45
Chapter 5 117 Amrita Centre for Nanosciences and Molecular Medicine CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM, Bainey RS, Iliou CB. Interesting trends in incidence and mortality rates of colorectal cancer in the United States of America. J Gastroint Dig Syst., S6: 004. doi:10.4172/2161-069X.S6-004; 2013. 2 Lee YC, Lee Y-L, Chuang J-P, Lee J-C. Differences in survival between colon and rectal cancer from SEER data. PLoS ONE., 8(11): e78709. doi:10.1371/journal.pone.0078709; 2013. 3 Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer., 55: 891-903; 1993. 4 American Cancer Society: (2011) Colorectal Cancer Facts & Figures 2011-2013 : American Cancer Society, Atlanta. http://www.cancer.org/research/cancerfactsfigures/colorectalcancerfactsfigures/co lorectal-cancer-facts-figures-2011-2013-page. 5 American Cancer Society :( 2011) Global Cancer Facts & Figures 2nd Edition. Atlanta: American Cancer Society; 2011. http://globocan.iarc.fr/factsheets/cancers/colorectal.asp. 6 Hastings J B. Mass screening for colorectal cancer. Am J Surg., 127:228-233; 1974. 7 Scholefield J H. Screening for colorectal cancer. Br Med Bull., 64: 75-80; 2002. 8 Labianca R, Nordlinger B, Beretta G D, Brouquet A, Cervantes A. Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up. Ann Oncol., 21: doi:10.1093/annonc/mdq168 | v77; 2010.

Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  • Upload
    lamnhi

  • View
    231

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

Chapter 5

117     Amrita Centre for Nanosciences and Molecular Medicine 

 

CHAPTER 5

REFERENCES

 

1 Mateka JJL, Haniff MM, Bainey RS, Iliou CB. Interesting trends in incidence and

mortality rates of colorectal cancer in the United States of America. J Gastroint

Dig Syst., S6: 004. doi:10.4172/2161-069X.S6-004; 2013.

2 Lee YC, Lee Y-L, Chuang J-P, Lee J-C. Differences in survival between colon

and rectal cancer from SEER data.  PLoS ONE., 8(11): e78709.

doi:10.1371/journal.pone.0078709; 2013.

3 Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from

eighteen major cancers in 1985. Implications for prevention and projections of

future burden. Int J Cancer., 55: 891-903; 1993.

4 American Cancer Society: (2011) Colorectal Cancer Facts & Figures 2011-2013 :

American Cancer Society, Atlanta.

http://www.cancer.org/research/cancerfactsfigures/colorectalcancerfactsfigures/co

lorectal-cancer-facts-figures-2011-2013-page.

5 American Cancer Society :( 2011) Global Cancer Facts & Figures 2nd Edition.

Atlanta: American Cancer Society; 2011.

http://globocan.iarc.fr/factsheets/cancers/colorectal.asp.

6 Hastings J B. Mass screening for colorectal cancer. Am J Surg., 127:228-233;

1974.

7 Scholefield J H. Screening for colorectal cancer. Br Med Bull., 64: 75-80; 2002.

8 Labianca R, Nordlinger B, Beretta G D, Brouquet A, Cervantes A. Primary colon

cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and

follow-up. Ann Oncol., 21: doi:10.1093/annonc/mdq168 | v77; 2010.

Page 2: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

118     Amrita Centre for Nanosciences and Molecular Medicine 

   

9 Cohen M H, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary:

bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. The

Oncologist., 12: 356-361; 2007.

10 de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C,

Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Bail N L, Louvet C,

Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A. Leucovorin and

fluorouracil with or without oxaliplatin as first-line treatment in advanced

colorectal cancer. J Clin Oncol., 18: 2938-2947; 2000.

11 Longley D B, Harkin D P, Johnston P G. 5-Fluorouracil: mechanisms of action

and clinical strategies. Nat. Rev. Cancer., 3: 330-338; 2003.

12 Klotz H P, Weder W, Largiader F. Local and systemic toxicity of intra-hepatic-

arterial 5-FU and high-dose or low-dose leucovorin for liver metastases of

colorectal cancer. Surg Oncol., 3: 11-16; 1994.

13 Brown J R, Du Bois R N, COX-2: a molecular target for colorectal cancer

prevention. J. Clin. Oncol., 23: 2840-2855; 2005.

14 Zhang H, Sun X F. Over expression of cyclooxygenase-2 correlates with

advanced stages of colorectal cancer. Am. J. Gastroenterol., 97:1037-1041; 2002.

15 Sun Y, Tang X M, Half E, Kuo M T, Sinicrope F A. Cyclooxygenase-2 over

expression reduces apoptotic susceptibility by inhibiting the cytochrome c-

dependent apoptotic pathway in human colon cancer cells. Cancer Res., 62: 6323-

6328; 2002.

16 Zhang N, Yin Y, Xu S J, Chen W S. 5-Fluorouracil: mechanisms of resistance

and reversal strategies. Molecules., 13:1551-1569; 2008

17 Tomozawa S, Tsuno N H, Sunami E, Hatano K, Kitayama J, Osada T, Saito S,

Tsuruo T, Shibata Y, Nagawa H. Cyclooxygenase-2 over expression correlates

with tumour recurrence, especially haematogenous metastasis of colorectal

cancer. Br. J. Cancer., 83: 324-328; 2000.

18 Copur S, Aiba K, Drake JC, Allegra CJ, Chu E. Thymidylate synthase gene

amplification in human colon cancer cell lines resistant to 5-fluorouracil.

Biochem Pharmacol., 49:1419-1426; 1995.

Page 3: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

119     Amrita Centre for Nanosciences and Molecular Medicine 

   

19 Vlette S, Pulain L, Dssaulx E, Pepin D, Faussat A-M, Chambaz J, Lacorte J-M,

Staede C, Lesuffleur T. Resistance of colon cancer cells to long-term 5-

fluorouracil exposure is correlated to the relative level of bcl-2 and bcl-xl in

addition to bax and p53 status. Int. J. Cancer., 98:498-504; 2002.

20 Rougier P, Cutsem E V, Bajetta E, Niederle N, Possinger K , Labianca R, Navarro

M, Morant R , Bleiberg H, Wils J , Awad L , Herait P, Jacques C. Randomised

trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil

failure in patients with metastatic colorectal cancer. The Lancet., 352: 1407-1412;

1998.

21 Rossi S. Australian Medicines Handbook. Adelaide: The Australian Medicines

Handbook Unit Trust. ISBN 978-0-9805790-9-3; 2013.

22 Heidelberger C. On the rational development of a new drug: the example of the

fluorinated pyrimidines. Cancer Treat. Rep., 65:3-9; 1981.

23 Guerrero RLG, Issa K. Nano-engineering of complex systems: Smart nanocarriers

for biomedical applications, biomedical engineering- from theory to applications,

ISBN: 978-953-307-637-9, InTech, DOI: 10.5772/22918; 2011.

24 Eidi NM, Nagawa H, Tominagal NT, Fujii S, Sasak S, Fu CG, Takenoue T,

Tsuruo T, Muto T. 5-Fluorouracil induces apoptosis in human colon cancer cell

lines with modulation of Bcl-2 family proteins. Br J Cancer.78: 986-992; 1998.

25 Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5-

fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and

recovery. Mol Cancer., 5: 20-40; 2006.

26 Guglielmi AP, Sobrero AF. Second-line therapy for advanced colorectal cancer.

Gastrointest Cancer Res., 1:57-63; 2007.

27 Wood AKK, Moertel CG. Chemotherapy for colorectal cancer. N. Engl. J. Med.,

330: 1136-1142; 1994.

28 Cassidy J, Saltz L, Twelves C, Van CE, Hoff P, Kang Y, Saini JP, Gilberg F,

Cunningham D. Efficacy of capecitabine versus 5-fluorouracil in colorectal and

gastric cancers: a meta-analysis of individual data from 6171 patients. Ann.

Oncol., 22:2604-2609; 2011.

Page 4: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

120     Amrita Centre for Nanosciences and Molecular Medicine 

   

29 Kodama Y, Fumoto S, Nishi J, Nakashima M, Sasaki H, Nakamura J, Nishida K.

Absorption and distribution characteristics of 5-fluorouracil (5-FU) after an

application to the liver surface in rats in order to reduce systemic side effects.

Biol. Pharm. Bull., 31:1049-1052; 2008.

30 Zhang DQ, Qiang G, Zhu JH, Chen WC. Increase of cyclooxygenase-2 inhibition

with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor

efficacy in a subcutaneous implantation tumor model of human colon cancer.

World J. Surg Oncol., 11:16-28; 2013.

31 Sitki C, Keisuke A, James CD, Carmen JA, Edward C. Thymidylate synthase

gene amplification in human colon cancer cell lines resistant to 5-fluorouracil.

Biochem. Pharmacol., 49:1419-1426; 1995.

32 Sabine V, Laurent P, Elisabeth D, Dominique P, Faussat AM, Jean C, Lacorte JM,

Cathy S, Thecla L. Resistance of colon cancer cells to long-term 5-fluorouracil

exposure is correlated to the relative level of bcl-2 and bcl-xl in addition to bax

and p53 status. Int. J. Cancer., 98:498-504; 2002.

33 Philippe R, Eric VC, Emilio B, Norbert N, Kurt P, Roberto L, Matilde N, Rudolf

M, Harry B, Jacques W, Lucile A, Patrice H, Christian J. Randomised trial of

irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in

patients with metastatic colorectal cancer. Lancet., 352:1407-1412; 1998.

34 Rangwala F, Williams K P, Smith G R, Thomas Z, Allensworth J L, Lyerly H K,

Diehl A M, Morse M A, Devi G R. Differential effects of arsenic trioxide on

chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer.,

12: 402; 2012.

35 Deng L, Ren Z, Jia O, Wu W, Shen H, Wang Y. Schedule-dependent antitumor

effects of 5-fluorouracil combined with sorafenib in hepatocellular carcinoma.

BMC Cancer., 13:363; 2013.

36 Subbarayan PR, Lee K, Ardalan B: Arsenic trioxide suppresses thymidylate

synthase in 5-FU-resistant colorectal cancer cell line HT29 in vtro re-sensitizing

cells to 5-FU. Anticancer Res., 30:1157-1162; 2010.

Page 5: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

121     Amrita Centre for Nanosciences and Molecular Medicine 

   

37 Wehler TC, Hamdi S, Maderer A, Graf C, Gockel I, Schmidtmann I, Hainz M,

Berger M. R., Theobald M, Galle P.R, Moehler M, Schimanski C C. Single-

agent therapy with sorafenib or 5-FU is equally effective in human colorectal

cancer xenograft-no benefit of combination therapy. Int J Colorectal Dis., 28:

385-398; 2013.

38 Gonzalez-Vallinas M, Molina S, Vicente G, de la Cueva A, Vargas T, Santoyo

S, Garcia-Risco MR, Fornari T, Reglero G,Ramirez de Molina A. Antitumor

effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and

resistant colon cancer cells. Pharmacol Res., 72: 61-68; 2013.

39 de la Cueva A, de Molina A R, lvarez-Ayerza N A, Ramos MA, Cebrian A, et al.

Combined 5-FU and ChoKa inhibitors as a new alternative therapy of colorectal

cancer: evidence in human tumor-derived cell lines and mouse xenografts. PLoS

ONE., 8(6): e64961; 2013 doi:10.1371/journal.pone.0064961.

40 Mehdi SM, Ali M, Cora L, Franziska B, Paviz S, Ajay G. Curcumin enhances the

effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and

Src protein kinase signaling pathways. Plos One., 8:e57218; 2013.

