17

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    18/48

    DAS 12203

    5.5 Charles’s Law

     At constant pressure and fixed amount of gas:

    V   T or  V  = kTwhere k   is a proportionality constant.

     For initial (1) and final (2) states 

    V V k

    T T  1 2

    1 2

    = =

      Charles discovered that volume is directlyproportional to temperature.

    1 2

    1 2

    =V V 

    T T or 

    18

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    19/48

    DAS 12203

    Graph of Volume vs Temperature 

     A linear relationship between Vand T .

    This relationship betweenvolume and temperaturedescribes a direct relationship.This means when temperature

    increases, so does the volume.T   , V  

    19

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    20/48

    DAS 12203

    The volume of a gas extrapolates to zero at

    -273 C. This must be the lowest temperature

    possible.

     Absolute zero

    (0 K)

    20

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    21/48

    DAS 12203

     Variation of Gas Volume withTemperature at Constant Pressure.

    21

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    22/48

    DAS 12203

     A sample of carbon monoxide gas occupies 3.20 L at 125 0C. At what temperature will the gas occupy a volume of 1.54 L if

    the pressure remains constant?

    PROBLEM 4

    SOLUTION:V 1 = 3.20 L  V 2 = 1.54 L 

    T 1 =125 + 273=398 K   T 2 = ? 

    T 2 = 1.54 L x 398 K3.20 L= = 192 KV 2 x T 1 

    V 1 

    V V 

    T T 

    1 2

    1 2

    =

    22

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    23/48

    DAS 12203

    PROBLEM 5 

     A sample of a gas at 15 °C and 1 atm has a volume

    of 2.58 L. What volume will the gas occupy at 38 °Cand 1 atm?

    SOLUTION:V 1 = 2.58 L  V 2 = ? 

    T 1 =15 + 273=288 K   T 2 = 38 + 273 = 311 K  

      V 2 =V 1 x T 2 

    T 1

     

    2.58 L x 311 K288 K

    = = 2.79 L

    V V 

    T T 

    1 2

    1 2

    =

    23

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    24/48

    DAS 12203

    5.6 The Combined Gas Law

    The combined gas law was derived from Boyle’s andCharles’s Laws at constant quantity of gas.

     A direct relationship was observed.

     As temperature increased, volume increased. As volumeincreased pressure decreased.

    This resulted in a combined formula to calculate changesobserved in a gas due to changes in either temperature,

    pressure or volume.

    PV PV   n T T 

    1 1 2 2

    1 2

    = ( constant) where 1 and 2 are initial andfinal states 

    24

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    25/48

    DAS 12203

    P 1 = 2.0 atm  P 2= 1 atm 

    V 1 = 2 mL  V 2 = ? 

    2.0 atm x 2 mL x 311 K1 atm x 288 K

    = = 4.32 mL

    SOLUTION:

    PROBLEM 6 

     A sample of a gas at 15°C and 2.0 atm has a volume of 2 mL.What volume will the gas occupy at 38°C and 1 atm?

    T 1 = (15+273) K =288 K   T 2  = (38+273) K = 311 K

    1 1 2

    22 1

    PV T V 

    P T 

    =1 1 2 2

    1 2

    =PV PV  

    T T 

    25

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    26/48

    DAS 12203

    5.7 Avogadro’s Law 

    Gases are usually measured by volume so a relationship

    between volume and number of moles is needed.

    In 1811, Avogadro proposed that:

     “ Equal volumes of gases at the same temperature

    and pressure contain equal numbers of molecules ”. 

    It follows that the volume of a gas at constanttemperature and pressure is proportional to the numberof moles.

    V  V 

    n n 1 2

    1 2

    =

    V   n (at constant T  and P ) 

      For initial (1 ) and final (2 ) state,

    26

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    27/48

    DAS 12203

     Avogadro’s Law

     “Equal volumes of gases at the same temperatureand pressure contain equal numbers of molecules”  

    27

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    28/48

    DAS 12203

    5.8 Ideal Gas Equation

    Charles’s law: V    T   (at constant n  and P )

     Avogadro’s law: V   n   (at constant P  and T )

    Boyle’s law: V    (at constant n  and T )1

    P

    V  = constant x = RnT

    P

    nT

    P

    R  is the gas constant  So, PV  = nRT

    Combining:  or

    This is the ideal gas equation

    nT 

    V P 

    28

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    29/48

    DAS 12203

    PV = nRT R = PV

    nT

    = (1 atm)(22.4 L)(1 mol)(273 K)

    = 0.0821 L.atm/mol.K

    Ideal Gas Constant, R

    Experiments show that at STP, 1 mole of an ideal gasoccupies 22.4 L in volume

    R   has other values for other sets of units .

