Chapter 4 Structures of Solids

Embed Size (px)

Citation preview

  • 8/10/2019 Chapter 4 Structures of Solids

    1/51

    CHAPTER 4 STRUCTURES OF SOLIDS

    4.1 Introduction1

    4.2 Model Cryt!l Structure..2

    4.2.1 Bonding in Solids24.2.2 Atomic Packing...34.2.3 The Unit Cell.. 44.2.4 Typology of Cystal St!ct!es.. "

    4." T#e Ionic Model. #

    4.3.1 The $adi!s $atio Paamete... #4.3.2 %lectonegati&ity and Cystal St!ct!e.1'4.3.3 (attice %negy...11

    4.4 Cryt!l Structure1"

    4.4.1 )etallic %lements and Alloys... 1"4.4.2 )etal Salts 1*4.4.3 )etal +,ides.224.4.4 )etal -ydo,o and -ydated Compo!nds...244.4." )etal Silicates...314.4. )etal S!lfides...32

    4.$ Molecul!r Or%it!l T#eory !nd t#e &!nd Model o' Solid... 33

    4.".1 )olec!la +/itals and %negy Bands..334.".2 )etals0 ns!latos0 and Semicond!ctos... 344.".3 ntinsic and %,tinsic Semicond!ctos... .3"4.".4 The emi (e&el in a Solid... 3

    4.( Electronic Structure o' Solid... 3*

    4..1 )olec!la +/ital%negy Band )odels.. 3*4..2 %lectonic St!ct!es of )etal +,ides..34..3 %lectonic St!ct!es of )etal S!lfides41

    555555555555555555555555555555555555555555555555555555555555555555555555

    4.1 Introduction

    n a6!eo!s pocessing0 o! pimay concen is 7ith sol!tion8/ased eactions0 and

    the key eagents ae applied mostly in the fom of dissol&ed a6!eo!s species. t is

    impotant to emem/e0 ho7e&e0 that in many of the eactions of inteest0 7e enco!nte

    eactants ando pod!cts in the solid phase. n this connection0 it is 7othy of note that1

  • 8/10/2019 Chapter 4 Structures of Solids

    2/51

    the ma9oity of the elements :; #'e shall see that the

    s!face popeties and eacti&ities of solids ae intimately connected 7ith the /!lk cystal

    and electonic st!ct!es.

    >e /egin this chapte /y consideing the types of /onding that e,ist in solids. >ethen t!n o! attention to the geometical aangements of the /onded atoms in space.

    om a consideation of the !les that go&en the packing of e6!al8si?ed sphees0 7e

    identify the /asic !nits that constit!te the /!ilding /locks fo cystal st!ct!es. >ith the

    aid of these /!ilding /locks0 7e e&ie7 the cystal st!ct!es of epesentati&e solids.

    inally0 7e disc!ss electonic st!ct!es of solids0 !sing molec!la o/ital theoy as o!

    stating point.

    2

  • 8/10/2019 Chapter 4 Structures of Solids

    3/51

    4.2 Model Cryt!l Structure

    4.2.1 &ondin) in Solid

    >e sa7 in Chaptes 2 and 3 that0 accoding to molec!la o/ital theoy0 a co&alent

    molec!le o a metal8ligand comple, foms its molec!la o/itals /y com/ining the atomic

    o/itals of the constit!ent atoms. Similaly0 7e can teat a solid paticle as a giant

    molecule consisting of an e,temely lage n!m/e of molec!la o/itals. >e ecall

    f!the fom Chaptes 2 and 3 that 7e can teat molec!la o/itals of a polyatomicmolec!le fom t7o e,teme points of &ie70 i.e.0 the locali?ed and delocali?ed /ond

    models. Both models ae !sef!l in the disc!ssion of solid st!ct!es. >ith the locali?ed

    /ond appoach0 7e can imagine a sit!ation 7hee one of the /onded atoms da7s the

    shaed electons completely to itself. This 7ill es!lt in a completely ionic /ond0 and the

    es!lting giant molec!le 7ill /e in eality an ionic solid0 7hee the thee8dimensional

    st!ct!e is /ased on the electostatic inteaction :/onding= /et7een the constit!ent ions.

