96
Wave Properties of Matter and Quantum Mechanics I Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 5

CHAPTER 5 300 fall... · Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 5. Topics Fall 2018 Prof. Sergio B. Mendes 2 5.4 Wave Motion in Classical Physics 5.1 X-Ray Light Scattering 5.2

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Wave Properties of Matter and Quantum Mechanics I

    Fall 2018 Prof. Sergio B. Mendes 1

    CHAPTER 5

  • Topics

    Fall 2018 Prof. Sergio B. Mendes 2

    5.4 Wave Motion in Classical Physics

    5.1 X-Ray Light Scattering

    5.2 De Broglie Matter Waves

    5.3 Electron Scattering

    5.5 Waves or Particles

    5.6 Uncertainty Principle

    5.7 Probability, Wave Functions, and Copenhagen Interpretation

    5.8 Particle in a Box

  • 5.4 Wave Motion in Classical Physics

    Fall 2018 Prof. Sergio B. Mendes 3

  • 4Prof. Sergio B. MendesFall 2018

    Waves: propagation of energy, not particles

    electric and magnetic fieldssurface height

    pressure

    rope height

    𝜓(𝑥, 𝑡)

  • 5Prof. Sergio B. MendesFall 2018

    a pulse

    a wave train

    a continuous harmonic wave

    Different Waveforms:

  • 6Prof. Sergio B. MendesFall 2018

    Two Snapshots of a Wave Pulse

    𝑡 = 0

    𝜓 𝑥, 𝑡 = 0 = 𝑓 𝑥

    𝑡 ≥ 0

    𝜓 𝑥, 𝑡 = 𝑓 𝑥 − 𝑣 𝑡

    propagating with velocity v along the x-axis

    𝑓 𝑥 − 𝑣 𝑡

  • 7Prof. Sergio B. MendesFall 2018

    Propagation towards Positive x-direction

    𝜓 𝑥, 𝑡 = 𝑓 𝑥 − 𝑣 𝑡

    𝜓 𝑥, 𝑡 = 𝑓 𝑥 + 𝑣 𝑡

    Propagation towards Negative x-direction

    𝑣 > 0

    𝑣 > 0

  • 8Prof. Sergio B. MendesFall 2018

    𝜓(𝑥, 𝑡) = 𝑓 𝑥 − 𝑣 𝑡

    Fingerprint of the Wave Phenomena: 𝑥 − 𝑣 𝑡

    𝜓 𝑥, 𝑡 = 𝐴 𝑒−

    𝑥 − 𝑣 𝑡𝜎2

    2

    𝜓 𝑥, 𝑡 = 0 = 𝐴 𝑒−𝑥2

    𝜎2

    𝜓 𝑥, 𝑡 = 0 = 𝐴 𝑒−𝑥𝜎 𝜓 𝑥, 𝑡 = 𝐴 𝑒−

    𝑥 − 𝑣 𝑡𝜎

    𝜓 𝑥, 𝑡 = 0 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡

  • 9Prof. Sergio B. MendesFall 2018

    𝜓(𝑥, 𝑡) = 𝑓 𝑥 − 𝑣 𝑡

    𝜕2𝜓

    𝜕𝑥2=

    1

    𝑣2𝜕2𝜓

    𝜕𝑡2

    Appendix 1

  • 10Prof. Sergio B. MendesFall 2018

    Wave Equation: 𝜕2𝜓

    𝜕𝑥2=

    1

    𝑣2𝜕2𝜓

    𝜕𝑡2

    • 2nd order partial differential equation

    • Linear equation in 𝜓 : 𝜓, 𝜕𝛼𝜓, 𝜕𝛼2𝜓, …

    • Homogeneous equation: no term involving independent variables

    If 𝜓1 and 𝜓2 are solutions then a linear combination 𝛼 𝜓1 + 𝛽 𝜓2

    is also a solution equation.

  • 11Prof. Sergio B. MendesFall 2018

    Harmonic Wave Solution:

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡 + 𝜀

    𝜓 𝑥, 𝑡 = 𝐵 𝑠𝑖𝑛 𝑘 𝑥 − 𝑣 𝑡 + 𝜀′

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡 + 𝜀 + 𝐵 𝑠𝑖𝑛 𝑘 𝑥 − 𝑣 𝑡 + 𝜀′

    or

    or

    𝜓 𝑥, 𝑡 = ℛℯ 𝐴 𝑒𝑖 𝑘 𝑥−𝑣 𝑡 + 𝜀

    or

  • 12Prof. Sergio B. MendesFall 2018

    Wavelength in a Harmonic Wave:

    𝑡 = 𝑓𝑖𝑥𝑒𝑑

    𝑘 ≡2 𝜋

    𝜆

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡 + 𝜀

    𝑥

  • 13Prof. Sergio B. MendesFall 2018

    Period in a Harmonic Wave:

    𝑥 = 𝑓𝑖𝑥𝑒𝑑

    𝜏 ≡𝜆

    𝑣

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡 + 𝜀

    𝜏

    𝜏

    𝜏

    𝑡

    𝑘 𝑣 ≡2 𝜋

    𝜏or

  • 14Prof. Sergio B. MendesFall 2018

    Wave Speed

    𝑣 =𝜆

    𝜏𝜏

    𝜏

    𝜏

  • 15Prof. Sergio B. MendesFall 2018

    A Few Definitions:

    𝑘 ≡2 𝜋

    𝜆

    Wave Number

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝑣 𝑡 + 𝜀

    𝑓 ≡1

    𝜏

    Angular Frequency

    = 2 𝜋 𝑓

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝜔 𝑡 + 𝜀

    𝜔 ≡2 𝜋

    𝜏

    Frequency

    𝑣 =𝜆

    𝜏

    𝑣 =𝜔

    𝑘

  • 16Prof. Sergio B. MendesFall 2018

    𝜓 𝑥, 𝑡 = 𝐴 𝑐𝑜𝑠 𝑘 𝑥 − 𝜔 𝑡 + 𝜀

    = 𝐴 𝑐𝑜𝑠 𝜑 𝑥, 𝑡

    𝜑 𝑥, 𝑡 ≡ 𝑘 𝑥 − 𝜔 𝑡 + 𝜀Phase:

    Amplitude: 𝐴

  • 17Prof. Sergio B. MendesFall 2018

    Constant Phase and Phase Velocity

    𝜑 𝑥, 𝑡 ≡ 𝑘 𝑥 − 𝜔 𝑡 + 𝜀

    𝑑𝜑 𝑥, 𝑡 = 𝑘 𝑑𝑥 − 𝜔 𝑑𝑡

    𝑑𝜑 𝑥, 𝑡 = 0

    𝑑𝑥

    𝑑𝑡=𝜔

    𝑘=𝜆

    𝜏

    𝑘 𝑑𝑥 − 𝜔 𝑑𝑡 = 0

    𝑣𝑝ℎ =

  • 18Prof. Sergio B. MendesFall 2018

    Adding Two Waves with Same Wavelength and Frequency:

  • (Almost Completely) In Phase:

    Fall 2018 Prof. Sergio B. Mendes 19

    Constructive Interference

    𝜓1 = 𝑠𝑖𝑛 𝜃 𝜓2 = 𝑠𝑖𝑛 𝜃 +𝜋

    20

  • 20Prof. Sergio B. MendesFall 2018

    (Almost Completely) Out of Phase:

    Destructive Interference

    𝜓1 = 𝑠𝑖𝑛 𝜃 𝜓2 = 𝑠𝑖𝑛 𝜃 +𝜋

    20+ 𝜋

  • 21Prof. Sergio B. MendesFall 2018

    Interference

  • 22

    Wave Propagation Through Slits:

    One slit:

    Two slits:

    𝐼

    𝐼 ≡ 𝜓 2

    𝜓 = 𝜓1 + 𝜓2

    𝜓 =𝜓0 𝑒

    𝑖 𝑘 𝑟 − 𝜔 𝑡

    𝑟

    𝜓1 =𝜓01 𝑒

    𝑖 𝑘 𝑟1− 𝜔 𝑡

    𝑟1

    𝜓2 =𝜓02 𝑒

    𝑖 𝑘 𝑟2−𝜔 𝑡

    𝑟2

  • 23Prof. Sergio B. MendesFall 2018

    Interference of Waves:

    Both slits open

    Only one slit open

    𝐼

    𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =𝑝𝑜𝑤𝑒𝑟

    𝑎𝑟𝑒𝑎= 𝐼 Ԧ𝑟 ≡ 𝜓 Ԧ𝑟, 𝑡 2

  • 24

    𝐼 Ԧ𝑟 = 𝜓 Ԧ𝑟, 𝑡 2 = 𝐼1 + 𝐼2 + 2 𝐼1 𝐼2 𝑐𝑜𝑠 𝑘 𝑟1 − 𝑟2 + 𝜀1 − 𝜀2

    ൗ−𝑎 2

    𝑠

    𝑌

    𝑅

    𝜃

    Phase Difference in Young’s Interferometer

    ൗ𝑎 2

    Λ =𝜆 𝑅

    𝑎

    Λ

    𝜓 Ԧ𝑟, 𝑡 = 𝜓1 Ԧ𝑟, 𝑡 + 𝜓2 Ԧ𝑟, 𝑡

    𝑟1 − 𝑟2 ≅ 𝑎 𝑠𝑖𝑛 𝜃 = 𝑎𝑌

    𝑅

    𝑟1

    𝑟2

  • 25Prof. Sergio B. MendesFall 2018

    Diffraction:

    𝜓 = 𝜓1 + 𝜓2 +⋯ =

    𝑖

    𝜓𝑖

    Interference:

    𝜓 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝜓𝑖 𝑑𝑎𝑖

  • 26Prof. Sergio B. MendesFall 2018

    𝜓 Ԧ𝑟, 𝑡 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝜓0 𝑒𝑖 𝑘 𝑟 − 𝜔 𝑡

    𝑟𝑑𝑦 𝑑𝑧

  • 27

    Single Slit

    𝑠

    𝑌

    𝑦

    𝑅

    𝑑

    𝜓 𝑌, 𝑡 =𝜓0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    − ൗ𝑑 2

    + ൗ𝑑 2

    𝑒− 𝑖𝑘 𝑌𝑅 𝑦𝑑𝑦

    𝜃

    𝑦

    𝑧

    𝑑

    𝑟 = 𝑠2 + 𝑌 − 𝑦 2 = 𝑅2 + 𝑦2 − 2 𝑦 𝑌 ≅ 𝑅 −𝑦 𝑌

    𝑅

    𝑟

    =𝜓0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅

    𝑠𝑖𝑛𝑘 𝑌 𝑑2 𝑅

    𝑘 𝑌 𝑑2 𝑅

  • 28

    Single Slit, cont.