    R  = 82.05 mL.atm/mol.K= 8.314 J/mol.K

    = 1.987 cal/mol.K

    29

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    30/48

    DAS 12203

    How many moles of N2 are in a 750 mL vessel at

    26°C and 625 mm Hg?

    V  = 750 mLmL1000

    L1 = 0.750 L

    P  = 625 mm HgHgmm760

    atm1 = 0.822 atm

    T  = 26 + 273 = 299 K

    =PV n RT 

    =0.822 atm 0.750 L

    0.0821L.atm

    mol.Kx 299 K

    = 0.0251 mol

    SOLUTION:

    PROBLEM 7

    PV 

    PV = nRT n =  RT 

    x

    30

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    31/48

    DAS 12203

    T  = 0

    0

    C = 273 K  

    P = 1 atm

    n  = 49.8 g x1 mol HCl

    36.5 g HCl= 1.36 mol

    V  = 1 atm

    1.36 molx0.0821 x 273 KL.atmmol.K = 30.48 L 

    SOLUTION: nRT PV = nRT V =  P 

    PROBLEM 8

    What is the volume (in liters) occupied by 49.8 g of HCl at STP?

    31

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    32/48

    DAS 12203

    5.9 Density and Molar Mass of Gas

    Different gases have the same volume at STP, but they

    have different masses.  From ideal gas equation:

    Molar mass of gas, dRT M P 

    =PV nRT    = or =m m PM  

    RT 

    M V RT  

    , Density of gasm PM 

    d V RT  m : mass of gas in gram (g)

    d   : density in gram/liter (g/L)

    M: molar mass in gram/mol(g/mol)

    32

    PROBLEM 9

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    33/48

    DAS 12203

    PROBLEM 9

    What are the densities of N2 and He at STP ?

    SOLUTION: 

    =MP 

    RT 

    =atm.L0.0821mol.K  x 273 K

    g

    mol28

    x 1 atm= 1.250 g/L

    He: = atm.L0.0821mol.K x 273 K

    g4mol x 1 atm

    = 0.1786 g/L

    N2:

    =

    MP 

    d  RT 

    33

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    34/48

    DAS 12203

    PROBLEM 10

     A 2.10 L vessel contains 4.65 g of a gas at 1.00 atm and27.0 0C. What is the molar mass of the gas?

    SOLUTION:dRT

    PM  = 

    d = mV 4.65 g2.10 L= = 2.21 gL

    M  = 2.21 

    g

    L

    1 atm

    x 0.0821 x 300 KL•atm mol•K 

    =  54.6 g/mol

    34

    U f Id l G L i G

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    35/48

    DAS 12203

    Use of Ideal Gas Law in Gas

    Stoichiometry

    PROBLEM 11 

    What is the volume of CO2 (in liter) liberated at 3700C and 1.00

    atm when 5.60 g of glucose are used up in the reaction

    C6H12O6(s) + 6O2 (g )  6CO2(g ) + 6H2O(l )

    SOLUTION:(i) Check the balancing of the chemical equation:

    : OK

    If not, firstly you have to balance chemical equation.(ii) Write the stoichiometry:

    1 mol C6H12O6 + 6 mol O2   6 mol CO2+ 6 mol H2O 

    C6H12O6(s) + 6O2(g )  6CO2(g ) + 6H2O(g ) 

    35

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    36/48

    DAS 12203

    5.60 g C6H12O6 1 mol C6H12O6180 g C6H12O6

    x

    6 mol CO2 

    1 mol C6H12O6x = 0.187 mol CO2 

    V  =nRT

    P

    0.187 mol x 0.0821 x 643 KL•atm 

    mol•K 

    1.00 atm= = 9.85 L

    (iii) Use the schematic to convert the given data into mole/gram

     Amount of C6H12O6 used = 5.60 g

    Mole of C6H12O6 used = = 0.0311 mol

    From the stoichiometry 1 mol of C6H12O6 producing 6 mol CO2 .Therefore 0.0311 mol producing 

    0.0311 mol C6H12O6 

    (iv) Use the ideal gas law to calculate the volume of CO2

    in liter

    36

    5 10 D lt ’ L f P ti l

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    37/48

    DAS 12203

    5.10 Dalton’s Law of Partial

    Pressure• Gases mix together uniformly.

    • Total pressure depend on the individual/partial pressure of the

    gas components.

    • Dalton’s Law states that the total pressure of a mixture of

    gases is the sum of the partial pressures of the components ofthe mixture.

    37

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    38/48

    DAS 12203

    Gas Mixtures

    Consider a mixture of gas 1, gas 2 and gas 3 with n 1

    , n 2

     

    and n 3 are the number of mole respectively.