    +n the othe hand0 if the /ond is completely co&alent0 7e get a thee8dimensional

    co&alent solid s!ch as diamond0 7hee the st!ct!e consists of C8C /onds. At the othe

    e,teme0 7e can conside the giant molec!le fom the &ie7point of the delocali?ed /ond

    model. n this m!lti8centeed molec!la o/ital appoach0 the atomic n!clei of the solid

    ae &ie7ed as em/edded in a sea of electons. This sit!ation is chaacteistic of the solids

    of the metallic elements0 and this type of delocali?ed /onding has ac6!ied the name

    metallic bonding. n some cases0 in addition to the ionic0 co&alent and metallic /onds0

    othe intemolec!ala inteactions0 s!ch as &an de >aals foces and hydogen /onding

    :see Section 2.4.4=0 conti/!te to the de&elopment of the thee8dimensional st!ct!e.

    4.2.2 Ato*ic P!c+in)

    n the pe&io!s section 7e s!ggested that a solid can /e !sef!lly consideed as a

    giant molec!le. As egads the shape of this molec!le0 ho7e&e0 7e 7ee silent. n this

    section 7e 7ish to t!n to this 6!estion@ -o7 ae the constit!ent atoms of a solid

    ogani?ed spatially in the solid phase To /egin0 7e conside the n!m/e of 7ays sphees

    can /e densely packed into space. Then 7e ela, the constaint on dense packing this

    ena/les !s to teat the cystal st!ct!es of ionic solids. t is helpf!l to ogani?e o!

    thinking ao!nd t7o8dimensional layes of sphees in contact. Then 7e /!ild thee

    dimensional st!ct!es /y depositing these layes one on top the othe0 as ill!stated in

    ig!e 4.1. >e can /egin the laye /y laye stacking /y allo7ing the sphees of the

    second laye to fall in the ca&ities in the fist laye. >e then ha&e t7o 7ays to add a thid

    laye. n one scenaio0 7e can !se an ABAB poced!e0 7hee the thid laye sphees ae3

  • 8/10/2019 Chapter 4 Structures of Solids

    4/51

    &etically colinea 7ith fist laye sphees. n the othe scenaio0 7hich is /ased on an

    ABCABC patten0 the thid laye sphees ae &etically colinea 7ith the holes in the fist

    laye. These t7o st!ct!es of ABAB and ABCABC ae called polytypes 8 they ae

    identical in t7o dimensions 7hile they ae mismatched in the thid. o each of these

    polytypes0 the coodination n!m/e is 12.

    Fi)ure 4.1 L!yer %y l!yer %uild,u- o' t#ree,di*enion!l tructure S#ri/er0 -.11.

    4.2." T#e Unit Cell

    >hen disc!ssing the st!ct!e of a cystalline solid0 it is helpf!l to identify the

    smallest thee8dimensional !nit0 i.e.0 the unit cell0 that epesents the epeat !nit fo the

    t7o close8packed st!ct!es disc!ssed a/o&e. To help in &is!ali?ing the !nit cell0 it iscon&enient to epesent each atom position as a point. The es!lting system of points is

    temed the lattice0 and /y connecting the lattice points 7ith staight lines0 7e can

    const!ct the unit cell. >e see fom ig!e 4.2a that the ABAB aangement es!lts in a

    he,agonal !nit cell the atoms ae desci/ed as hexagonally close-packed(hcp). +n the

    othe hand0 the ABCABC aangement gi&es a face8centeed c!/ic !nit cell0 the atoms

    /eing calledface-centered cubic (fcc).

    4

    :a= :/=

  • 8/10/2019 Chapter 4 Structures of Solids

    5/51

    Fi)ure 4.2 Cloe,-!c+ed cryt!l tructure3 ! He!)on!l cloe,-!c+ed #c-0 %

    '!ce,centered cu%ic 'cc.

    Fi)ure 4." Le cloe,-!c+ed cryt!l tructure3 ! %ody,centered cu%ic %cc0 %

    -ri*iti/e cu%ic cu%ic,P.

    >hile the !nit cells /elo7 in&ol&e close8packed e6!al8si?ed sphees0 7e can

    imagine othe sphee packings 7hich ae not close8packed. A !nit cell in&ol&ing a

    coodination n!m/e of eight is sho7n in ig!e 4.3a :Shi&e0 p.112=. This epesents a

    body-centered cubic (bcc)st!ct!e and it is chaactei?ed /y a system of c!/e8cente

    "

    :a= :/=

    :/=:a=

    :a=

    :/=

  • 8/10/2019 Chapter 4 Structures of Solids

    6/51

    pl!s c!/e8cone lattice points. Anothe non8close8packed st!ct!e0 the primitive cubic

    (cubic-P) is sho7n in ig!e 4.3/. This st!ct!e is dei&ed fom the /cc st!ct!e /y

    emo&ing the c!/e8cente lattice point.