    𝐼 𝑌 = 𝜓 2 = 𝐼0

    𝑠𝑖𝑛𝑘 𝑌 𝑑2 𝑅

    𝑘 𝑌 𝑑2 𝑅

    2

    𝑘 𝑌𝑚 𝑑

    2 𝑅= 𝑚 𝜋

    𝑚 = ±1, ±2,±3

    𝑌𝑚 = 𝑚𝜆 𝑅

    𝑑

    𝑌𝑚𝑅= 𝑠𝑖𝑛 𝜃𝑚 = 𝑚

    𝜆

    𝑑

    𝑌(𝑚𝑚)

    𝑌1

    ൗ𝐼 𝑌 𝐼0

    zeros at

    geometrical shadow

    𝑌−1

    with

    𝑠𝑖𝑛 𝜃1 =𝜆

    𝑑

  • 29Prof. Sergio B. MendesFall 2018

    ∆ 𝑠𝑖𝑛 𝜃 ≅ ∆𝜃 ≥𝜆

    𝑑

    After diffraction, the wave spreads over a range of angles:

  • 30Prof. Sergio B. MendesFall 2018

    PhET

    https://phet.colorado.edu/en/simulation/wave-interference

  • 31Prof. Sergio B. MendesFall 2018

    𝑎

    𝑌

    𝑅

    𝜃

    Λ =𝜆 𝑅

    𝑎

    Λ

    𝜓 Ԧ𝑟, 𝑡 2 ≡ 𝐼 = 𝐼1 + 𝐼2 + 2 𝐼1 𝐼2 𝑐𝑜𝑠 2 𝜋𝑎 𝑌

    𝜆 𝑅+ 𝜀1 − 𝜀2

    𝜓 Ԧ𝑟, 𝑡 = 𝜓1 Ԧ𝑟, 𝑡 + 𝜓2 Ԧ𝑟, 𝑡

    Interference

  • 32Prof. Sergio B. MendesFall 2018

    PhET

    https://phet.colorado.edu/en/simulation/wave-interference

  • 33Prof. Sergio B. MendesFall 2018

    Diffraction

    𝜓 2 ≡ 𝐼 = 𝐼0

    𝑠𝑖𝑛𝜋 𝑌 𝑑𝜆 𝑅

    𝜋 𝑌 𝑑𝜆 𝑅

    2

    𝜓 Ԧ𝑟, 𝑡 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝜓0 𝑒𝑖 𝑘 𝑟 − 𝜔 𝑡

    𝑟𝑑𝑦 𝑑𝑧

    𝑑

    𝑌

    𝑅

    ∆𝜃 ≥𝜆

    𝑑

  • 34Prof. Sergio B. MendesFall 2018

    Adding Two Waves of Different Frequencies

    (therefore, Different Wavelengths)

  • 35Prof. Sergio B. MendesFall 2018

    Adding Two Waves:

    𝑘 ≡1

    2𝑘1 + 𝑘2

    𝜔 ≡1

    2𝜔1 + 𝜔2

    𝜀 ≡1

    2𝜀1 + 𝜀2

    ∆𝑘 ≡1

    2𝑘1 − 𝑘2

    ∆𝜔 ≡1

    2𝜔1 − 𝜔2

    ∆𝜀 ≡1

    2𝜀1 − 𝜀2

    𝜓 𝑥, 𝑡 = 2 𝜓0 𝑐𝑜𝑠 𝑘 𝑥 − 𝜔 𝑡 + 𝜀 𝑐𝑜𝑠 𝑥 ∆𝑘 − 𝑡 ∆𝜔 + ∆𝜀

    𝜓0,1 = 𝜓0,2 = 𝜓0

    Appendix 2

  • 𝑘 𝑥 − 𝜔 𝑡 + 𝜀 = 𝜑

    𝑥 ∆𝑘 − 𝑡 ∆𝜔 + ∆𝜀 = 𝜑𝑚

    𝑣𝑝ℎ =𝜔

    𝑘

    𝑣𝑔𝑟 =𝑑𝜔

    𝑑𝑘

    phase velocity

    group velocity36

    𝜓 𝑥, 𝑡 = 2 𝜓0 𝑐𝑜𝑠 𝑘 𝑥 − 𝜔 𝑡 + 𝜀 𝑐𝑜𝑠 𝑥 ∆𝑘 − 𝑡 ∆𝜔 + ∆𝜀

  • 37Prof. Sergio B. MendesFall 2018

    Fourier Theory

  • 38Prof. Sergio B. MendesFall 2018

    Harmonic Function

    𝜓 𝑡 = 𝐴 𝑒 𝑖 𝑘 𝑧 − 𝜔 𝑡

    One harmonic function extends all the way from

    −∞ to +∞

    Can we use Harmonic Functions to build a Spatially Confined Function ?