41 Fleming GF, Schilsky RL, Schumm LP, Meyerson A, Hong AM, Vogelzang NJ,

Ratain MJ: Phase I and pharmacokinetic study of 24-hour infusion 5-fluorouracil

and leucovorin in patients with organ dysfunction. Ann Oncol., 14:1142-1147;

2003.

42 Tong J, Xie G, He J, Li J, Pan F, Liang H. Synergistic antitumor effect of

dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J.

Biomed. Biotechnol., 2011, 2011 (2011), Article ID 740564, 7 pages.

43 Ardalan B, Subbarayan PR, Ramos Y, Gonzalez M, Fernandez A, Mezentsev D,

Reis I, Duncan R, Podolsky L, Lee K, et al: A phase I study of 5-fluorouracil/

leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal

carcinoma. Clin Cancer Res., 16: 3019-3027; 2010.

44 Jemal A, Siegel R, Ward E, Hao Y, Xu J. Cancer statistics. CA Cancer J Clin., 58:

71-96; 2008.

Page 6: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

122     Amrita Centre for Nanosciences and Molecular Medicine 

   

45 Andre T, Boni C, Mounedji BL, Navarro M, Tabernero J. Oxaliplatin,

fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J

Med., 350:2343-2351; 2004.

46 Patel BB, Majumdar AP. Synergistic role of curcumin with current therapeutics in

colorectal cancer: Minireview. Nutr. Cancer., 61:842-846; 2009.

47 Neugut AI, Lautenbach E, Abi RB, Forde KA. Incidence of adenomas after

curative resection for colorectal cancer. Am. J. Gastroenterol., 91:2096-2098;

1996.

48 Odwyer ST, Renehan AG, Zwahlen M, Egger M. Risk of second primary

colorectal cancer with particular reference to age at diagnosis. Colorectal Dis.,

9:814-820; 2006.

49 Shitoh K, Konishi F, Miyakura Y, Togashi K, Okamolo T. Microsatellite

instability as a marker in predicting metachronous multiple colorectal carcinomas

after surgery: a cohort-like study. Dis. Colon Rectum, 45:329-333; 2002.

50 Hurwitz H, Fehrenbacher L, NovotnyW, Cartwright T, Hainsworth J.

Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic

colorectal cancer. N. Engl. J. Med., 350:2335-2342; 2004.

51 Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as

drug delivery systems. Adv Drug Deliv Rev., 60:1650-1662; 2008.

52 Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable

nanoparticles for oral delivery of peptides: Is there a role for polymers to affect

mucosal uptake. Eur. J. Pharm. Biopharm., 50:147-160; 2000.

53 Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga A. Nanoencapsulation I. Methods for

preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2:8-21; 2006.

54 Wim HDJ, Paul JB. Drug delivery and nanoparticles: applications and hazards.

Int. J. Nanomedicine, 3:133-149;2008.

55 Nazila K, Zeyu X, Pedro MV, Aleksandar FRM, Omid CF. Targeted polymeric

therapeutic nanoparticles: design, development and clinical translation. Chem.

Soc. Rev., 41:2971-3010; 2012.

Page 7: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

123     Amrita Centre for Nanosciences and Molecular Medicine 

   

56 Nishikant CS, Nisha JK, Prashant DA. Nanoparticles: Advances in drug delivery

systems. Res. J. Pharm. Boil. Chem. Sci., 3:922-929; 2012.

57 Jack HCM, Santosh A, Liangfang Z. Nanoparticle-assisted combination therapies

for effective cancer treatment. Ther. Deliv., 1:323-334;2010.

58 Giuseppe C, Silke H, Umile GS, Ortensia IP, Nevio P, Francesca I. Carbon

nanotubes hybrid hydrogels in drug delivery: a perspective review. BioMed Res.

Int., 17:825017; 2014.

59 Honary S, Ebrahimi PHR. Optimization of size and encapsulation efficiency of 5-

FU loaded chitosan nanoparticles by response surface methodology. Current Drug

Deliv., 10:742-752; 2013.

60 Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement

over simple systems. J. Pharm. Sci., 96:473-483; 2007.

61 Wu H, Zhu L, Torchilin V P. pH-sensitive poly (histidine)-PEG/DSPE-PEG co-

polymer micelles for cytosolic drug delivery. Biomaterials., 34:1213-1222; 2013.

62 Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer

therapy. Adv Drug Deliv Rev., 56:1649-1659; 2004.

63 Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized

vehicles for drug delivery in cancer.Trends Pharmacol Sci., 30(11):592-599;2009.

64 Maeda H, Bharate G Y, Daruwalla J. Polymeric drugs for efficient tumor-targeted

drug delivery based on EPR-effect. Eur J Pharm Biopharm., 71: 409-419; 2009.

65 Wang A Z, Langer R, Farokhzad O C. Nanoparticle delivery of cancer drugs.

Annu Rev Med., 63: 185-198; 2012.

66 Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I,

Nakatomi I,Yokoyama M, Kataoka K, Kakizoe T. NK105, a paclitaxel-

incorporating micellar nanoparticle formulation, can extend in vivo antitumour

activity and reduce the neurotoxicity of paclitaxel. Br J Cancer., 92:1240-1246;

2005.

67 Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood

vessels for drug delivery, factors involved, and limitations and augmentation of

the effect. Adv. Drug Deliv. Rev., 63:136-151; 2011.

Page 8: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

124     Amrita Centre for Nanosciences and Molecular Medicine 

   

68 Maeda H. The enhanced permeability and retention (EPR) effect in tumor

vasculature: the key role of tumor-selective macromolecular drug targeting. Adv

Enzyme Regul., 41:189-207; 2001.

69 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature.,

407:249-257; 2000.

70 Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in

cancer. Clin Cancer Res., 14:1310-1316; 2008.

71 Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to

tumors. J. Cell Biol., 188: 759-768; 2010.

72 Barnabas W, Ambika RTV, Dharmesh KP, Josephine LJ, Priyadarshini SRB.

Nanoparticles based on albumin: preparation, characterization and the use for 5-

flurouracil delivery. Int. J. Biol. Macromol., 51:874-878; 2012.

73 Vijaya KBN, Allan TP. A new method for the preparation of gelatin

nanoparticles: Encapsulation and drug release characteristics. J. Appl. Polym.

Sci., 121:3495-3500; 2011.

74 Madhusudana RK, Mallikarjuna B, Krishna RKSV, Siraj S, Chowdoji RK, Subha

MCS. Novel thermo/pH sensitive nanogels composed from poly (N-

vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf. B

Biointerfaces, 102: 891-897; 2013.

75 Alina MT, Bogdan IC, Valentin N, Aurelia V. Investigations on nanoconfinement

of low-molecular antineoplastic agents into biocompatible magnetic matrices for

drug targeting. Colloids Surf. B Biointerfaces., 111:52-59; 2013.

76 Rajan M, Raj V, Abdullah AA, Murugan AM. Hyaluronidase enzyme core-5-

fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted

and controlled drug delivery vehicles. Int. J. Pharm., 453:514-522; 2013.

77 Ramesh CN, Rakesh K, Pandit JK. Chitosan coated sodium alginate–chitosan

nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and

in vivo study in rabbit eye. Eur. J. Pharm.Sci., 47:678-685; 2012.

78 Ting W, Ning W, Yingying Z, Wancui S, Xingmei G, Tiefu L. Solvent injection-

lyophilization of tert-butyl alcohol/water cosolvent systems for the preparation of

Page 9: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

125     Amrita Centre for Nanosciences and Molecular Medicine 

   

drug-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 79:254-261;

2010.

79 Haiyan C, Yueqing G, Yuzhu H, Zhiyu Q. Characterization of pH- and

temperature-sensitive hydrogel nanoparticles for controlled drug release. J.

Pharm. Sci. Technol., 61:4303-4313; 2007.

80 Glavas DM, Calis MSS, Crcarevska NG, Petrovska KV. Goracinova K. Wheat

germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon

delivery of 5-FU: development and in vitro characterization. Int. J. Pharm.,

381:166-175; 2009.

81 Li L, Wenyi G, Jiezhong C, Weiyu C, Zhi PX. Co-delivery of siRNAs and anti-

cancer drugs using layered double hydroxide nanoparticles. Biomaterials,

35:3331-3339; 2014.

82 Choi GH, Min KH, Lee SC. Block copolymer-templated mineralization for pH-

responsive robust nanocarriers of 5-fluorouracil. Macromol. Res., 22:329-336;

2014.

83 Raul O, Jose P, Consolacion M, Jose LA, Adolfina RM, Pablo JA, Octavio C,

Raquel L, Ana S, Antonia A. 5-Fluorouracil-loaded poly (ε-caprolactone)

nanoparticles combined with phage E gene therapy as a new strategy against

colon cancer. Int. J. Nanomedicine., 7: 95-107; 2012.

84 Beatriz C, Rafael AB, Eva SF, José CP, Consolacion M, Laura C, Raul O,

Jose LA. Nano- engineering of 5-fluorouracil-loaded magnetoliposomes for

combined hyperthermia and chemotherapy against colon cancer. Eur. J. Pharm.

Biopharm., 85: 329-338; 2013.

85 Sabitha M, Rejinold N S, Amrita N, Vinoth KL, Nair SV, Jayakumar R.

Development and evaluation of 5-fluorouracil loaded chitin nanogels for

treatment of skin cancer. Carbohydr. Polym., 91:48-57; 2013.

86 Shubhadeep B, Kacoli S, Tapan KP, Sujoy KG. Poly (styrene-co-maleic acid)-

based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced

cancer chemotherapy. Int. J. Pharm., 436:786-797; 2012.

Page 10: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

126     Amrita Centre for Nanosciences and Molecular Medicine 

   

87 Longzhang Z, Jingwei M, Nengqin J, Yu Z, Hebai S. Chitosan-coated magnetic

nanoparticles as carriers of 5-Fluorouracil: preparation, characterization and

cytotoxicity studies. Colloids Surf. B Biointerfaces., 68:1-6; 2009.

88 Christopher P, Alexandrine R, Carl L, Whitney E, Julian W. Iron oxide

nanoparticles as drug delivery agents in MIA PaCa-2 pancreatic cells. Proc. SPIE

6441, From Conference Volume 6441, Imaging, Manipulation, and Analysis of

Biomolecules, Cells, and Tissues V, 64411T 19; 2007.

89 Rejinold N S, Muthunarayanan M, Chennazhi KP, Nair SV, Jayakumar R. 5-

Fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery

applications. Int. J. Biol. Macromol., 48:98-105; 2011.

90 Rejinold N S, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Biodegradable

and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-

fluorouracil carrier. Carbohydr Polym., 83: 776-786; 2011.

91 Raj KD, Saurabh S. Development of a novel probe sonication assisted enhanced

loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted

drug delivery system. Eur. J. Pharm. Biopharm., 82:58-65; 2012.

92 Valentino L, Nunzio D, Antonio L, Angela L, Annalisa C, Francesco M L, Giulia

A, Massimo F. Translocator protein ligand-PLGA conjugated nanoparticles for 5-

fluorouracil delivery to glioma cancer cells. Mol. Pharm., DOI:

10.1021/mp400536z , 2014.

93 Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM

dendrimers: synthesis, characterization, and targeted anticancer drug delivery

potential in tumor bearing mice. Bioconjug. Chem., 19: 2239-2252; 2008.

94 Moorthy G, Muniram S, Thangavel P, Murugan GD, Lonchin S. Spontaneous

ultra fast synthesis of gold nanoparticles using Punica granatum for cancer

targeted drug delivery. Colloids Surf. B Biointerfaces., 106:208-216; 2013.