    E5AMPLE 4.1 Si6e contr!int on t#e occu-!tion o' intertiti!l #ole

    Conside a close8packed system of sphees of adi!s . :a= Sho7 that the lagest atom that can

    occ!py an octahedal hole 7ill ha&e a adi!s of '.414. :/= $epeat :a= fo a tetahedal hole0 and sho7 that

    in this case the e6!ied adi!s is '.22".

    Solution

    555555555555555555555555555555555555555555555555555555555555555555555555

    4.2.4 Ty-olo)y o' Cryt!l Structure

    >hen 7e s!&ey the myiad of solids a&aila/le0 7hethe the &aio!s mateials ae

    classified as metallic elements0 ionic solids0 o co&alent solids0 7e find that the &aio!scystal st!ct!es can /e consideed in tems of a small set of model cystal st!ct!es. n

    these st!ct!es the coodination n!m/e anges fom t7el&e to t7o. )etals ae

    geneally associated 7ith lage coodination n!m/es : 8 12=0 7hile molec!la solids

    !s!ally ha&e lo7 coodination n!m/es :e.g.0 4=. o ionic solids0 a coodination of is

    typically enco!nteed. o! of the model st!ct!es ha&e aleady /een disc!ssed a/o&e0

    i.e.0 the face centeed c!/ic :fcc=0 the he,agonal close8packed :hcp=0 the /ody centeed

    c!/ic :/cc=0 and simple o pimiti&e c!/ic :c!/ic8P=.

    )odel cystal st!ct!es fo compo!nds 7ith 1@1 stoichiomety :i.e.0 chemical

    fom!la )= ae pesented in ig!e 4.4. n the rock-salt:DaCl= st!ct!e :ig!e 4.4a=0

    chloide anions ae aanged in an fcc patten0 and the sodi!m cations eside in the

    octahedal holes. The es!lting coodination is desci/ed as :0= since each ion has si,

    co!nteions as neaest neigh/os. The cesium chloride :CsCl= st!ct!e :ig!e 4.4/=0

    7hich is c!/ic0 is dei&ati&e of the ideal /cc st!ct!e0 7ith chloide anions at the cones

    and Cs cations at the c!/e cente. The coodination is :0=. The sphalerite or

    zincblende :EnS= st!ct!e :ig!e 4.4c= may /e &ie7ed in tems of an fcc aay of s!lfide

    anions 7ith ?inc cations in one set of the tetahedal holes. The coodination is :404=. n

    the case of thewurtzite:EnS= st!ct!e :ig!e 4.4d=0 the s!lf! anions ae aanged in an

    hcp patten and the ?inc cations eside in one set of the tetahedal holes. The nickel

    arsenide:DiAs= st!ct!e :ig!e 4.4e= is fo!nded on an hcp patten of As atoms0 7ith

    nickel atoms filling the octahedal holes. The Di atoms ae aanged into a tigonal

  • 8/10/2019 Chapter 4 Structures of Solids

    7/51

    pism0 7ithin 7hich the As atom esides.

    :a= $ock salt :DaCl= :/= Cesi!m chloide :CsCl=

    :c= Sphaleite o ?inc/lende :EnS= :d= >!t?ite :EnS=

    :e= Dickel asenide :DiAs=

    Fi)ure 4.4 Model cryt!l tructure 'or M5 131 co*-ound.

    ig!e 4." pesents model st!ct!es fo compo!nds 7ith 1@2 :o 2@1=

    stoichiomety0 i.e.0 compo!nds of the type )2 :o )2=. Therutile:titani!m dio,ide0

    Ti+2= st!ct!e :ig!e 4."a= is /ased on an hcp lattice of anions in 7hich only "'< of

    the octahedal holes ae occc!pied /y the cations. The coodination n!m/e of Ti is si,0

    7hile that of o,ygen is thee. n the fluorite :Ca2= st!ct!e :ig!e 4."/=0 the Ca2F

    ions ae aanged as an fcc aay the fl!oide ions occ!py /oth sets of tetahedal holes0*

  • 8/10/2019 Chapter 4 Structures of Solids

    8/51

    gi&ing :04= coodination. o compo!nds 7ith the fom!la )20 the cation and anion

    positions ae e&esed0 and the es!lting st!ct!e is called antifluorite. n -cristobalite