    ∆ 𝑡

  • 39Prof. Sergio B. MendesFall 2018

    𝑓 𝑥 =1

    2 𝜋න−∞

    𝐹 𝑘𝑥 𝑒− 𝑖 𝑘𝑥 𝑥 𝑑𝑘𝑥

    𝑓(𝑡) =1

    2 𝜋න−∞

    𝐹 𝜔 𝑒− 𝑖 𝜔 𝑡 𝑑𝜔

    Fourier Analysis

    𝐹 𝑘𝑥 = න−∞

    𝑓 𝑥′ 𝑒+ 𝑖 𝑘𝑥 𝑥′𝑑𝑥′

    𝐹 𝜔 = න−∞

    𝑓 𝑡′ 𝑒+ 𝑖 𝜔 𝑡′𝑑𝑡′

  • 𝑇

    2

    Example 1: Top Hat Function

    𝑓 𝑡

    𝑡

    −𝑇

    2≤ 𝑡 ≤

    +𝑇

    2when

    otherwise

    𝑓 𝑡 =

    𝐴

    0

    40

  • 𝜔𝑚 𝑇

    2= 𝑚 𝜋

    𝑚 = ±1,±2,±3, …

    at 𝐹 𝜔 = 0

    𝐹 𝜔 = 𝐴 𝑇 𝑠𝑖𝑛𝑐𝜔 𝑇

    2

    𝜔+1 − 𝜔−1 =4 𝜋

    𝑇𝑇 ∆𝜔 ≈ 4 𝜋

    𝐹 𝜔 = න−𝑇2

    +𝑇2𝐴 𝑒+ 𝑖 𝜔 𝑡

    ′𝑑𝑡′

    41

  • 𝑓(𝑡) =1

    2 𝜋න−∞

    𝐴 𝑇 𝑠𝑖𝑛𝑐𝜔 𝑇

    2𝑒− 𝑖 𝜔 𝑡 𝑑𝜔

    𝐹 𝜔 = 𝐴 𝑇 𝑠𝑖𝑛𝑐𝜔 𝑇

    2

    −𝑇

    2≤ 𝑡 ≤

    +𝑇

    2when

    otherwise𝑓 𝑡 =

    𝐴

    0

    42

    =1

    𝜋න0

    𝐴 𝑇 𝑠𝑖𝑛𝑐𝜔 𝑇

    2𝑐𝑜𝑠(𝜔 𝑡) 𝑑𝜔

    even function

  • 43Prof. Sergio B. MendesFall 2018

    𝑓 𝑡

    𝑡

    𝐹 𝜔

    𝜔

    2 ∆𝜔2 ∆𝑡

    Truncated Cosine Function:

    ∆𝑡 ∆𝜔 ≈ 𝜋𝑓 𝑡 =

    −𝑇

    2≤ 𝑡 ≤

    +𝑇

    2when

    otherwise

    𝐴 cos 𝜔𝑜 𝑡

    0

  • 44Prof. Sergio B. MendesFall 2018

    Gaussian Function:

    ∆𝑥 ∆𝑘𝑥 ≈1

    2

    𝐹 𝑘𝑥

    𝑓 𝑥

    𝑓 𝑥 = 𝑒− ∆𝑘2 𝑥2 𝑐𝑜𝑠 𝑘𝑜 𝑥

    𝑘𝑥

  • 45Prof. Sergio B. MendesFall 2018

    In Summary, Fourier Theory gives us:

  • 46Prof. Sergio B. MendesFall 2018

    ∆𝑡 ∆𝜔 ≥1

    2

    𝑓 𝑡 = 𝜓 𝑧𝑜, 𝑡

    𝐹 𝜔

    𝜓 𝑧, 𝑡 =1

    2 𝜋න−∞

    𝐹 𝜔 𝑒 𝑖 𝑘 𝑧 − 𝜔 𝑡 𝑑𝜔

    𝑧

    A wave of finite time duration can never be monochromatic !!

    𝜓 𝑧, 𝑡 = 𝐴 𝑒 𝑖 𝑘 𝑧 − 𝜔 𝑡

  • 47Prof. Sergio B. MendesFall 2018

    ∆𝑥 ∆𝑘𝑥 ≥1

    2

    𝜓 𝑥, 𝑧, 𝑡 =1

    2 𝜋න−∞

    𝐹 𝑘𝑥 𝑒𝑖 𝑘𝑥 𝑥 + 𝑘𝑧 𝑧 − 𝜔 𝑡 𝑑𝑘𝑥

    𝑘𝑥2 + 𝑘𝑧

    2 = 𝑘2 =2 𝜋

    𝜆

    2

    𝑧

    𝑥

    Lateral confinement of a wave leads to divergence !!