95 Yichao W, Puwang L, Lijue C, Weimin G, Fanbo Z, Ling XK. Targeted delivery

of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated

nanoparticles. Drug Deliv., doi:10.3109/10717544.2013.875603; 2014.

Page 11: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

127     Amrita Centre for Nanosciences and Molecular Medicine 

   

96 Cui YY, Wang YM, NM Li, Liu GS, Yang S, Tang GT, He DX,Tan XW, Hua W.

In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular

carcinoma drug chemotherapy. Mol. Pharm., 11:638-644; 2014.

97 Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate

carrier of fluorouracil. Int.J. Pharm., 257:111–124; 2003.

98 Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for

liver targeting. Int. J.Pharm., 404:317–323; 2011.

99 Yiguang J, Xia R, Wei W, Lijing K, Erjuan N, Lina D, Jeremy B. 5-Fluorouracil-

loaded pH-responsive dendrimer nanocarrier for tumor targeting. Int. J. Pharm.,

420: 378-384; 2011.

100 Sheetal S, Anil KB, Rakesh KS, Amarnath M.

Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through

intravenous route using surface modified nanogels. J. Drug Target., 14: 87-

95;2006.

101 Ramesh CN, Rakesh K, Dhanawat M, Pandit JK. Modified PLA nano in situ gel:

A potential ophthalmic drug delivery system. Colloids Surf. B Biointerfaces,

86:28-34; 2011.

102 Zhang Y, Li J, Lang M, Tang X, Li L, Shen X. Folate-functionalized

nanoparticles for controlled 5-fluorouracil delivery. J. Colloid Interface Sci., 354:

202-209; 2011.

103 Yassin A E B, Anwer M K, Mowafy H A, El-Bagory I M, Bayomi M A, Alsarra

I A. Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study

to treat colon cancer. Int J Med Sci., 7:398-408; 2010.

104 Yan C, Gu J, Guo Y, Chen D. In vivo biodistribution for tumor targeting of 5-

fluorouracil loaded N-succinyl chitosan nanoparticles. The Pharm.Soc. Japan.

130: 801-804; 2010.

105 Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic characteristics and anticancer

effects of 5-fluorouracil loaded nanoparticles. BMC Cancer., 8:103; 2008.

106 Xibo M, Zhen C, Yushen J, Xiaolong L, Xin Y, Zhifei D, Jie T. SM5-1-

Conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted

Page 12: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

128     Amrita Centre for Nanosciences and Molecular Medicine 

   

hepatocellular carcinoma imaging and therapy. Biomaterials., 35: 2878-2889;

2014.

107 Bansal SS, Vadhanam MV, Gupta RC. Development and in vitro-in vivo

evaluation of polymeric implants for continuous systemic delivery of curcumin.

Pharm Res., 2011; 28:1121-30.

108 Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic

diseases: an age-old spice with modern targets. Trends Pharmacol Sci., 30: 85-94;

2009.

109 Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B,

et al. Biological activities of curcumin and its analogues (Congeners) made by

man and Mother Nature. Biochem Pharmacol., 76: 1590-611; 2008.

110 Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin

and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett., 267:

133-164; 2008.

111 Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin:

preclinical and clinical studies. Anticancer Res., 23: 363-398; 2003.

112 Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB.

Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and

antiapoptotic and metastatic gene products through suppression of Ikappa B alpha

kinase and Akt activation. Mol Pharmacol., 69: 195-206; 2006.

113 Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer

Lett., 255: 170-181: 2007.

114 Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry

E, Dicato M, Diederich M. Chemopreventive and therapeutic effects of curcumin.

Cancer Lett., 223:181-190; 2005.

115 Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div.,

2008, 3:14 Doi: 10.1186/1747-1028-3-14.

116 Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J

Cancer., 41:1955-1968; 2005.

Page 13: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

129     Amrita Centre for Nanosciences and Molecular Medicine 

   

117 Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological

activities of curcumin: a short review. Life Sci., 78: 2081-2087; 2006.

118 Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of

curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer

Drugs., 8: 470-481; 1997.

119 Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has

anticancer, chemosensitization, and radiosensitization effects by down-regulating

the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res., 67:

1988-1996; 2007.

120 Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review

of the gap between basic and clinical applications. Curr Med Chem., 17: 190-197;

2010.

121 Thangapazham R L, Sharma A, Maheshwari R K. Multiple molecular targets in

cancer chemoprevention by curcumin. The AAPS Journal., 8: E443-E449; 2006.

122 Tsai Y M, Chien C F, Lin L C, Tsai TH. Curcumin and its nano-formulation: the

kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm.,

416: 331-338; 2011.

123 Yallapu M M, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future

nanomedicine for cancer. Drug Discov Today., 17:71-80; 2012.

124 Anand P, Nair H B, Sung B, Kunnumakkara A B, Yadav V R, Tekmal R R,

Aggarwal B B. Design of curcumin-loaded PLGA nanoparticles formulation with

enhanced cellular uptake, and increased bioactivity in vitro and superior

bioavailability in vivo. Biochem Pharmacol., 79: 330-338; 2010.

125 Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G. Curcumin-loaded PLGA-

PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and

distribution in vivo. J. Colloid Interface Sci., 354: 116-123; 2011.

126 Maya S, Sabitha M, Nair S V, Jayakumar R. Phytomedicine loaded

polymeric nanomedicines: potential cancer therapeutics. Adv. Polym

Sci., 254: 203-239; 2013.

Page 14: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

130     Amrita Centre for Nanosciences and Molecular Medicine 

   

127 Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-

inflammatory agent, against neurodegenerative, cardiovascular, pulmonary,

metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol., 41: 40-

59; 2009.

128 Aggarwal BB. Apoptosis and nuclear factor-kappa B: a tale of association and

dissociation. Biochem Pharmacol., 60: 1033-1039; 2000.

129 Bierhaus A, Zhang Y, Quehenberger P, Luther T, Haase M, Muller M, et al. The

dietary pigment curcumin reduces endothelial tissue factor gene expression by

inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb

Haemost., 77:772-782; 1997.

130 Brennan P, O’Neill LA. Inhibition of nuclear factor kappaB by direct

modification in whole cells-mechanism of action of nordihydroguaiaritic acid,

curcumin and thiol modifiers. Biochem Pharmacol., 55:965-973; 1998.

131 Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, et al. Mechanism

of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary

curcumin. Carcinogenesis., 19:1357-1360; 1998.

132 Reddy S, Rishi AK, Xu H, Levi E, Sarkar FH, Majumdar. APN: mechanisms of

curcumin and EGF-receptor related protein (ERRP)-dependent growth inhibition

of colon cancer cells. Nutr. Cancer., 55:185-194; 2006.

133 Zhang F, Altorki NK, Mestre JR, Subbaramaiah K, Dannenberg AJ. Curcumin

inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated

human gastrointestinal epithelial cells. Carcinogenesis., 20:445-451; 1999.

134 Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2

(COX-2) expression by dietary curcumin in HT-29 human colon cancer cells.

Cancer Lett., 172:111-118; 2001.

135 Surh Y-J, Chun K-S, Cha H-H, Han S S, Keum Y-S, Park K-K, Lee S S.

Molecular mechanisms underlying chemopreventive activities of anti-

inflammatory phytochemicals: down-regulation of COX-2 and iNOS through

suppression of NF-κB activation. Mutat Res., 480-481:243-268; 2001.

Page 15: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

131     Amrita Centre for Nanosciences and Molecular Medicine 

   

136 Plummer SM, Holloway KA, Manson MM, Munks R J, Kaptein A, Farrow

S, Howells L. Inhibition of cyclooxygenase 2 expression in colon cells by the

chemopreventive agent curcumin involves inhibition of NF-kappaB activation via

the NIK/IKK signalling complex. Oncogene., 18: 6013-6020;1999.

137 Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I,

Marian B, Lichtenberg D, Arber N. Celecoxib and curcumin synergistically

inhibit the growth of colorectal cancer cells. Clin Cancer Res., 11: 6738-6744;

2005.

138 Srimuangwong K, Tocharus C, Chintana P Y, Suksamrarn, Tocharus J.

Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human

colon cancer cells. World J Gastroenterol., 18: 2383-2389; 2012.

139 Srimuangwong K,Tocharus C, Tocharus J, Suksamrar A, Chintana P Y. Effects

of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-

induced colon cancer in rats. World J Gastroenterol., 18:6951-6959; 2012.

140 Du B, Jiang L, Xia Q, Zhong L. Synergistic inhibitory effects of curcumin and 5-

fluorouracil on the growth of the human colon cancer cell line HT-29.

Chemotherapy., 52: 23-28; 2006.

141 Patel B B, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi A K, Majumdar A P.

Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating

growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int. J.

Cancer., 122: 267-273; 2008.

142 Koo J Y, Kim H J, Jung K O, Park K Y. Curcumin Inhibits the growth of AGS

human gastric garcinoma cells in vitro and shows synergism with 5-fluorouracil. J

Med Food., 7: 117-121; 2004.

143 Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain

AS, et al. Molecular properties of WHO essential drugs and provisional

biopharmaceutical classification. Mol Pharm., 1:85-96; 2004.

144 Preetha A, Ajaikumar BK, Robert AN, Bharat BA. Bioavailability of curcumin:

problems and promises. Mol. Pharm., 4:807-818; 2007.

Page 16: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

132     Amrita Centre for Nanosciences and Molecular Medicine 

   

145 Shehzad A, Khan S, Shehzad O, Lee YS. Curcumin therapeutic promises and

bioavailability in colorectal cancer. Drugs Today., 46:523-532; 2010.

146 Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction

and glucuronidation in mice. Drug Metab Dispos., 27:486-494; 1999.

147 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of

piperine on the pharmacokinetics of curcumin in animals and human volunteers.

Planta Med., 64:353-356; 1998.

148 Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta

Pharmacol Toxicol., 43:86-92; 1978.

149 Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, et al.

Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-

DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin

Cancer Res., 7:1452-1458; 2001.

150 Ireson C, Orr S, Jones DJL, Verschoyle R, Lim C-K, Luo J-L, Howells

L, Plummer S, Jukes R, Williams M, Steward W P, Gescher A. Characterization

of metabolites of the chemopreventive agent curcumin in human and rat

hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol

ester-induced prostaglandin E2 production. Cancer Res., 61:1058-1064; 2001.

151 Ravindranath V, Chandrasekhara N. In vitro studies on the intestinal absorption

of curcumin in rats. Toxicology., 20:251-257; 1981.

152 Ravindranath V, Chandrasekhara N. Metabolism of curcumin-studies with [3H]

curcumin. Toxicology., 22:337-344; 1981.

153 Wahlang B, Pawar YB, Bansal AK. Identification of permeability-related hurdles

in oral delivery of curcumin using the Caco-2 cell model. Eur J Pharm Biopharm.,

77: 275-282; 2011.

154 Vladimir B, Muhammed M, Ramaswamy R. Use of piperine as a bioavailability

enhancer. US 5744161 A. US 08/550,496; 1998.

155 Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of

poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the

Page 17: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

133     Amrita Centre for Nanosciences and Molecular Medicine 

   

solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater

Res A., 86: 300-310; 2008.

156 Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation

of a nanotechnology-based carrier for delivery of curcumin in prostate cancer

cells. Int J Oncol., 32:1119-1123; 2008.

157 Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric

nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for

human cancer therapy. J Nanobiotechnology., 2007; 5:3.

158 Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle

encapsulation improves oral bioavailability of curcumin by at least 9-fold when

compared to curcumin administered with piperine as absorption enhancer. Eur J

Pharm Sci., 37: 223-230; 2009.