    :Si+2=0 each Si atom is s!o!nded /y fo! + atoms0 7hile each + atom lies /et7een t7o

    Si atoms :ig!e 4."c=. This st!ct!e may /e dei&ed fom the sphaleite st!ct!e /y

    eplacing each ?inc and s!lf! atom 7ith a silicon atom and inseting o,ygen atoms

    /et7een the silicon atoms. n the cadmium iodide:Cd2= st!ct!e :ig!e 4."d=0 a layeof Cd atoms is sand7iched in /et7een t7o layes of iodine atoms. Ad9acent sand7iches

    ae linked only &ia &an de >aals foces.

    :a= $!tile :titani!m dio,ide0 Ti+2= :/= l!oite :Ca2=

    :c= 8Cisto/alite :Si+2= :d= Cadmi!m iodide :Cd2=

    Fi)ure 4.$ Model cryt!l tructure 'or M52M25 co*-ound.

  • 8/10/2019 Chapter 4 Structures of Solids

    9/51

    :a= $e+3 :/= Peo&skite :CaTi+3=

    Fi)ure 4.( Model cryt!l tructure 'or A&5"co*-ound3 ! ReO"0 % Pero/+ite

    C!TiO".

    The model st!ct!e fo many AB3compo!nds is theperovskite:CaTi+3=

    st!ct!e. This st!ct!e0 in t!n0 may /e dei&ed fom the $e+3st!ct!e. As can /e

    seen fom ig!e 4.a0 the $e+3st!ct!e is c!/ic $e atoms occ!py c!/e8cones0 7hile

    + atoms ae located at the edges of the !nit c!/e. >hen the st!ct!e is e,tended /eyond

    the !nit cell0 it can /e seen that it is chaactei?ed /y octaheda 7hich ae linked at the

    c!/e8cones. An impotant feat!e of the $e+3st!ct!e is the pesence of a lage

    t7el&e8coodinate cental hole. By inseting a lage anion A into this hole0 one o/tains

    the peo&skite st!ct!e :ig!e 4./=. n the peo&skite fom!la of AB30 is typically

    +28o 8. n ode to maintain electone!tality0 the total chage caied /y the A and Batoms m!st add !p to si,.

    )any metal compo!nds of geneal fom!la AB2+40 ha&e cystal st!ct!es that ae

    modeled afte that ofspinel:)gAl2+4=. n this st!ct!e0 +28ions ae ogani?ed into an

    fcc patten0 and 1 of the tetahedal holes ae occ!pied /y A ions0 7hile 12 of the

    octahedal holes contain B ions. The identity of the octahedal ions may /e highlighted

    /y !sing s6!ae /ackets0 as in AGB2H+4. n some cases0 an inverse spinelAGA0BH+4may

    fom.

    #

  • 8/10/2019 Chapter 4 Structures of Solids

    10/51

    4." T#e Ionic Model

    4.".1 T#e R!diu R!tio P!r!*eter

    >e sa7 in Section 4.2.1 that0 fom the &ie7point of the locali?ed /ond model0 the

    /onding electons in an ionic solid0 )0 ae assigned entiely to the moe electonegati&e

    atom :=0 7hich then /ecomes the anion. The less electonegati&e atom :)= /ecomes thecation. Th!s !nde s!ch cic!mstances0 the cystal st!ct!e can /e &ie7ed as a system of

    chaged sphees held togethe /y attacti&e electostatic inteactions. Clealy0 not all

    solids ae completely ionic. -o7e&e0 it is helpf!l to ass!me a thoo!ghgoing

    electostatic &ie7 of solids. Then0 de&iations fom this ideal model po&ide an indication

    of the elati&e impotance of co&alent and electostatic conti/!tions.

    n co&alent /onding0 coodination n!m/es ae ationali?ed in tems of electonic

    st!ct!e0 e.g.0 the symmety of atomic o/itals. n the case of ionic st!ct!es0 si?e

    compati/ility /ecomes the g!iding pinciple. Also0 it 7as noted a/o&e that the cystal

    st!ct!e of solids ae dei&ed fom close packed aays of one kind of atom and the holes

    ae filled completely o patially /y anothe kind of atom. Th!s0 7e can conside0 in the

    e,teme0 that thee 7ill /e si?e constaints on the si?e of the atom that fills the holes.