    𝑘𝑥

    𝑘𝑧

    𝑘𝑥 =2 𝜋

    𝜆𝑠𝑖𝑛 𝜃

    𝜃

    𝒌 =2 𝜋

    𝜆ො𝒆𝑧

    𝒌

    𝜓 𝑧, 𝑡 = 𝐴 𝑒 𝑖 𝑘 𝑧 − 𝜔 𝑡

  • 5.1 X-Ray Scattering

    Fall 2018 Prof. Sergio B. Mendes 48

    • Max von Laue suggested that if x rays were a form of electromagnetic radiation, interference effects should be observed.

    • Crystals act as three-dimensional gratings, scattering the waves and producing observable interference effects.

  • X-Ray Scattering and Bragg’s Law

    Fall 2018 Prof. Sergio B. Mendes 49

    • William Lawrence Bragg interpreted the x-ray scattering as the re-emission of the incident x-ray beam from a unique set of planes of atoms within the crystal.

  • Bragg’s Law

    Fall 2018 Prof. Sergio B. Mendes 50

    • There are two conditions for constructive interference of the scattered x-rays by a crystal:

    1) The angle of incidence must equal the angle of reflection of the outgoing wave.

    2) The difference in path lengths must be an integral number of wavelengths:

    𝑛 𝜆 = 2 𝑑 𝑠𝑖𝑛 𝜃 𝑛 = 1, 2, 3, …

  • Fall 2018 Prof. Sergio B. Mendes 51

    𝑛 𝜆 = 2 𝑑 𝑠𝑖𝑛 𝜃

  • DNA

    Fall 2018 Prof. Sergio B. Mendes 52

    Rosalind Franklin produced the X-ray diffraction images of the DNA molecule that helped Watson and Crick unravel the DNA structure.

  • X-Ray Diffraction Nowadays

    Fall 2018 Prof. Sergio B. Mendes 53

  • 5.2 de Broglie Waves, 1920

    Fall 2018 Prof. Sergio B. Mendes 54

  • For Electromagnetic Waves:

    Fall 2018 Prof. Sergio B. Mendes 55

    𝐸 = 𝑝 𝑐 = ℎ 𝑓

    𝐸 = ℎ 𝑓

    𝐸 = 𝑝 𝑐

    𝑝 =ℎ 𝑓

    𝑐=

    𝜆

    • According to Special Relativity, and m = 0:

    • According to Planck, Einstein, Compton, etc:

    𝑝 =ℎ

    𝜆

  • Fall 2018 Prof. Sergio B. Mendes 56

    𝜆 =ℎ

    𝑝

    • Maybe matter also behaves like waves.

    • With the wavelength given by:

    de Broglie Hypothesis:

    𝑝 =1

    𝑐𝐸𝑡𝑜𝑡𝑎𝑙

    2 − 𝑚 𝑐2 2

    ≅ 2𝑚 𝐾 𝐾 ≪ 𝑚 𝑐2when

  • Example 5.2

    Fall 2018 Prof. Sergio B. Mendes 57

    𝑚 = 57 𝑔

    𝑣 = 25 𝑚/𝑠

    𝜆 =ℎ

    𝑝

    =6.63 × 10−34 𝐽 𝑠

    57 × 10−3 𝑘𝑔 25 𝑚/𝑠

    = 4.7 × 10−34 𝑚

    𝐾 = 50 𝑒𝑉

    (56 mph) 𝜆 =ℎ

    𝑝≅

    2 𝑚 𝐾

    Tennis ball Electron

    = 0.17 𝑛𝑚

    =ℎ 𝑐

    2 𝑚 𝑐2 𝐾

    =1240 𝑒𝑉 𝑛𝑚

    2 × 0.511 × 106 𝑒𝑉 50 𝑒𝑉

  • Fall 2018 Prof. Sergio B. Mendes 58

    𝜆 =ℎ

    𝑝

    de Broglie Wavelength

    𝑝 =1

    𝑐𝐸𝑡𝑜𝑡𝑎𝑙

    2 − 𝑚 𝑐2 2

    ≅ 2𝑚 𝐾 𝐾 ≪ 𝑚 𝑐2when

    =𝐸𝑡𝑜𝑡𝑎𝑙𝑐

    =ℎ 𝑓

    𝑐𝑚 = 0when (e.g., photons)

    (e.g., non-relativistic particles)

  • 5.3 Electron Scattering, 1925

    Fall 2018 Prof. Sergio B. Mendes 59

    Clinton J. Davisson (1881–1958) isshown here in 1928 (right) lookingat the electronic diffraction tubeheld by Lester H. Germer (1896–1971). Davisson received hisundergraduate degree at theUniversity of Chicago and hisdoctorate at Princeton. Theyperformed their work at BellTelephone Laboratory located inNew York City. Davisson receivedthe Nobel Prize in Physics in 1937.

  • Electron Scattering

    Fall 2018 Prof. Sergio B. Mendes 60

  • Fall 2018 Prof. Sergio B. Mendes 61

  • Transmission Electron Microscope diffraction photographs

    Fall 2018 Prof. Sergio B. Mendes 62

    120-keV electrons scattered on the

    quasicrystal Al80Mn20.