159 Ganta S, Amiji M. Co-administration of paclitaxel and curcumin in

nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol

Pharm., 6: 928-939; 2009.

160 Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin

phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic

study in rats. Int J Pharm., 330: 155-163; 2007.

161 Kim KH, Park HY, Nam JH, Park JE, Kim JY, Park MI, Chung KO, Park KY,

Koo JY.The inhibitory effect of curcumin on the growth of human colon cancer

cells (HT-29, WiDr) in vitro. Korean J. Gastroenterol., 45: 277-284; 2005.

162 Fang T, Tianli F, Yan Z, Yanan J, Xiaoyan Z. Curcumin potentiates the

antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells

through downregulating the activation of NF-kB signaling pathway in vitro and in

vivo. Acta Biochim. Biophys. Sin., 44: 847-855; 2012.

163 Balasubramanian S, Girija A R, Nagaoka Y, Suzuki S I M, Kizhikkilot V,

Yoshida Y, Maekawa T, Nair S D. Curcumin and 5-fluorouracil-loaded, folate-

and transferrin-decorated polymeric magnetic nanoformulation: a synergistic

cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J

Nanomedicine., 9: 437-459; 2014.

Page 18: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

134     Amrita Centre for Nanosciences and Molecular Medicine 

   

164 Zhu R, Wu X, Xiao Y, Gao B, Xie Q, Liu H, Wang S. Synergetic effect of SLN-

curcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother

Radiopharm., 28: 579-587; 2013.

165 Sathish SDK, Mahadevan S, Vijayaraghavan R, Asit BM, MacFarlane DR.

Curcumin loaded poly (2-hydroxyethyl methacrylate) nanoparticles from gelled

ionic liquid - in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur. J.

Pharm. Sci., 51: 34-44; 2014.

166 Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of

curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung

cancer both in vitro and in vivo. Mater Sci Eng C Mater Biol Appl., 33:4802-

4808; 2013.

167 Mulik R, Mahadik K, Paradkar A. Development of curcuminoids loaded poly

(butyl) cyanoacrylate nanoparticles: physicochemical characterization and

stability study. Eur J Pharm Sci., 37: 395-404; 2009.

168 Mulik R S, Monkkonen J, Juvonen R O, Mahadik K R, Paradkar A R. ApoE3

mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro

anticancer activity against neuroblastoma cells. Int J Pharm., 437:29-41; 2012.

169 Koppolu BP, Rahimi M, Nattama SP, Wadajkar A, Nguyen K. Development of

multiple-layer polymeric particles for targeted and controlled drug delivery.

Nanomedicine., 6: 355-361; 2010.

170 Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin

encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic

cancer cells. J Colloid Interface Sci., 351: 19-29; 2010.

171 Sou K, Inenaga S, Takeoka S, Tsuchida E. Loading of curcumin into

macrophages using lipid-based nanoparticles. Int J Pharm., 352: 287-293; 2008.

172 Nair KL, Arun K, Thulasidasan T, Deepa G, Ruby JA, Vinod GSK. Purely

aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced

anticancer activity with dependence on the combination of the carrier. Int J

Pharm., 425: 44-52; 2012.

Page 19: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

135     Amrita Centre for Nanosciences and Molecular Medicine 

   

173 Wanisa P, Supachai Y, Pornsiri P, Chadarat A, Pornngarm L. Enhancement of

cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by

conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharm

Sinic., 33: 823-831; 2012.

174 Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin

mediated solid lipid nanoparticles containing curcumin: enhanced in vitro

anticancer activity by induction of apoptosis. Int J Pharm., 398: 190-203; 2010.

175 Chen J, Dai WT, He ZM, Gao L, Huang X, Gong JM, Xing HY, Chen WD.

Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid

as a new type of colloidal drug delivery system. Ind J Pharm Sci., 75: 178-184;

2013.

176 Ratul KD, Naresh K,Utpal B. Encapsulation of curcumin in alginate-chitosan-

pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine., 6:

153-160; 2010.

177 Abhishek S, Utpal B , Naresh K, Pranab G. Synthesis of novel biodegradable and

self-assembling methoxy poly (ethylene glycol)-palmitate nanocarrier for

curcumin delivery to cancer cells. Acta Biomater., 4: 1752-1761; 2008.

178 Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric

nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for

human cancer therapy. J Nanobiotechnology., 5: 1-18; 2007.

179 Rejinold NS, Sreerekha P, Chennazhi K, Nair SV. Jayakumar R. Biocompatible,

biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide)

nanocarrier for curcumin drug delivery. Int J Biol Macromol., 49: 161-172; 2011.

180 Anitha A, Deepagan V, Divya rani V, Menon D, Nair S, Jayakumar R.

Preparation, characterization, in vitro drug release and biological studies of

curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohyd Polym., 84:

1158-1164; 2011.

181 Anuchapreeda S, Fukumori Y, Okonogi S, Ichikawa H. Preparation of lipid

nanoemulsions incorporating curcumin for cancer therapy. J Nanotechnol., 41: 1-

11; 2012.

Page 20: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

136     Amrita Centre for Nanosciences and Molecular Medicine 

   

182 Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z. Preparation and characterization

of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr

Polym., 90: 16-22; 2012.

183 Chin S F, Yazid S N A M, Pang S C. Preparation and characterization of starch

nanoparticles for controlled release of curcumin. Int. J. Polym. Sci., 2014, Article

ID 340121, 8 Pages; 2014.

184 Zanotto FA, Coradini K, Braganhol E, Schroder R, de Oliveira CM, Simoes PA.

Curcumin-loaded lipid-core nanocapsules as a strategy to improve

pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm

Biopharm., 83: 156-167; 2013.

185 Khan JA, Kainthan RK, Ganguli M, Kizhakkedathu JN, Singh Y, Maiti S. Water

soluble nanoparticles from PEG-based cationic hyper branched polymer and RNA

that protect RNA from enzymatic degradation. Biomacromolecules., 7:1386-

1388; 2006.

186 Schluep T, Hwang J, Hildebrandt IJ, Czernin J, Choi CH, Alabi CA, et al.

Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET

imaging and tumor histological measurements. Proc Natl Acad Sci U S A., 106:

11394-11399; 2009.

187 Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, Kumar MN. PLGA nanoparticles for

oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in

comparison to Sandimmune Neoral. J Control Release., 119: 197-206; 2007.

188 Grabovac V, Bernkop-Schnurch A. Development and in vitro evaluation of

surface modified poly (lactide-co-glycolide) nanoparticles with chitosan-4-

thiobutylamidine. Drug Dev Ind Pharm., 33: 767-774; 2007.

189 Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P. Enhancement of

curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin

metabolites in mice. Cancer Chemother Pharmacol., 69: 679-689; 2012.

190 Jiabei S, Chao B, Hok MC, Shaoping S, Qingwen Z, Ying Z. Curcumin-loaded

solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular

Page 21: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

137     Amrita Centre for Nanosciences and Molecular Medicine 

   

uptake and improved in vivo bioavailability. Colloids Surf. B., 111:367-375;

2013.

191 Khalil NM, do Nascimento TCF, Casa DM, Dalmolin LF, deMattos AC, Hoss I.

Pharmacokinetics of curcumin-loaded PLGAand PLGA-PEG blend nanoparticles

after oral administration in rats. Colloid Surf B., 101: 353-360; 2013.

192 Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin loaded

lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym.,

95: 441-448; 2013.

193 Vandita K, Indu PK. Evaluating potential of curcumin loaded solid lipid

nanoparticles in aluminium induced behavioural, biochemical and

histopathological alterations in mice brain. Food Chem Tox., 49: 2906-2913;

2011.

194 Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle

encapsulation improves oral bioavailability of curcumin by at least 9- fold when

compared to curcumin administered with piperine as absorption enhancer. Eur J

Pharm Sci., 37: 223-230; 2009.

195 Rajesh KG, Vinayak AD, Dimple K, Umesh TN, Gosavi SW, Rishi BS, Kalea

SN, Suwarna D. Conjugation of curcumin with PVP capped gold nanoparticles

for improving bioavailability. Mater Sci Eng C., 32: 2659-2663; 2012.

196 Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of

curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials., 31:

6597-6611; 2010.

197 Song Z, Feng R, Sun M, Guo C, Gao Y, Li L. Curcumin-loaded PLGA- PEG-

PLGA triblock copolymeric micelles: preparation, pharmacokinetics and

distribution in vivo. J Colloid Interface Sci., 354:116-123; 2011.

198 Ghahremankhani AA, Dorkoosh F, Dinarvand R. PLGA-PEG-PLGA tri-block

co-polymers as in situ gel-forming peptide delivery system: effect of formulation

properties on peptide release. Pharm Dev Technol., 13: 49-55; 2008.

Page 22: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

138     Amrita Centre for Nanosciences and Molecular Medicine 

   

199 Gao Y, Li Z, Sun M, Li H, Guo C, Cui J. Preparation, characterization,

pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS

as stabilizer. Drug Dev Ind Pharm., 36: 1225-1234; 2010.

200 Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric curcumin

nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol

Pharm., 10: 1977- 1987; 2013.

201 Wenrui W, Rongrong Z, Qian X, Ang L, Yu X, Kun L, Hui L, Daxiang C, Yihan

C, Shilong W. Int J Nanomedicine. 7: 3667-3677; 2012.

202 Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance

and biodistribution of polymeric nanoparticles. Mol Pharm., 5: 505-515; 2008.

203 Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug

carriers long-circulating. Adv Drug Deliv Rev., 16: 141-155; 1995.

204 Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and

imaging. AAPS J., 9: 128-147; 2007.

205 Woodle MC. Surface-modified liposomes: assessment and characterization for

increased stability and prolonged blood circulation. Chem Phys Lipids., 64: 249-

262; 1993.

206 Li SD, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key

for tumor targeting. J Control Release., 145: 178-181; 2010.

207 Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating

nanoparticles. Pharm Res., 25: 55-71; 2008.

208 Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways

for nanomedicine delivery: opportunities and challenges. Mol Pharm., 9: 2380-

2402; 2012.

209 Khandare J, Calderon M, Dagia NM, Haag R. Multifunctional dendritic polymers

in nanomedicine: opportunities and challenges. Chem Soc Rev., 41: 2824-2848;

2012.

210 Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving

antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric

micelles. Biomaterials., 34: 1413-1432; 2013.

Page 23: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

139     Amrita Centre for Nanosciences and Molecular Medicine 

   

211 Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM.

Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro

and in vivo. Int Immunopharmacol., 12: 226-234; 2012.

212 Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G. Curcumin loaded

g-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma.

Nanomed Nanotechnol., 8: 440-451; 2012.

213 Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A.

Nanocapsulated curcumin: oral chemopreventive formulation against

diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact.,

195: 206-214; 2012.

214 Sinha V R, Kumria R. Polysaccharides in colon-specific drug delivery. Int. J.

Pharm., 224: 19-38; 2001.

215 Rubinstein A. Natural polysaccharides as targeting tools of drugs to the human

colon. Drug Dev. Res., 50: 435-439; 2000.

216 Vandamme T F, Lenourry A, Charrueau C, Chaumeil J. The use of

polysaccharides to target drugs to the colon. Carbohydr. Polym., 48: 219-231;

2002.

217 Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles,

Eur. J. Pharm. Biopharm., 58: 327-341; 2004.