    Altenati&ely0 fo a gi&en atom0 7e e,pect si?e constaints on the n!m/e of lage atoms

    that can s!o!nd it. A !sef!l paamete that ena/les one to 6!antify the si?e constaint is

    the adi!s atio0 F8. By consideing the coss8sections associated 7ith the &aio!s lattice

    st!ct!es0 it can /e sho7n that the possi/le coodination n!m/es change as s!mmai?edin Ta/le 4.1.

    T!%le 4.1 R!diu r!tio,coordin!tion nu*%er correl!tion

    Coordin!tion nu*%er R!diu r!tio R!n)e

    3 '.1"" I F8I '.234 '.23 I F8 I '.414 '.414 I F8I '.*32

    '.*32 I F8I 1.''

    E5AMPLE 4.2 Coordin!tion nu*%er o' *et!l !lt

    Calc!late the ele&ant adi!s atios and pedict the coodination n!m/es of the ions in the

    follo7ing solids@ :a= DaCl :/= Cs :c= CsCl :d= EnS.

    1'

  • 8/10/2019 Chapter 4 Structures of Solids

    11/51

    Solution

    :a= $efeing to Ta/le 2.40 the adi!s of DaFis 113 pm fo CD J 4 and 11 pm fo CD J . Based on these

    adii0 F8J 1131* o 111* J '.#" in eithe case0 the pedicted coodination n!m/e is 0

    accoding to Ta/le 4.1.

    :/= o a compo!nd s!ch as cesi!m fl!oide0 7hee the anion is smalle than the cation0 the adi!s atio is

    detemined as 8F. Taking the ele&ant data fom Ta/le 2.40 8FJ 11#11 J '.". Th!s0 efeing

    to Ta/le 4.10 7e e,pect a coodination n!m/e of .

    :c= o CsCl0 7e ha&e 8FJ 1*11 J '.#23. Accodingly0 the pedicted coodination n!m/e is .

    :d=

    555555555555555555555555555555555555555555555555555555555555555555555555

    Fi)ure 4.7 A tructure correl!tion *!- 'or M5 co*-ound S#ri/er0 -.122.

    4.".2 Electrone)!ti/ity !nd Cryt!l Structure

    >e ha&e seen that the /onding in a compo!nd AB is likely to /e ionic 7hen the

    elctonegati&ity diffeence0 0 is lage. At the same time0 7e find that ionic compo!nds

    tend to ha&e lage coodination n!m/es0 7hile co&alency es!lts in small coodination

    n!m/es. Th!s0 it is not s!pising that thee sho!ld /e a coelation /et7een and and

    the type of cystal st!ct!e. ig!e 4.* pesents a structure map7hich ill!states the

    manne in 7hich the magnit!de of the electonegati&ity diffeence is elated to the

    11

  • 8/10/2019 Chapter 4 Structures of Solids

    12/51

    coesponding st!ct!e. t can /e seen that 7hen is lage0 the tendency is to fom

    compo!nds 7ith elati&ely high coodination n!m/es :e.g.0 the ock salt and !tile

    st!ct!es=. +n the othe hand0 7ith small &al!es0 the es!lting st!ct!es tend to ha&e

    smalle coodination n!m/es. :See also0 %. )ose and >. B. Peason0 Acta Cyst.0 120

    1'1" :1#"#==.

    4."." L!ttice Ener)y Ent#!l-y

    A !sef!l paamete in assessing the sta/ility of a gi&en cystal st!ct!e is the

    lattice enegy0 defined as the change in enegy associated 7ith the decomposition of a

    solid into its gaseo!s ions@

    ) :s= )F:g= F 8:g= -( :4.1=

    %negy is e6!ied in ode to degade the lattice0 and theefoe0 the lattice enegy is a

    positi&e 6!antity. Th!s0 the highe the lattice enegy0 the geate the sta/ility of the

    coesponding cystal st!ct!e. The lattice enegy also po&ides a means fo assessing

    the degee of co&alency associated 7ith the chemical /onds in the solid. f an ionic

    model is ass!med0 then a theoetical lattice enegy may /e calc!lated and this can /e

    compaed 7ith the e,peimentally detemined &al!e.The lattice enegy can /e consideed as consisting of t7o main conti/!tions@ :1=

    The electostatic co!lom/ic inteactions /et7een the ions :Kc=0 and :2= the electron

    overlap repulsions:Ko=.