    Partial pressure is the pressure of the individual gaswould exert if it were the only gas present.

    P 1 for gas 1  P 2 for gas 2 and P 3 for gas 3

    If the gases in a mixture behave ideally then, 

    ,

    1 1

    =  RT   

    P n V   

     

    RT P n 

    V 2 2=

    RT 

      P n  V 3 3and =

    38

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    39/48

    DAS 12203

      Since P t  = P 1 + P 2 + P 3, then

    RT RT RT    P n n n  

    V V V  1 2 3

    = + +

    RT  

    n + n + n   V  1 2 3= ( )

    =t  

    RT  n 

    V  

    39

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    40/48

    DAS 12203

    PROBLEM 12

    What are the partial and total pressures of 2.00 g H2 

    and 8.00 g N2 in a 10.0 L vessel at 273 K?SOLUTION:

    2.00 g H2  = 1.00 mol H2

    8.00 g N2  = 0.286 mol N2

    mol H2× 2 g H2

    mol N2×

    28 g N2

    H2:

    N2:

    40

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    41/48

    DAS 12203

    PH2

    1.00 mol x

    273 K

    10.0 L

    = 2.241 atm

    PN2

    0.286 mol x = 0.641 atm

    atm.L0.0821mol.K

     x

    273 K

    10.0 L

    atm.L0.0821mol.K

     x

    Ptotal = 2 2H NP + P = 2.242 + 0.641 = 2.882 atm

    41

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    42/48

    DAS 12203

    Mole Fractions

      The ratio of partial pressure to total pressure can

    be expressed as:

    PPt

    1

    RTnV

    1

      RTnV

    nn t

    1

    = X 1  mole fraction of gas1

      The mole fractions in a mixture must sum to 1:

     X X1 2+  + . . . nn  +  + n nt t

    1 2 ...   +  + ( . . . )n nn t

    1 2 = 1

    42

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    43/48

    DAS 12203

    PROBLEM 13

    On a 25°C day with 100% humidity, the mole fractionof H

    2

    O vapor is 0.031. What is the partial pressure ofH2O vapor? What is the mole fraction of H2O if therelative humidity is 60%?

    SOLUTION:

    = 0.031 = 24 mmHg´ 760 mmHgatmOHOH P XP 22  

    24 mmHg  0.60 = 14 mmHg 

    14 mmHg

    760 mmHg= 0.018

    OHP 2 =

    OH X 2 =

    (i)

    (ii)

    43

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    44/48

    DAS 12203

    Measuring Gases

    To measure the amount of gas produced in a reaction,

    it is often collected over water.

    Reaction of magnesium with HCl:

    Mg(s) + 2 HCl(aq)  MgCl2(aq) + H2(g )

    OHHgas 22 PPP +  

    = Patm 

    44

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    45/48

    DAS 12203 45

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    46/48

    DAS 12203

    PROBLEM 13

    The reaction of a sample containing Mg with

    excess HCl at 22C and 753.2 mmHg yielded1207 mL of gas. What was the mass of Mg? 

    SOLUTION:

    T = 22°C:

    = 753.2 mmHg - 19.83 mmHg

    ´  1760

    atmmmHg

    = 0.965 atm

    =19.83 mmHg

     

    = 733.4 mmHg

    46

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    47/48

    DAS 12203

    The mass in gram?

    T(K) = 22°C + 273 = 295 K

    V(L)=1207 mL ´ 1

    1000L

    mL= 1.207 L

    n PVRT

      = 0.965 atm x 1.207 L

    0 0821.atm Lmol K

    × × 

    x 295 K

    = 0.0481 mol H2 24´ 

    1.3 g Mgmol Mg= 0.0481 mol Mg

    = 1.17 g Mg47

    PROBLEM 14

  • 8/17/2019 Chapter 5 - Gas Laws-Student

    48/48

    DAS 12203

    PROBLEM 14

     A student generates oxygen gas and collects it over water. If

    the volume of the gas is 245 mL and the barometric pressure

    is 758 torr at 25oC, what is the volume of the “dry” oxygen gas

    at STP?

    SOLUTION:

    Pwater  = 23.8 torr at 25oC; PO2 = Pbar  - Pwater  = (758 - 23.8)

    = 734.2 torrP1= PO2 = 734.2 torr; P2= SP = 760 torr

    T1= 298 K ; T2= 273 K ; V1= 245 mL ; V2= ?

    (V1

    P1

    /T1

    ) = (V2

    P2

    /T2

    )

    V2= (V1P1T2)/(T1P2) = (245 mL)(734.2 torr)(273 K) 

    (298 K)(760 torr) = 217 mL

    48