218 Chen M C, Mi F-L, Liao Z-X, Hsiao C W, Sonaje K, Chung M-F, Hsu L-W,

Sung H-W. Recent advances in chitosan-based nanoparticles for oral delivery of

macromolecules. Adv Drug Deliv Rev., 65: 865-879; 2013.

219 Thanou M, Verhoef J, Junginger H, Oral drug absorption enhancement by

chitosan and its derivatives. Adv. Drug Deliv. Rev., 52: 117-126; 2001.

220 Chen M C, Mi F L, Liao Z X, Sung HW. Chitosan: its applications in drug-

eluting devices. Adv. Polym. Sci., 243:185-230; 2011.

221 Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci.,

31: 603-632; 2006.

Page 24: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

140     Amrita Centre for Nanosciences and Molecular Medicine 

   

222 Anitha A, Sowmya S, Sudheesh KPT, Deepthi S, Chennazhi K P, Ehrlich H,

Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications.

Prog Polym Sci., In Press 2014.

223 Kanauchi O, Deuchi K, Imasato Y, Kobayashi E. Increasing effect of a chitosan

and ascorbic acid mixture on fecal dietary fat excretion. Biosci. Biotechnol.

Biochem., 58: 1617-1620;1994.

224 Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa

W, Terada A, Hara H, Mitsuoka T. Hypocholesterolemic effect of chitosan in

adult males, Biosci. Biotechnol. Biochem. 57:1439-1444; 1993.

225 Arai K, Kinumari T, Fujita T. On the toxicity of chitosan. Bull. Tokai Reg. Fish.

Res. Lab., 56: 889-892; 1986.

226 Roy K, Mao H Q, Huang S K, Leong K W. Oral gene delivery with chitosan-

DNA nanoparticles generates immunologic protection in a murine model of

peanut allergy. Nat. Med., 5: 387-391; 1999.

227 Sakloetsakun D, Perera G, Hombach J, Millotti G, Bernkop-Schnurch A. The

impact of vehicles on the mucoadhesive properties of orally administrated

nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS

Pharm.Sci.Tech., 11:1185-1192; 2010.

228 Sonia T, Sharma C. Chitosan and its derivatives for drug delivery perspective,

Adv. Polym. Sci., 243: 23-54; 2011.

229 Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan

and its derivatives in regenerative medicine. J Surg Res., 133: 185-192; 2006.

230 Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan a versatile semi-

synthetic polymer in biomedical applications. Prog Polym Sci., 36: 981-014;

2006.

231 Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials

24: 2339-2349; 2003.

232 Amidi M, Mastrobattista E, Jiskoot Z, Hennink W E. Chitosan-based delivery

systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 62: 59-82;

2010.

Page 25: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

141     Amrita Centre for Nanosciences and Molecular Medicine 

   

233 Sonaje K, Lin K J, Tseng MT, Wey M P, Su FY, Chuang E Y, Hsu CW, Chen

CT, Sung H W. Effects of chitosan-nanoparticle-mediated tight junction opening

on the oral absorption of endotoxins. Biomaterials., 32: 8712-8721; 2011.

234 Lin Y H, Chen C T, Liang H F, Kulkarni AR, Lee P W, Chen C H, Sung H W.

Novel nanoparticles for oral insulin delivery via the paracellular pathway.

Nanotechnology., 18:105102; 2007.

235 Chen M C, Wong H S, Lin KJ, Chen HL,Wey S P, Sonaje K, Lin Y H, Chu CY,

Sung H W. The characteristics, biodistribution and bioavailability of a chitosan-

based nanoparticulate system for the oral delivery of heparin. Biomaterials., 30:

6629-6637; 2009.

236 Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of

insulin contained in polysaccharide nanoparticles. Biomacromolecules., 8: 3054-

3060; 2007.

237 Nguyen H N, Wey SP, Juang J H, Sonaje K, Ho Y C, Chuang E Y, Hsu C W,

Yen TC, Lin K J, Sung HW. The glucose-lowering potential of exendin-4 orally

delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent

insulin secretion in vivo. Biomaterials., 32: 2673-2682;2011.

238 Prego C, Fabre M, Torres D, Alonso M. Efficacy and mechanism of action of

chitosan nanocapsules for oral peptide delivery. Pharm. Res., 23: 549-556; 2006.

239 Moghaddam F A, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of

mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-

shell nanoparticles. Nanomed. Nanotech. Biol.Med., 5: 208-215; 2009.

240Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized

drug delivery. Adv. Drug Deliv. Rev., 62:83-99; 2010.

241 Sashiwa H, Aiba S. Chemically modified chitin and chitosan as biomaterials.

Prog. Polym. Sci., 29: 887-908; 2004.

242 Kotze A F,Thanou M M, Lueben H L, De Boer A G, Verhoef J c, Junginger H

E. Enhancement of paracellular drug transport with highly quaternized N-

trimethyl chitosan chloride in neutral environments: in vitro evaluation in

intestinal epithelial cells (Caco2). J. Pharm. Sci., 88: 253-257; 1999.

Page 26: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

142     Amrita Centre for Nanosciences and Molecular Medicine 

   

243 Bayat A, Dorkoosh F A, Dehpour A R, Moezi L, Larijani B, Junginger H E,

Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier

for colon delivery of insulin: ex vivo and in vivo studies. Int. J. Pharm., 356: 259-

266; 2008.

244 Amidi M, Romeijn S G, Borchard G, Junginger H E, Hennink WE, Jiskoot W.

Preparation and characterization of protein-loaded N-trimethyl chitosan

nanoparticles as nasal delivery system. J. Control. Release., 111: 107-116; 2006.

245 Mi F L, Wu Y Y, Lin Y H, Sonaje K, Ho Y C, Chen CT, Juang J H, Sung H W.

Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-

glutamic acid) and a chitosan derivative functionalized by trimethylation.

Bioconjug. Chem., 19: 1248-1255; 2008.

246 Qian F, Cui F, Ding J, Tang C, Yin C. Chitosan graft copolymer nanoparticles for

oral protein drug delivery: preparation and characterization. Biomacromolecules.,

7 : 2722-2727; 2006.

247 Bayat A, Larijani B, Ahmadian S, Junginger H E, Rafiee-Tehrani M. Preparation

and characterization of insulin nanoparticles using chitosan and its quaternized

derivatives. Nanomed. Nanotechnol. Biol. Med., 4: 115-120; 2008.

248 Dorkoosh S F, Avadi M, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B,

Rafiee-Tehrani M, Junginger H. Permeation enhancer effect of chitosan and

chitosan derivatives: comparison of formulations as soluble polymers and

nanoparticulate systems on insulin absorption in Caco-2 cells. Eur. J. Pharm.

Biopharm., 70: 270-278; 2008.

249 Kumar M N R V, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J.

Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104: 6017-

6084; 2004.

250 Jayakumar R, Prabaharan M, Nair S V, Tokura S, Tamura H, Selvamurugan N.

Novel carboxymethyl derivatives of chitin and chitosan materials and their

biomedical applications. Prog. Mater. Sci., 55: 675-709; 2010.

251 Jayakumar R, Prabaharan M, Reis RL, Mano JF. Graft copolymerized chitosan-

Present status and applications. Carbohydr. Polym., 62: 142-158; 2005.

Page 27: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

143     Amrita Centre for Nanosciences and Molecular Medicine 

   

252 Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel

biomaterials. Int. J. Biol. Macromol., 40:175-181; 2007.

253 R. Jayakumar, N. Selvamurugan, S.V. Nair, S. Tokura, H. Tamura. Preparative

methods of phosphorylated chitin and chitosan-an overview. International Journal

of Biological Macromolecules., 43: 221-225; 2008.

254 Hirano S, Nagano N. Effects of chitosan, pectic acid, lysozyme and chitinase on

the growth of several phytopathogens. Agri Biol Chem., 53: 3065-3066; 1989.

255 Kendra DF, Christian D, Hadwiger LA. Chitosan oligomers from Fusarium

solani/pea intercations, chitinase/β-glucanase digestion of sporelings and from

fungal wall chitin actively inhibit fungal growth and enhance drug resistance.

Physiol Mol Plant Pathol., 35: 215-230;1989

256 Suzuki S, Watanabe T, Mikami T, Suzuki M. In: Proceedings of the 5th

international conference on chitin and chitosan. USA: 96-105; 1990.

257 Sandford PA. In: Sjak-Braek G, Anthonsen T, Sandford PA, editors. Chitin and

chitosan. London: Elsevier Applied Science., 51-69; 1990.

258 Rieux D, Fievez V, Garinot M, Schneider Y J, Preat V. Nanoparticles as potential

oral delivery systems of proteins and vaccines: a mechanistic approach. J.

Control. Release., 116: 1-27; 2006.

259 Sonaje K, Lin K J, Wang J J, Mi F L, Chen CT, Juang J H, Sung H W, Self-

assembled pH-sensitive nanoparticles: a platform for oral delivery of protein

drugs. Adv. Funct. Mater., 20: 3695-3700; 2010.

260 George M, Abraham T E. Polyionic hydrocolloids for the intestinal delivery of

protein drugs: alginate and chitosan-a review. J. Control. Release., 114:1-14;

2006.

261 Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers - thiomers:

modification of chitosan with 2- iminothiolane. Int. J. Pharm., 260: 229-237;

2003.

262 Aspden TJ, Illum L, Skaugrad O. Chitosan as a nasal delivery system: evaluation

of insulin absorption enhancement and effect of nasal membrane integrity using

rat models. Eur. J. Pharm. Biop., 4: 23-31; 1996.

Page 28: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

144     Amrita Centre for Nanosciences and Molecular Medicine 

   

263 Senel S, Kremer MJ, Kaş S, Wertz PW, Hincal AA, Squier CA. Enhancing effect

of chitosan on peptide drug delivery across buccal mucosa. Biomaterials., 21:

2067-2071; 2000.

264 Dodane V, Khan MA, Merwin JR. Effect of chitosan on epithelial permeability

and structure. Int. J. Pharm., 10182: 21-32; 1999.

265 Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and

carboxymethylated chitosan. J. Appl. Polym. Sci., 79: 1324-1335; 2001.

266 Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosan related

to its preparation conditions. Carbohydr. Polym., 53: 355-359; 2003.

267 Muzzarelli RAA, Ramos V, Stanic V, Dubini B, Mattioli BM, Tosi G, Giardino

R. Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan.

Carbohydr. Polym., 36: 267-276; 1998.

268 Nishimura SI, Ikeuchi Y, Tokura S. The adsorption of bovine blood proteins onto

the surface of O-carboxymethyl chitin. Carbohydr. Res., 134: 305-312; 1984.

269Nishimura SI, Nishi N, Tokura S. Activation of mouse-peritoneal macrophages by

O-(carboxymethyl) chitins. Carbohydr. Res., 146:251-258; 1986.

270 Zhang L, Guo J, Zhou J, Yang G, Du YM. Blend membranes from

carboxymethylated chitosan/alginate in aqueous solution. J. Appl. Polym. Sci.,

77:610-616; 2000.

271 Ragnhild J, Hjerde N, Varum KM, Grasden H, Tokura S, Smidsrod O. Chemical

composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation

rates. Carbohydr. Polym., 34:131-139; 1997.

272 Chen SC,WuYC, Mi FL. A novel pH-sensitive hydrogel composed of N, O-

carboxymethyl chitosan and alginate cross-linked by genipin for protein drug

delivery. J Control Release., 96: 285-300; 2004.

273 Du J, Dai J, Liu JL, Dankovich T. Novel pH-sensitive polyelectrolyte

carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React.

Funct. Polym., 66; 1055-1061; 2006.

274 Hayes ER. N, O-carboxymethyl chitosan and preparative method therefor. US

patent: US4619995; 1986.