    K(J KcF Ko :4.2=

    o t7o ions A and B0 7hose centes ae sepaated /y a distance 0 the co!lom/ic

    potential enegy is gi&en /y@

    KABJ :?Ae= :?Be=:4oAB= :4.3=

    7hee ?Aand ?B especti&ely epesent the chages on the ions0 and ois the &ac!!m

    12

  • 8/10/2019 Chapter 4 Structures of Solids

    13/51

    pemitti&ity :." , 1'812 C2L81m81=.

    To o/tain the total co!lom/ic potential enegy fo the cystal0 the s!mmation of

    all the pai potentials is detemined. The es!lting e,pession has the fom@

    KcJ DAGe24oHG?A?BdHA :4.4=

    n this e,pession0 DA is the Avogadro number0 the second tem go!ps a n!m/e of

    f!ndamental constants0 the thid tem contains paametes chaacteistic of the specific

    ions and dimensions of the lattice :the paamete d epesents the neaest8neigh/o

    distance=0 and the fo!th temAis called theadelung constantand is chaacteistic of

    the patic!la cystal st!ct!e. Ta/le 4.2 pesents a selection of )adel!ng constants fo

    some model cystal st!ct!es. n geneal0 the highe the coodination n!m/e0 the highe

    the )adel!ng constant.

    T!%le 4.2 M!delun) cont!nt

    Structure Ty-e A

    Cesi!m chloide 1.*3l!oite 2."1#$ock8salt 1.*4$!tile 2.4'Sphaeleite 1.3>!t?ite 1.41

    >hen t7o ions 7ith closed8shell electonic st!ct!es appoach each othe0 they

    7ill e,peience m!t!al ep!lsion fom the o&elap of thei electon clo!ds. The potential

    enegy aising fom this ep!lsi&e inteaction can /e e,pessed as@

    KoJ KcF DACM e8ddN :4."=

    7hee CM and dN ae constants it is a !sef!l appo,imation to set dN J '.34" O.

    n &ie7 of %6!ations 4.20 4.40 and 4."0 7e can 7ite@

    13

  • 8/10/2019 Chapter 4 Structures of Solids

    14/51

  • 8/10/2019 Chapter 4 Structures of Solids

    15/51

    555555555555555555555555555555555555555555555555555555555555555555555555

    E5AMPLE 4." S-#!lerite /eru 9urt6ite 'or*!tion

    +n the /asis of lattice enegy consideations0 detemine the chage and scale paamete constaints

    that lead to the pefeential fomation of one o the othe polytypes of EnS.

    Solution

    Using the s!/scipts s and 7 to signify sphaleite and 7!t?ite especti&ely0 7e can 7ite that

    sphaleite is pefeed o&e 7!t?ite po&ided that KmsR Km70 i.e.0

    :?A?B=s :d=7 R A7J 1.41

    :d=s :?A?B=7 As 1.3

    555555555555555555555555555555555555555555555555555555555555555555555555555555555555

    1"

  • 8/10/2019 Chapter 4 Structures of Solids

    16/51

    4.4 Cryt!l Structure

    4.4.1 Met!llic Ele*ent !nd Alloy

    t 7as noted a/o&e :Section 4.2.1= that /onding in solids of the metallic elements

    is /est desci/ed in tems of delocali?ed /onds. As a es!lt of the non8diectional nat!e

    of this kind of /onding0 the atoms of metals in the solid state can ac6!ie the ma,im!mcoodination n!m/es allo7ed /y adi!s atio consideations. Theefoe0 the st!ct!es of

    the metallic elements tend to /e close8packed. This close packing acco!nts fo the

    typically high densities of metals. >hat factos detemine 7hethe a gi&en metal pefes

    the fcc o hcp st!ct!e A !sef!l !le of th!m/ is that a he,agonal st!ct!e is pefeed

    if the n!m/e of &alence electons&alence o/itals is lo70 7hile c!/ic st!ct!es ae

    pefeed 7hen the n!m/e is high. :>hy=

    Besides hcp and fcc0 othe st!ct!es ae also kno7n. Th!s0 7ith incease in

    tempeat!e0 it is not !ncommon fo metals to !ndego a tansition fom close8packed to

    less close8packed st!ct!es. The onset of st!ct!al tansition can /e ationali?ed /y

    ecogni?ing that geate atomic mo&ements ae moe compati/le 7ith a moe loose

    cystal st!ct!e. At elati&ely lo7 tempeat!es0 the tendency of a gi&en metal to fom a

    close8packed st!ct!e may /e elated to electonic st!ct!e. f a metal is &ie7ed in

    tems of positi&e chages immesed in an ocean of electons0 then the highe the electon

    density in this sea0 the highe the atomic packing. Accodingly0 the alkali metals 7hich

    ha&e elati&ely lo7 &alence electons 7ill ha&e a geate tendency to adopt the /ccst!ct!e. The tempeat!e making the tansition fom close8packed to non close8packed

    st!ct!es may /e a/o&e oom tempeat!e :e.g.0 Ca0 Ti0 )n=0 o it may /e /elo7 oom

    tempeat!e :e.g.0 (i0 Da=.