    Electron diffraction pattern on beryllium.

    The dots in (a) indicate that the sample was a crystal, whereas the rings in (b) indicate that a randomly

    oriented sample (or powder) was used.

  • 63Prof. Sergio B. MendesFall 2018

    Scanning Electron Microscope

  • Combining Bohr’s Quantization of the Angular Momentum 𝐿 = 𝑛 ℏ

    & de Broglie Matter Waves 𝑝 =ℎ

    𝜆

    Fall 2018 Prof. Sergio B. Mendes 64

    𝐿 = 𝑛 ℏ𝑝 𝑟 =ℎ

    𝜆𝑟 =

    2 𝜋 𝑟 = 𝑛 𝜆

  • 65Prof. Sergio B. MendesFall 2018

    5.5 Wave or Particle ?

  • 66Prof. Sergio B. MendesFall 2018

    Interference with Wave-Particle:

  • 67Prof. Sergio B. MendesFall 2018

    Young’s Interference with the Photon Wave-Particle:

    𝜓 2

    𝜓 = 𝜓1 + 𝜓2

  • 68Prof. Sergio B. MendesFall 2018

  • 69Prof. Sergio B. MendesFall 2018

    Demonstration of electron interference using two slits similar in concept to Young’s double-slit experiment for light.

    The result by Claus Jönsson(1961) clearly shows that electrons exhibit wave behavior.

    Young’s Interference with the Electron Wave-Particle:

  • 70Prof. Sergio B. MendesFall 2018

    Experimental Facts:

    wave-particle

    • The interference pattern only appears when both slits are opened.

    • The wave-particle (photon, electron, …) cannot be divided.

    • One wave-particle passes through only one slit.

    • An experiment to locate in which slit the wave-particle passed through destroys the interference pattern.

  • 71Prof. Sergio B. MendesFall 2018

    Copenhagen Interpretation

  • 72Prof. Sergio B. MendesFall 2018

    There is a wave-function 𝜓 associated with each possible path allowed for

    the wave-particle.

    The 𝜓 2 determines the probability of finding a particle at a given place and time.

    The interference pattern comes from the interference of the individual wave-functions

    associated with each path: 𝜓1 + 𝜓22.

    The average number of wave-particles 𝑁 is proportional to 𝜓 2. It’s a statistical value,

    therefore, non-deterministic.

  • 73Prof. Sergio B. MendesFall 2018

    Diffraction with Wave-Particles:

    The wavelength 𝜆 of the wave-function 𝜓 is

    determined by the de Broglie relation: 𝜆 =ℎ

    𝑝.

  • 74Prof. Sergio B. MendesFall 2018

    ∆ 𝑠𝑖𝑛 𝜃 ≅ ∆𝜃 ≥𝜆

    𝐿

    After diffraction, the wave-function spreads over a range of angles:

    𝐿

    𝜆∆𝜃 ≥ 1

    𝐿ℎ

    𝜆∆𝜃 ≥ ℎ𝐿 ∆𝑝 =

    ∆𝑥 ∆𝑝𝑥 ≥ ℎ

    𝐿 𝑝 ∆𝜃 =

    𝐿

    𝜓, 𝜆

    ∆𝜃

    𝑝 =ℎ

    𝜆

  • 75Prof. Sergio B. MendesFall 2018

    There is a fundamental limitation in the simultaneous knowledge of

    position and linear momentum

    ∆𝑥 ∆𝑝𝑥 ≥ ℎ

    𝐿 = ∆𝑥

    ∆𝑝𝑥

    𝑝

  • 76Prof. Sergio B. MendesFall 2018

    ∆𝑝𝑥 = 2 𝑝 𝑠𝑖𝑛 𝜃

    𝑝 =ℎ

    𝜆

    When we attempt to find the position of an electron:

    ∆𝑥 =𝜆

    𝑠𝑖𝑛 𝜃′

    ∆𝑥 ∆𝑝𝑥 ≈ 2 ℎ

    = 2ℎ

    𝜆𝑠𝑖𝑛 𝜃

  • 77Prof. Sergio B. MendesFall 2018

    5.6 Heisenberg Uncertainty Principle

    ∆𝑡 ∆𝜔 ≥1

    2

    ∆𝑥 ∆𝑘𝑥 ≥1

    2∆𝑥 ∆𝑝𝑥 ≥

    2

    ∆𝑡 ∆𝐸 ≥ℏ

    2

  • 78Prof. Sergio B. MendesFall 2018

    In Classical Physics:

    • The position and linear momentum of a particle can be known simultaneously with absolute precision.

    • The Classical Laws (e.g., Newton’s Law) unambiguously describe (deterministically) the evolution of a particular system.

    • The combination of deterministic laws with the absolute knowledge of the initial conditions (e.g., position and linear momentum) allows one to completely and precisely predict the future.