Page 29: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

145     Amrita Centre for Nanosciences and Molecular Medicine 

   

275 Wu KX, Li MN. The immuno regulation of carboxymethyl polysaccharides.

Chin. Chem. Bull., 9: 54-58; 1989.

276 Jayakumar R, Reis RL, Mano JF. Chemistry and applications of phosphorylated

chitin and chitosan. E-Polymers 035:1-16;2006.

277 Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery

systems. Drug Deliv., 12:41-57; 2005.

278 Prabaharan M, Mano JF. Chitosan derivatives bearing cyclodextrin cavities as

novel adsorbent matrices. Carbohydr. Polym., 63:153-166;2006.

279 Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides

incorporated with thermo-responsive polymers as novel biomaterials. Macromol.

Biosci., 6:991-1008; 2006.

280 Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli A, Sashiwa H, Domb AJ.

Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104: 6017-

6084; 2004.

281 Zhao ZP, Wang Z, Wang SC. Formation, charged characteristic and BSA

adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. J.

Membr. Sci., 217:151-158; 2003.

282 Tokura S, Nishimura S, Sakairi N, Nishi N. Biological activities of biodegradable

polysaccharide. Macromol. Symp., 101:389-396;1996.

283 Anitha A, Divya RaniVV, Krishna R, Sreeja V, Selvamurugan N, Nair SV,

Tamura H, Jayakumar R. Synthesis, characterization, cytotoxicity and

antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl

chitosan nanoparticles. Carbohydr. Polym., 78:672-677;2009.

284 Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R.

Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of

curcumin to cancer cells. Carbohydr. Polym., 83: 452-461; 2011.

285 Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R. Curcumin-

loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J.

Biomater. Sci., 23:1381-1400; 2012.

Page 30: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

146     Amrita Centre for Nanosciences and Molecular Medicine 

   

286 Anitha A, Chennazhi KP, Nair SV, Jayakumar R. 5-Flourouracil loaded N, O-

carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast

cancer. J. Biomed. Nanotech., 8: 29-42; 2012.

287 Xiaowen S, Yumin D, Jianhong Y, Baozhong Z, Liping S. Effect of degree of

substitution and molecular weight of carboxymethyl chitosan nanoparticles on

doxorubicin delivery. J. Appl. Polym. Sci., 100: 4689-4696; 2006.

288 Wang Y, Liu L, Weng J, Qiqing Z. Preparation and characterization of self-

aggregated nanoparticles of cholesterol-modified-O-carboxymethyl chitosan

conjugates. Carbohydr. Polym., 69: 597-606; 2007.

289 Wang YS, Jiang Q, Li RS, Liu LL, Zhang QQ, Wang YM, Zhao J. Self-

assembled nano particles of cholesterol-modified O-carboxymethyl chitosan as a

novel carrier for paclitaxel. Nanotechnology, 19:145101; 2008.

290 Sumanta KS, Sanjay KM, Susmita S, Tapas KM, Sudip KG, Panchanan P.

In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles

loaded with doxorubicin for targeted delivery. J. Mater. Sci. Mater. Med.,

21:1587-1597; 2010.

291 Chao F, Zhiguo W, Changqing J, Ming K, Xuan Z, Yang L, Xiaojie C, Xiguang

C. Chitosan/O-carboxymethyl chitosan nanoparticles for efficient and safe oral

anticancer drug delivery: in vitro and in vivo evaluation. Int. J.Pharm., 457:158-

167; 2013.

292 Zhang X, Zhao J, Wen Y, Zhu C, Yang J, Yao F. Carboxymethyl chitosan-poly

(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme

delivery. Carbohydr. Polym., 98: 1326-1334; 2013.

293 Guo H, Zhang D , Li C, Jia L, Liu G, Hao L, Zheng D, Shen J, Li T, Guo

Y, Zhang Q. Self-assembled nanoparticles based on galactosylated O-

carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin.

Int. J. Pharm., 458: 31-38; 2013.

294 Guo H, Zhang D , Li T, Li C, Guo Y, Liu G, Hao L, Shen J, Qi L, Liu X, Luan

J, Zhang Q. In vitro and in vivo study of Gal-OS self-assembled nanoparticles for

liver-targeting delivery of doxorubicin. J Pharm Sci., 2014 Article In Press.

Page 31: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

147     Amrita Centre for Nanosciences and Molecular Medicine 

   

295 Wang G, Jin L, Dong Y, Niu L, Liu Y, Ren F, Su X. Multifunctional Fe3O4-

CdTe@SiO2- carboxymethyl chitosan drug nanocarriers: synergistic effect

towards magnetic targeted drug delivery and cell imaging. New J Chem., 38:700-

708; 2014.

296 Mathew EM, Mohan JC, Manzoor K, Nair S V, Tamura H, Jayakumar R. Folate

conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles

for targeted drug delivery and imaging of cancer cells. Carbohydr Polym., 80:

442-448; 2010.

297 Wang Y, Yang X, Yang J, Wang Y, Chen R, Wu J, Liu Y, Zhang N. Self-

assembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan:

preparation, characterization and drug release behavior in vitro. Carbohydr.

Polym., 86: 1665-1670; 2011.

298 Zheng H , Zhang X, Xiong F, Zhu Z, Lu B, Yin Y, Xu P, Du Y. Preparation,

characterization, and tissue distribution in mice of lactosaminated carboxymethyl

chitosan nanoparticles. Carbohydr. Polym., 83: 1139-1145; 2011.

299 Tan YL, Liu C-G. Self-aggregated nanoparticles from linoleic acid modified

carboxymethyl chitosan: synthesis, characterization and application in vitro.

Colloids Surf., B., 69: 178-182; 2009.

300 Liu F, Li M, Liu C, LiuY, LiangY, Wang F, Zhang N. Tumor-specific delivery

and therapy by double-targeted DTX-CMCS-PEG-NGR conjugates. Pharm. Res.,

31: 475-488; 2014.

301 Sayın B, Somavarapu S, Li X W, Thanou M, Sesardic D, Alpar H O, Senel S .

Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC)

nanoparticles for non-invasive vaccine delivery. Int. J. Pharm., 363: 139-148;

2008.

302 Shen J-M, Tang W-J, Zhang X-L, Chen T, Zhang H-X. A novel carboxymethyl

chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell

imaging. Carbohydr Polym., 88: 239-249; 2012.

303 Maya S, Kumar L G, Sarmento B, Rejinold NS, Deepthy M, Nair S V,

Jayakumar R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for

Page 32: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

148     Amrita Centre for Nanosciences and Molecular Medicine 

   

targeting EGFR overexpressing cancer cells. Carbohydr Polym., 93: 661-669;

2013.

304 K.S. Snima, R. Jayakumar, A.G. Unnikrishnan, Shantikumar. V. Nair, Vinoth-

Kumar Lakshmanan. O-Carboxymethyl chitosan nanoparticles for metformin

delivery to pancreatic cancer cells. Carbohydr Polym., 89: 1003-1007; 2012.

305 Shinde U, Ahmed M H, Singh K. Development of drzolamide laded 6-O-

carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv.,

2013: Article ID 562727, 15 Pages; 2013.

306 Sahu S K, Maiti S, Maiti T K, Ghosh S K, Pramanik P. Hydrophobically

modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J

Drug Target., 19: 104-113; 2011.

307 Sun Y, Li X, Liang X, Wan Z, Duan Y.Calcium phosphate/octadecyl-quatemized

carboxymethyl chitosan nanoparticles: an efficient and promising carrier for gene

transfection. J Nanosci Nanotechnol., 13:5260-5266; 2013.

308 Thu H P, Huong L T T, Nhung H T M, Tham N T, Tu N D, Thi H T M, Hanh P

T B, Nguyet T TM, Quy N T, Nam P H, Lam T D, Phuc N X, Quang Q T.

Fe3O4/O-Carboxymethyl chitosan/curcumin-based nanodrug system for

chemotherapy and fluorescence imaging in HT29 cancer cell line. Chem. Lett.,

40: No.11; 2011.

309 Kast C E, Bernkop-Schnurch A. Thiolated polymers-thiomers: development and

in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials., 22:

2345-2352; 2001.

310 Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li, C. Chitosan-NAC

nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed.

Mater. Res. B Appl. Biomater., 88: 150-161; 2009.

311 Kafedjiiski K, Foger F, Werle M, Bernkop-Schnurch A. Synthesis and in vitro

evaluation of a novel chitosan-glutathione conjugate. Pharm. Res., 22: 1480-1488;

2005.

Page 33: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

149     Amrita Centre for Nanosciences and Molecular Medicine 

   

312 Osuna B, Vauthier C, Farabollini A, Palmieri G F, Ponchel G. Mucoadhesion

mechanism of chitosan and thiolated chitosan-poly (isobutyl cyanoacrylate) core-

shell nanoparticles. Biomaterials., 28: 2233-2243; 2007.

313 Foger F, Schmitz T, Bernkop-Schnurch A. In vivo evaluation of an oral delivery

system for P-gp substrates based on thiolated chitosan. Biomaterials., 27: 4250-

4255; 2006.

314 Kafedjiiski K, Krauland A H, Hoffer M H, Bernkop-Schnurch A. Synthesis and

in vitro evaluation of a novel thiolated chitosan. Biomaterials., 26: 819-826;2005.

315 Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers.

Adv. Drug Deliv. Rev., 57: 1569-1582; 2005.

316 Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and

mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral

insulin delivery. Biomaterials., 30:5691-5700; 2009.

317 Kafedjiiski K, Hoffer M, Werle M, Bernkop-Schnurch A. Improved synthesis

and in vitro characterization of chitosan-thioethylamidine conjugate.

Biomaterials., 27: 127-135; 2006.

318 Leitner V M, Walker G F, Bernkop-Schnurch A. Thiolated polymers: evidence

for the formation of disulphide bonds with mucus glycoproteins.Eur. J. Pharm.

Biopharm., 56: 207-214; 2003.

319 Bernkop-Schnurch, 2003. Thiomers: a new generation of mucoadhesive

polymers. Adv Drug Deliver Rev., 57: 1569-1582; 2005.

320 Bravo-Osuna I, Teutonico D, Arpicco S, Vauthier C, Ponchel G. Characterization

of chitosan thiolation and application to thiol quantification onto nanoparticle

surface. Int. J. Pharm., 340: 173-181; 2007.

321 Bernkop-Schnurch A, Pinter Y, Guggi D, Kahlbacher H, Schoffmann G, Schuh

M, Schmerold I, Del Curto M D, Antonio M D, Esposito P. The use of thiolated

polymers as carrier matrix in oral peptide delivery-proof of concept. J. Control.

Release., 106:26-33; 2005.

Page 34: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

150     Amrita Centre for Nanosciences and Molecular Medicine 

   

322 Dunnhaupt S, Barthelmes J, Hombach J, Sakloetsakun D, Arkhipova V,

Bernkop-Schnurch A. Distribution of thiolated mucoadhesive nanoparticles on

intestinalmucosa. Int. J. Pharm., 408: 191-199; 2011.

323 Sajeesh S, Vauthier C, Gueutin C, Ponchel G, Sharma C P. Thiol functionalized

polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta

Biomater., 6: 3072-3080; 2010.

324 Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnurch A. Chitosan-

thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery.

J. Biomed. Mater. Res. A., 82: 1-9; 2007.

325 Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, Li C, Chitosan-NAC

nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed.

Mater. Res. B Appl. Biomater., 88: 150-161; 2009.