    >hen t7o o moe metals ae mi,ed in the molten state0 the es!lting solid

    pod!ct is temed an alloy. At one e,teme0 an alloy may epesent a solid solution0

    7hee the constit!ent atoms ae andomly intemi,ed. At the othe e,teme0 the atoms in

    the mi,t!e com/ine to gi&e compo!nds 7ith specific compositions and st!ct!e. The

    simplest alloy is a /inay mi,t!e 7hee the ma9oity atoms epesent the sol&ent and the

    minoity atoms the sol!te. nsubstitutionalsolid sol!tions0 the sol!te atoms ae located

    at sites nomally occ!pied /y the sol&ent atoms. n the case of intestitial solid sol!tions0

    the sol!te atoms inset themsel&es in the spaces /et7een the sol&ent atoms. The

    follo7ing set of conditions m!st /e met in ode fo a s!/stit!tional solid sol!tion to1

  • 8/10/2019 Chapter 4 Structures of Solids

    17/51

    fom@ :a= the sol!te atom m!st ha&e a si?e compaa/le 7ith that of the sol&ent atom :

    1"

  • 8/10/2019 Chapter 4 Structures of Solids

    18/51

    7ith -0 B0 C0 o D as intestitial atoms.

    :/= The late d8/lock mem/es of the fist o7 ha&e adii 7hich do not e,ceed 1.' O0 yet these metals ae

    kno7n to fom intestitial solid8sol!tions 7ith -0 B0 C0 and D. -o7 can these o/se&ations /e

    ationali?ed

    Solution

    :a= >e need to satisfy the condition D)I '.4140 the s!/scipt D) efes to nonmetal. Th!s0 fo -J 0 B

    J 0 CJ 0 and DJ 0 )R D)'.414.

    :/= i&en the condition D) I '.4140 B0 C0 and D atoms e6!ie metal atoms 7ith adii of 1.#"0 1.0 and

    1.' O especti&ely. These adii e,ceed the 1.' O limit of the ele&ant tansition metals. Th!s it m!st

    /e concl!ded that definite compo!nds fom0 athe than intestitial solid sol!tions.

    555555555555555555555555555555555555555555555555555555555555555555555555

    4.4.2 Met!l S!lt

    n Chapte 3 7e enco!nteed the (e7is acid8/ase concept. $elated to this0 is the

    !ronsted acid8/ase concept0 disc!ssed in geate detail in Chapte ". Biefly0 in the

    Bonsted lang!age0 an acid is defined as a species :-A= that can donate a poton

    :%6!ation 4.#= and a /ase as a species :+-= that ecei&es a poton :%6!ation 4.1'=. A

    saltthen is a compo!nd 7hich foms 7hen a Bonsted acid is ne!tali?ed /y a Bonsted

    /ase@

    -A J -FF A8 :4.#=

    +- F -FJ FF -2+ :4.1'=

    +- F -A J A :s= F -2+ :4.11=

    n this Section 7e conside t7o types of salts@ :a= simple binary salts0 ),Ay0 pimaily

    metal halides0 and :/= complex metal salts0 pimaily salts of o,yanions. -ydo,ysalts

    :i.e.0 salts 7hich contain +-8go!ps= and hydated salts :i.e.0 salts 7hich contain 7ate

    molec!les= ae disc!ssed in Section 4.4.4.

    1

  • 8/10/2019 Chapter 4 Structures of Solids

    19/51

    etal halides. T7o key geneali?ations can /e made egading the cystal

    st!ct!es of metal halides@ :a= o a gi&en metal0 the st!ct!e of the fl!oide tends to /e

    diffeent fom that of the othe halides. Th!s fl!oides tend to cystalli?e into thee8

    dimensional st!ct!es0 7heeas the chloides0 /omides and iodides pefe mostly laye

    and occasionally chain st!ct!es. :/= l!oides and o,ides 7ith simila chemical

    fom!las tend to ha&e the same cystal st!ct!es. +n the othe hand0 Cl0 B0 and salts

    tend to /e isost!ct!al 7ith s!lfides0 selenides0 and tell!ides. Ta/le 4.4 pesents the

    cystal st!ct!es fo selected metal halides.