  • 79Prof. Sergio B. MendesFall 2018

    In Quantum Physics:

    • There is a fundamental limitation on the simultaneous knowledge (through measurement) of a particular experimental variable and its associated (conjugated) variable:

    ∆𝑥 ∆𝑝𝑥 ≥ℏ

    2∆𝑡 ∆𝐸 ≥

    2

  • 80Prof. Sergio B. MendesFall 2018

    Consequences:

    (Non-Relativistic) Minimum Kinetic Energy

    ∆𝑝𝑥 ≥ℏ

    2 ∆𝑥

    𝐾 =𝑝𝑥

    2

    2 𝑚≅

    ∆𝑝𝑥2

    2 𝑚≥

    ℏ2

    8 𝑚 ∆𝑥2

  • 81Prof. Sergio B. MendesFall 2018

    5.7 Wave Functions and Probability

  • 82Prof. Sergio B. MendesFall 2018

    𝜖𝑜 𝑐 𝐸2 = 𝐼 = 𝑁 ℎ 𝑓

    𝑁 =𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

    𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 × 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

    𝐸 2 ∝ 𝑁 ∝ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

    𝑒𝑛𝑒𝑟𝑔𝑦

    𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 × 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒= 𝐼 =

    𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

    𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 × 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒× ℎ 𝑓

    For the Photon Wave-Particle:

  • 83Prof. Sergio B. MendesFall 2018

    𝜓 2 ∝ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

    For Any Wave-Particle:

    • The probability describes the likelihood of occurrence of an event, but it does not guarantee its occurrence.

    • By using the Wave-Function, 𝜓(𝑥, 𝑡), we are adopting a non-deterministic description of nature.

  • 84Prof. Sergio B. MendesFall 2018

    5.8 Wave-Particle in a Box

    𝜓 𝑥 = 𝐴 𝑠𝑖𝑛(𝑘 𝑥)

    𝑘 𝑙 = 𝑛 𝜋 𝑘 = 𝑛𝜋

    𝑙

    𝑝𝑛 =ℎ

    𝜆

    = 𝑛2ℎ2

    8 𝑚 𝑙2

    𝜓 𝑥 2 = 𝐴 2𝑠𝑖𝑛2(𝑘 𝑥)

    = 𝑛ℏ 𝜋

    𝑙

    𝐾𝑛 =𝑝𝑛

    2

    2 𝑚

    Linear Momentum

    Kinetic Energy

    = ℏ 𝑘

  • 85Prof. Sergio B. MendesFall 2018

    Appendix 1

  • 86Prof. Sergio B. MendesFall 2018

    𝜓(𝑥, 𝑡) = 𝑓 𝑥 − 𝑣 𝑡 ≡ 𝑓 𝛼

    𝜕2𝜓

    𝜕𝑥2=

    1

    𝑣2𝜕2𝜓

    𝜕𝑡2

    𝛼 ≡ 𝑥 − 𝑣 𝑡

    𝜕𝜓

    𝜕𝑥=𝜕𝛼

    𝜕𝑥

    𝜕𝜓

    𝜕𝛼= 1

    𝜕𝜓

    𝜕𝛼=𝑑𝑓

    𝑑𝛼

    𝜕𝜓

    𝜕𝑡=𝜕𝛼

    𝜕𝑡

    𝜕𝜓

    𝜕𝛼= − 𝑣

    𝜕𝜓

    𝜕𝛼= − 𝑣

    𝑑𝑓

    𝑑𝛼

    𝜕2𝜓

    𝜕𝑥2=

    𝜕

    𝜕𝑥

    𝜕𝜓

    𝜕𝑥=𝜕𝛼

    𝜕𝑥

    𝜕

    𝜕𝛼

    𝑑𝑓

    𝑑𝛼= 1

    𝑑

    𝑑𝛼

    𝑑𝑓

    𝑑𝛼=𝑑2𝑓

    𝑑𝑥2

    𝜕2𝜓

    𝜕𝑡2=

    𝜕

    𝜕𝑡

    𝜕𝜓

    𝜕𝑡=𝜕𝛼

    𝜕𝑡

    𝜕

    𝜕𝛼− 𝑣

    𝑑𝑓

    𝑑𝛼= − 𝑣

    𝑑

    𝑑𝛼− 𝑣

    𝑑𝑓

    𝑑𝛼= 𝑣2

    𝑑2𝑓

    𝑑𝑥2= 𝑣2

    𝜕2𝜓

    𝜕𝑥2

  • 87Prof. Sergio B. MendesFall 2018

    Appendix 2

  • 𝜓1 𝑥, 𝑡 = 𝜓0,1 𝑐𝑜𝑠 𝑘1 𝑥 − 𝜔1 𝑡 + 𝜀1

    𝜓2 𝑥, 𝑡 = 𝜓0,2 𝑐𝑜𝑠 𝑘2 𝑥 − 𝜔2 𝑡 + 𝜀2

    𝜓 𝑥, 𝑡 = 𝜓1 𝑥, 𝑡 + 𝜓2 𝑥, 𝑡

    88

    Two waves with different frequencies (and wavelengths):