326 Colo GD, Zambito Y, Zaino C. Polymeric enhancers of mucosal epithelial

permeability: Synthesis, transepithelial penetration-enhancing properties,

mechanism of action, safety issues. J. Pharm. Sci., 97:1652-1680; 2008.

327 Roldo M, Hornof M, Caliceti P, Bernkop SA. Mucoadhesive thiolated chitosans

as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation.

Eur. J. Pharm. Biopharm., 57: 115-121; 2004.

328 Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, Mao Y. Thiolated trimethyl

chitosan nanocomplexes as gene carriers with high in vitro and in vivo

transfection efficiency. J Control Release., 144: 46-54; 2010.

329 Baumann H, Faust V. Concepts for improved regioselective placement of O-

sulfo, N-sulfo, N-acetyl, and N-carboxymethyl groups in chitosan derivatives,

Carbohydr Res., 331(1):43-57;2001

330 Bernkop-Schnurch A, Krajicek ME. Mucoadhesive polymers as platforms for

peroral peptide delivery and absorption: synthesis and evaluation of different

chitosan-EDTA conjugates. J. Control. Rel., 50: 215-223; 1998.

331 Bernkop-Schnurch A, Scholler S, Biebel RG. Development of controlled drug

release systems based on thiolated polymers. J Control Release., 66: 39-48; 2000.

Page 35: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

151     Amrita Centre for Nanosciences and Molecular Medicine 

   

332 Anitha A, Deepa N, Chennazhi K P, Nair S V, Tamura H, Jayakumar R.

Development of mucoadhesive thiolated chitosan nanoparticles for biomedical

applications. Carbohydr. Polym., 83: 66-73; 2011.

333 Talaei F, Azizi E, Dinarvand R, Atyabi F. Thiolated chitosan nanoparticles as a

delivery system for antisense therapy: evaluation against EGFR in T47D breast

cancer cells. Int J Nanomedicine., 6:1963-1975; 2011.

334 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov M A. Synthesis

and in vitro evaluation of thiolated chitosan-dextran sulfate nanoparticles for the

delivery of letrozole. J Pharm Educ Res., 1: 62-67; 2010.

335 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov M A. Synthesis

and characterization of biodegradable thiolated chitosan nanoparticles as targeted

drug delivery system. J Nanomedic Nanotechnol., S4:001. doi:10.4172/2157-

7439.S4001; 2011.

336 Wang X, Zheng C, Wu Z M, Teng DG, Zhang X, Wang Z, Li C X. Chitosan- AC

nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed.

Mater.Res. B, Appl. Biomater., 88B: 150-161; 2009.

337 Saremi S, Dinarvand R, Kebriaeezadeh A, Ostad SN, Atyabi F. Enhanced oral

delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro

and in vivo studies. Bio Med Research International., Article ID 150478; 2013.

338 Jiang L, Li X, Liu L, Zhang Q. Thiolated chitosan-modified PLA-PCL-TPGS

nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett., 2013,

8:66. doi: 10.1186/1556-276X-8-66.

339 Yousefpour P, Atyabi F, Dinarvand R, Vasheghani-Farahani. Preparation and

comparison of chitosan nanoparticles with different degrees of glutathione

thiolation. Daru., 9:367-375;2011.

340 Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal

delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles

for pain relief. J Drug Target., 21:759-769; 2013.

Page 36: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

152     Amrita Centre for Nanosciences and Molecular Medicine 

   

341 Shokrzadeh M, Ebrahimnejad P, Omidi M, Shadboorestan A, Zaalzar Z.

Cytotoxity evaluation of docetaxel nanoparticles against HepG2 cell lines.

JMUMS., 22:1-9; 2012.

342 Patel D, Naik S, Misra A. Improved transnasal transport and brain uptake of

tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J

Pharm Sci., 101: 690-706; 2012.

343 Alamdarnejad G1, Sharif A, Taranejoo S, Janmaleki M, Kalaee MR, Dadgar M,

Khakpour M. Synthesis and characterization of thiolated carboxymethyl

chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for

albendazole. J Mater Sci Mater Med., 24: 2013; 1939-1949.

344 Irene B-O, Schmitz T, Bernkop-Schnurch A, Christine Vauthier, Gilles Ponchel.

Elaboration and characterization of thiolated chitosan-coated acrylic

nanoparticles. Int. J. Pharm., 316: 2006; 170-175.

345 Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA. Synthesis and

characterization of biodegradable thiolated chitosan nanoparticles as targeted drug

delivery system. J Nanomedic Nanotechnol., S4:001. doi:10.4172/2157-

7439.S4001; 2011.

346 Bernkop-Schnurch A, Guggi D, Pinter Y, Thiolated chitosans: development and

in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery

system. J. Control Release., 94: 2004; 177-186.

347 Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F. Discriminated effects

of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different

normal and cancer cell lines. Nanomedicine., 6: 2010; 689-697.

348 Bernkop-Schnurch A, Hornof M D, Guggi D. Thiolated chitosans. Eur. J. Pharm.

Biopharm., 57: 2004; 9-17.

349 Ronny M, Brigitta L, Adolf M S, Bernkop-Schnurch A. Thiolated chitosan

nanoparticles: transfection study in the Caco-2 differentiated cell culture.

Nanotechnology., 19: 1-9; 2008.

Page 37: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

153     Amrita Centre for Nanosciences and Molecular Medicine 

   

350Bernkop-Schnurch A, Hornof M, Zoidl T. Thiolated polymers-thiomers: synthesis

and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm., 260:

229-237; 2003.

351 Bernkop-Schnurch A, Kast CE, Guggi D. Review Permeation enhancing

polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

J Control Release., 93: 95-103; 2003.

352 Saremi S, Atyabi F, Akhlaghi S P, Ostad S N, Dinarvand R. Thiolated chitosan

nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and

ex vivo evaluation. Int J Nanomedicine., 6: 119-128; 2011.

353 Lee D-W, Shirley S A, Lockey R F, Mohapatra S S. Thiolated chitosan

nanoparticles enhance anti-inflammatory effects of intranasally delivered

theophylline. Respir Res., 7: 2006.doi:10.1186/1465-9921-7-112.

354 Hayes E R. N, O-carboxymethyl chitosan and preparative method therefore. US

patent US 4619995 A. (1986).

355 Chen S C, Wu Y C, Mi F L, Lin YH, Yu L C, Sung H W. A novel pH sensitive

hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by

genipin for protein drug delivery. J Control Release., 96: 285-300; 2004.

356 Margit D H, Constantia E K, Bernkop-Schnurch A. In vitro evaluation of the

viscoelastic properties of chitosan-thioglycolic acid conjugates. Eur J Pharm

Biopharm., 55: 185-190; 2003.

357 Bernkop-Schnurch A, Schwarz V, Steininger S. Polymers with thiol groups: a

new generation of mucoadhesive polymers. Pharm. Res., 16: 876-881; 1999.

358 Matsuhiro B, Presle L C, Saenz C, Urzua C C. Structural determination and

chemical modifications of the polysaccharide from seeds of Prosopis chilensis

Mol. (Stuntz). J. Chil. Chem. Soc., 51:813; 2006.

359 Devika R B, Varsha B P. Studies on effect of pH on cross-linking of chitosan

with sodium tripolyphosphate: a technical note. AAPS Pharm Sci Tech., 7: E138-

E143; 2006.

Page 38: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

154     Amrita Centre for Nanosciences and Molecular Medicine 

   

360 Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge,

particle size and morphological properties of chitosan-TPP nanoparticles intended

for gene delivery. Colloids Surf B., 44: 65-73; 2005.

361 Harboe M. A method for determination of hemoglobin in plasma by near-

ultraviolet spectrophotometry. Scand J Clin Lab Invest., 11:66-70; 1959.

362 Rao S B, Sharma C P. Use of chitosan as a biomaterial: studies on its safety and

hemostatic potential. J. Biomed. Mater. Res., 34: 21-28; 1997.

363 Morris V B, Sharma C P. Folate mediated in vitro targeting of depolymerised

trimethylated chitosan having arginine functionality. J Colloid Interface Sci., 348:

360-368; 2010.

364 Dobrovolskaia M A, Clogston J D, Neun B W, Hall J B, Patri A K, McNeil S E.

Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett., 8:

2180-2187; 2008.

365 Hall J B, Dobrovolskaia M A, Patri A K, McNeil S E. Characterization of

nanoparticles for therapeutics. Nanomedicine., 2: 789-803; 2007.

366 Harris SM, Jaweria T, Hamid AM, Rabia IY. Evaluation of drug release kinetics

from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci., 19:119-124; 2006.

367 Wan CP, Letchford K, Jackson JK, Burt HM. The combined use of paclitaxel-

loaded nanoparticles with a low-molecular-weight copolymer inhibitor of P-

glycoprotein to overcome drug resistance. Int J Nanomedicine., 8: 379-391; 2013.

368Wang T, Kievit FM, Veiseh O, Arami H, Stephen ZR, Fang C, Liu Y, Ellenbogen

RG, Zhang M. Targeted cell uptake of a non internalizing antibody through

conjugation to iron oxide nanoparticles in primary central nervous system

lymphoma. World Neurosurg., 80:134-141; 2013.

369 Chou TC, Talalay P: Quantitative analysis of dose-effect relationships: the

combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul.,

22: 27-55;1984.

370 Chou TC, Motzer RJ, Tong Y, Bosl GJ: Computerized quantitation of synergism

and antagonism of Taxol, topotecan and cisplatin against human teratocarcinoma

Page 39: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

155     Amrita Centre for Nanosciences and Molecular Medicine 

   

cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst.,

86: 1517-1524; 1994.

371 Reers M, Smith T W, Chen L B. J-aggregate formation of a carbocyanine as a

quantitative fluorescent indicator of membrane potential. Biochemistry., 30:

4480-4486; 1991.

372 Jung M, Berger G, Pohlen U, Pauser S, Reszka R, Buhr H J. Simultaneous

determination of 5-fluorouracil and its active metabolites in serum and tissue by

high-performance liquid chromatography. J Chromatogr B Biomed Sci App.,

702: 193-202; 1997.

373 Choi S J, Oh J M, Choy J H. Biocompatible nanoparticles intercalated with

anticancer drug for target delivery: pharmacokinetic and biodistribution study. J

Nanosci. Nanotechnol., 10: 2913-2916; 2010.

374 Ma Z, Shayeganpour A, Brocks D R, Lavasanifar A, Samuel J. High-

performance liquid chromatography analysis of curcumin in rat plasma:

application to pharmacokinetics of polymeric micellar formulation of curcumin,

Biomed Chromatogr., 21: 546-552; 2007.

375 Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for

pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

Comput Methods Programs Biomed., 99: 306-314; 2010.

376 Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and

bioavailability of clozapine solid lipid nanoparticles after intravenous and

intraduodenal administration. J Control Release., 107: 215-228; 2005.

377 Alexiou C, Arnold W, Hulin P, Klein R J, Renz H, Parak F G, Bergemann C,

Lubbe A S. Magnetic mitoxantrone nanoparticle detection by histology, X-ray

and MRI after magnetic tumor targeting. J. Magn. Magn. Mater., 225:187-193;

2001.

378 Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-

based micro- and nanoparticles in drug delivery. J Control Release., 100: 5-28;

2004.

Page 40: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

156     Amrita Centre for Nanosciences and Molecular Medicine 

   

379 Gutierrez F M, Thi E P,Silverman JM, de Oliveira C C, Svensson S L, Hoek A

V, Sanchez E M, Reiner N E, Gaynor E C, Pryzdial E LG, Conway E M, Orrantia

E, Ruiz F, Av-Gay Y, Bach H. Antibacterial activity, inflammatory response,

coagulation and cytotoxicity effects of silver nanoparticles. Nanomed.