  • 𝜓1 𝑥, 𝑡 = 𝑎 + 𝑏 𝑐𝑜𝑠 𝐴 + 𝐵

    𝐴 ≡1

    2𝑘1 + 𝑘2 𝑥 −

    1

    2𝜔1 + 𝜔2 𝑡 +

    1

    2𝜀1 + 𝜀2

    𝐵 ≡1

    2𝑘1 − 𝑘2 𝑥 −

    1

    2𝜔1 −𝜔2 𝑡 +

    1

    2𝜀1 − 𝜀2

    𝜓2 𝑥, 𝑡 = 𝑎 − 𝑏 𝑐𝑜𝑠 𝐴 − 𝐵

    𝑎 ≡1

    2𝜓0,1 + 𝜓0,2

    𝑏 ≡1

    2𝜓0,1 − 𝜓0,2

    89

  • 𝜓 𝑥, 𝑡 = 𝜓1 𝑥, 𝑡 + 𝜓2 𝑥, 𝑡

    = 𝑎 + 𝑏 𝑐𝑜𝑠 𝐴 + 𝐵 + 𝑎 − 𝑏 𝑐𝑜𝑠 𝐴 − 𝐵

    = 𝑎 𝑐𝑜𝑠 𝐴 + 𝐵 + 𝑐𝑜𝑠 𝐴 − 𝐵 + 𝑏 𝑐𝑜𝑠 𝐴 + 𝐵 − 𝑐𝑜𝑠 𝐴 − 𝐵

    = 2 𝑎 𝑐𝑜𝑠 𝐴 𝑐𝑜𝑠 𝐵 − 2 𝑏 𝑠𝑖𝑛 𝐴 𝑠𝑖𝑛 𝐵

    90

  • Same Amplitude

    𝑎 ≡1

    2𝜓0,1 + 𝜓0,2 = 𝜓0

    𝑏 ≡1

    2𝜓0,1 − 𝜓0,2 = 0

    𝜓0,1 = 𝜓0,2 = 𝜓0

    𝜓 𝑥, 𝑡 = 2 𝑎 𝑐𝑜𝑠 𝐴 𝑐𝑜𝑠 𝐵

    = 2 𝜓0 𝑐𝑜𝑠1

    2𝑘1 + 𝑘2 𝑥 −

    1

    2𝜔1 + 𝜔2 𝑡 +

    1

    2𝜀1 + 𝜀2

    𝑐𝑜𝑠1

    2𝑘1 − 𝑘2 𝑥 −

    1

    2𝜔1 − 𝜔2 𝑡 +

    1

    2𝜀1 − 𝜀2

    91

  • 𝑘 ≡1

    2𝑘1 + 𝑘2 𝜔 ≡

    1

    2𝜔1 + 𝜔2 𝜀 ≡

    1

    2𝜀1 + 𝜀2

    ∆𝑘 ≡1

    2𝑘1 − 𝑘2 ∆𝜔 ≡

    1

    2𝜔1 − 𝜔2 ∆𝜀 ≡

    1

    2𝜀1 − 𝜀2

    𝜓 𝑥, 𝑡 = 2 𝜓0 𝑐𝑜𝑠 𝑘 𝑥 − 𝜔 𝑡 + 𝜀 𝑐𝑜𝑠 𝑥 ∆𝑘 − 𝑡 ∆𝜔 + ∆𝜀

    92

    𝜓0,1 = 𝜓0,2 = 𝜓0

  • 93Prof. Sergio B. MendesFall 2018

    Appendix 3

  • 94Prof. Sergio B. MendesFall 2018

    Group Velocity of Wave-Particles

  • 95Prof. Sergio B. MendesFall 2018

    𝑣𝑔 =𝑑𝜔

    𝑑𝑘

    𝐸 = 𝐾 +𝑚 𝑐2

    𝑝 =ℎ

    𝜆= ℏ 𝑘

    𝐸 = ℎ 𝑓 = ℏ 𝜔

    =𝑑 ℏ 𝜔

    𝑑 ℏ 𝑘=𝑑𝐸

    𝑑𝑝

    𝐸𝑛𝑟 ≅𝑝2

    2 𝑚+𝑚 𝑐2

    =𝑝

    𝑚

    Group Velocity: non-relativistic case

    ≅𝑑𝐸𝑛𝑟𝑑𝑝

  • 96Prof. Sergio B. MendesFall 2018

    𝑣𝑔 =𝑑𝜔

    𝑑𝑘=𝑑 ℏ 𝜔

    𝑑 ℏ 𝑘=𝑑𝐸

    𝑑𝑝

    𝐸2 = 𝑝2 𝑐2 +𝑚2 𝑐4

    = 𝛽 𝑐=𝑝 𝑐2

    𝐸

    2 𝐸 𝑑𝐸 = 2 𝑝 𝑐2 𝑑𝑝

    Group Velocity: general case

    = 𝛾2 𝑚2 𝑐4

    1 =𝑝2 𝑐2

    𝐸2+

    1

    𝛾21 −

    1

    𝛾2=𝑝2 𝑐2

    𝐸2𝛽2 =

    𝑝2 𝑐2

    𝐸2