Nanotechnol. Biol. Med., 8: 328-336; 2012.

380 Koziara J M, Oh J J, Akers W S, Ferraris S P, Mumper R J. Blood compatibility

of cetyl alcohol/polysorbate-based nanoparticles. Pharm Res., 22: 1821-1828;

2005.

381 Lee D-W, Powers K, Baney R. Physicochemical properties and blood

compatibility of acylated chitosan nanoparticles. Carbohydr Polym., 58:371-377;

2004.

382 Huang P, Li Z, Hu H, Cui D. Synthesis and characterization of bovine serum

albumin-conjugated copper sulfide nanocomposites. Hindawi Publishing

Corporation J. Nanomaterials. doi:10.1155/2010/641545 (2010).

383 Nagarwal R C, Singh P N, Kant S, Maiti P, Pandit J K. Chitosan nanoparticles of

5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo

study. Chem Pharm Bull., 59: 272-278; 2011.

384 Ha P T, Le M H, Hoang T M N,Thu T, Le H, Duong T Q, Tran T H H, Tran D

L, Nguyen X P. Preparation and anti-cancer activity of polymer-encapsulated

curcumin nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol., 3: 035002; 2012.

385 Yallapu M M, Jaggi M, Chauhan S C. Beta-cyclodextrin-curcumin self-assembly

enhances curcumin delivery in prostate cancer cells. Coll. Surf. B., 79:113-125;

2010.

386 Lin FH, Lee YH, Jian CH, Wong JM, Shieh MJ, Wang CY. A study of purified

montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials.,

23:1981-1987; 2002.

387 Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan.

Adv. Drug. Deliv. Rev., 62: 3-11; 2010.

Page 41: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

157     Amrita Centre for Nanosciences and Molecular Medicine 

   

388 Aranaz I, Mengíbar M, Harris R, Panos I, Miralles B, Acosta N, Galed G,

Heras A. Functional characterization of chitin and chitosan. Curr.Chem.Biol., 3:

203-230; 2009.

389Gillies E R, Frechet J M J. pH-Responsive copolymer assemblies for controlled

release of doxorubicin. Bioconjugate Chem., 16: 361-368; 2005.

390 Zhang H, Mardyani S, Chan W C W, Kumacheva E. Design of biocompatible

chitosan microgels for targeted pH-mediated intracellular release of cancer

therapeutics. Biomacromolecules., 7: 1568-1572; 2006.

391 Li XM, Xu YL, Chen G G,Wei P, Ping Q N. PLGA Nanoparticles for the oral

delivery of 5-fluorouracil using high pressure homogenization-emulsification as

the preparation method and in vitro/in vivo studies. 34: 107-115; 2008.

392Cheng M R, Li Q, Wan T, He B, Han J,Chen H-X, Yang F-X, Wang W, Xu H-Z,

Ye T, Zha B-B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit

mouse hepatic cancer growth and its side effects. World J Gastroenterol.,18:

6076-6087; 2012.

393 Wilson B, Ambika T V, Patel R DK, Jenita J L, Priyadarshini S R B.

Nanoparticles based on albumin: preparation, characterization and the use for 5-

flurouracil delivery. Int. J. Biol. Macromol., 51: 874-878; 2012.

394 Lai L F, Guo H X. Preparation of new 5-fluorouracil-loaded zein nanoparticles

for liver targeting. Int. J. Pharm., 404: 317-323; 2011.

395 Zhang C, Li G,Wang Y, Cui F, Zhang J, Huang Q. Preparation and

characterization of 5-fluorouracil-loaded PLLA-PEG/PEG nanoparticles by a

novel supercritical CO2 technique. Int J Pharm., 439: 272-281; 2012.

396 Zhang T, Li G, Guo L,Chen H. Synthesis of thermo-sensitive CS-g-

PNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int. J. Biol.

Macromol., 51:1109-1115; 2012.

397 Yu B, Zhang Y, Zheng W, Fan C, Chen T. Positive surface charge enhances

selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg

Chem., 51: 8956-8963; 2012.

Page 42: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

158     Amrita Centre for Nanosciences and Molecular Medicine 

   

398 Wang J-B, Qi L-L, Zheng S-D, Wu T-X. Curcumin induces apoptosis through

the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci

B., 10: 93-102; 2009.

399 Wang X. The expanding role of mitochondria in apoptosis. Genes Dev., 15:

2922-2933; 2001.

400 Rashmi R, Santhosh K T R, Karunagaran D. Human colon cancer cells differ in

their sensitivity to curcumin-induced apoptosis and heat shock protects them by

inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett.,

538:19-24;2003.

401 Cao J, Liu Y, Jia L, Zhou H M, Kong Y, Yang G, Jiang L P, Li Q J, Zhong LF.

Curcumin induces apoptosis through mitochondrial hyperpolarization and

mtDNA damage in human hepatoma G2 cells. Free Radic. Biol. Med., 43:968-

975; 2007.

402 Sakoff JA, Ackland SP.Thymidylate synthase inhibition induces S-phase arrest,

biphasic mitochondrial alterations and caspase-dependent apoptosis in leukaemia

cells. Cancer Chemother Pharmacol., 46: 477-487; 2000.

403 Agarwal M L, Taylor W R, Chernov M V, Chernova O B, Stark G R. The p53

network. J Biol Chem., 273:1-4; 1998.

404 Yan D, Chen C, Gu J, Qin J. Nanoparticles of 5-fluorouracil (5-FU) loaded N-

succinyl-chitosan (Suc-Chi) for cancer chemotherapy: preparation,

characterization- in vitro drug release and antitumour activity. J. Pharm.

Pharmacol., 58:1177-1186; 2006.

405 Hitzman CJ, Wattenberg LW, Wiedmann TS. Pharmacokinetics of 5-fluorouracil

in the hamster following inhalation delivery of lipid-coated nanoparticles. J

Pharm Sci., 95:1196-1211; 2006.

406 Thomas AM, Kapanen A I, Hare J I, Ramsay E, Edwards K, Karlsson G, Bally

MB. Development of a liposomal nanoparticle formulation of 5-fluorouracil for

parenteral administration: formulation design, pharmacokinetics and efficacy. J

Control Release., 150: 212-219; 2011.

Page 43: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

159     Amrita Centre for Nanosciences and Molecular Medicine 

   

407 Yan C, Gu J, Guo Y, Chen D. In vivo biodistribution for tumor targeting of 5-

fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) nanoparticles. The

Pharm Soc Japan., 130: 801-804; 2010.

408 Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in

pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 99, 1107-1122; 2010

409 Ho D H, Townsend L, Luna M A, Bodey G P. Distribution and inhibition of

dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a

substrate. Anticancer Res., 6:781-784; 1986.

410 http://www.cancernetwork.com/review-article/biochemical-and-clinical-

pharmacology-5-fluorouracil.

411 Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specific

nanoparticles: theory to practice. Pharmacol. Rev., 53: 283-318; 2001.

412 Mastrobattista, E., Koning, G.A., Storm, G., 1999. Immunoliposomes for the

targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev., 40: 103–127; 1999.

413 Park, T.G., 1995. Degradation of poly (lactic-co-glycolic acid) microspheres:

effect of copolymer composition. Biomaterials., 16: 1123-1130; 1995.

414 Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K,

Menon D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell

nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta

Biomater., 10: 2112-2124; 2014.

415 Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R,Jiang G,Yan B. Perturbation of

physiological systems by nanoparticles. Chem. Soc. Rev., 43: 3762-3809; 2014.

416 Cheng L, Jin C, Lv W, Ding Q, Han X. Developing a highly stable PLGA-mPEG

nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PloS one.,

6: e25433; 2011. doi:10.1371/journal.pone.0025433.

417 Lim AYL, Segarra I, Srikumar Chakravarthi S, Akram S, John P Judson J P.

Histopathology and biochemistry analysis of the interaction between sunitinib and

paracetamol in mice. BMC Pharmacology., 2010, 10:14.

Page 44: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

160     Amrita Centre for Nanosciences and Molecular Medicine 

   

418 Diab K A E, Elmakawy A I, Abd-Elmoneim O M, Sharaf H A. Assessment of

genotoxicity and histopathological changes induced by polyethylene glycol (PEG

6000) in male mice. J Cytol Histol., 3: 1000153; 2012.

419 Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug

delivery systems - a review (part 1). Trop J Pharm Res., 12: 255-264; 2013.

420 Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on

the surface of tumor blood vessels. Cancer Res., 62: 6132-6140; 2002.

421 Yang R, Han X, Shia, X, Cheng G, Shim Ch, Cui F. Cationic formulation of

paclitaxel-loaded poly D,L-lactic-co-glycolic acid (PLGA) nanoparticles using an

emulsion-solvent diffusion method. Asian J. Pharmaceut. Sci., 4: 89-95; 2009.

422 Reddy Y D, Dhachinamoorthi D, Sekhar K B C. Formulation and in vitro

evaluation of antineoplastic drug loaded nanoparticles as drug delivery system.

Afr J Pharm. Pharmacol., 7: 1592-1604; 2013.

423Ehrig K, Kilinc M O, Chen N G, Stritzker J, Buckel L, Zhang Q, Szalay A A.

Growth inhibition of different human colorectal cancer xenografts after a single

intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med.,

11:79; 2013.

424 Guo J, Zhou A-W, Fu Y-C, Verma U-N, Tripathy D, Frenkel E P, Becerra C R.

Efficacy of sequential treatment of HCT116 colon cancer monolayers and

xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharm Sinic., 27

:1375-1381; 2006.

425 Bokacheva L, Kotedia K, Reese M, Ricketts S-A, Halliday J, Le1 C. H, Koutcher

J A, Carlin S. Response of HT29 colorectal xenograft model to cediranib assessed

with 18F-FMISO PET, dynamic contrast-enhanced and diffusion-weighted MRI.

NMR Biomed., 26: 151-163; 2013.

426 Fanciullino R, Giacometti S, Mercier C, Aubert C, Blanquicett C, Piccerelle P,

Ciccolini J. In vitro and in vivo reversal of resistance to 5-fluorouracil in

colorectal cancer cells with a novel stealth double-liposomal formulation. Brit J

Cancer., 97: 919- 926;2007.

Page 45: Chapter 5 CHAPTER 5 REFERENCES 1 Mateka JJL, Haniff MM ...shodhganga.inflibnet.ac.in/bitstream/10603/39150/15/15_chapter 5.pdf · Chapter 5 119 Amrita Centre for Nanosciences and

  Chapter 5

161     Amrita Centre for Nanosciences and Molecular Medicine 

   

427 Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D,

Mueser M, Harstrick A, Verslype C, et al.: Cetuximab monotherapy and

cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N

Engl J Med., 351 :337-345; 2004.

428 Folprecht G, Lutz MP, Schoffski P, Seufferlein T, Nolting A, Pollert P, Kohne

CH: Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination

for the first-line treatment of patients with epidermal growth factor receptor

expressing metastatic colorectal carcinoma. Ann Oncol., 17: 450-456; 2006.

429 Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer R J.Phase II

trial of cetuximab in patients with refractory colorectal cancer that expresses the

epidermal growth factor receptor.

430 Alyssa M Master, Anirban Sen Gupta. EGF receptor-targeted nanocarriers for

enhanced cancer treatment. Nanomedicine.,7:1895-1906; 2012.

431 Lee J J, Chu E. Sequencing of antiangiogenic agents in the treatment of

metastatic colorectal cancer. Clin Colorectal Canc., 2014: Article In Press.