    T!%le 4.4 T#e cryt!l tructure o' *et!l #!lide :ell0 -.4;

    Ty-e o' tructure For*ul! Ty-e M C

  • 8/10/2019 Chapter 4 Structures of Solids

    20/51

    $omplex Salts. +n the /asis of the electonegati&ities of the atoms A and B0

    compo!nds of the type A,By+?may /e classified into t7o main go!ps0 i.e.0 complexoxides0 and oxysalts. >hen A and B ha&e simila electopositi&e chaacte0 the solid may

    /e &ie7ed as a system of A0 B0 and + ions0 and the compo!nd is called a complex oxide.

    +n the othe hand0 if the cystal st!ct!e compises a metal ion A and a comple, anion

    B+m0 then the compo!nd is called an oxysalt. n this case0 A is electopositi&e0 7hile B

    is electonegati&e0 and the compo!nd is called a salt /eca!se it may /e synthesi?ed /y

    eacting to a /asic o,ide :A8containing compo!nd= 7ith an acidic o,ide :B8containing

    compo!nd=. n an o,ysalt0 B is typically a nonmetal0 ho7e&e0 in some cases it can /e a

    highly chaged tansition metal cation. t m!st /e noted that this di&ision of comple, o,y

    compo!nds into o,ysalts and comple, o,ides may /e am/ig!o!s in some cases.

    Comple, o,ides ae disc!ssed in Section 4.".3. Ta/le 4." pesents a selection of

    o,yanions 7ith thei coesponding shapes.

    T!%le 4.$ Oy!nion !nd t#eir #!-e :ell0 -.$12

    Don8linea D+28 Cl+28

    Plana B+338 C+328 D+38

    Pyamidal S+328 Cl+38

    B+38

    +38

    Tetahedal Si+448 P+438 S+428 Cl+48

    As+438 +48

    K+438 )n+48

    Tetagonal pyamidal +"38

    $e+"38

    +ctahedal Te+8 +"8

    >hen an o,yanion inteacts 7ith a metal ion0 the /onding atom is the o,ygen. t

    is fo!nd that the cationo,ide atio can /e !sed as a pedicto of the cystal st!ct!es of

    o,ysalts. This is ill!stated in Ta/le 4. fo a go!p of !ni&alent nitates0 di&alent

    ca/onates0 and teta&alent /oates. :Pa!ling0 p."4*=. t can /e seen that the adi!s atio2'

  • 8/10/2019 Chapter 4 Structures of Solids

    21/51

    of '.* epesents a tansition /et7een the calcite :C.D. J = and aagonite :C.D. J #=

    st!ct!es of calci!m ca/onate.

    21

  • 8/10/2019 Chapter 4 Structures of Solids

    22/51

    T!%le 4.( R!diu r!tio,tructure correl!tion 'or elected oy!lt !'ter P!ulin)0 -.$47

    Calcite st!ct!e (iD+3 '.34 )gC+3 '.4* ScB+3 '.'

    DaD+3 '."4 EnC+3 '."' nB+3 '."#CdC+3 '." B+3 '.

    CaC+3 '.*

    Aagonite st!ct!e D+3 '.* CaC+3 '.* (aB+3 '.*#SC+3 '.*"BaC+3 '.*

    $/D+3 st!ct!e $/D+3 '.4CsD+3 '.#

    555555555555555555555555555555555555555555555555555555555555555555555555555

    A !sef!l concept in e,amining the sta/ilities of comple, ionic cystals is theelectrostatic bond strength :%BS=. Conside a cation of chage F?e and coodination

    n!m/e n :i.e.0 the cental metal ion is engaged in n )8+ /onds=. Then 7e o/tain the

    electostatic /ond stength /y disti/!ting the total cation chage among the n )8+

    /onds0 i.e.0

    %BS J ?n :4.12=

    555555555555555555555555555555555555555555555555555555555555555555555555

    E5AMPLE 4.( T#e electrot!tic %ond tren)t# o' M,O %ond in MOn -oly#edr!.

    etemine the %BS fo the )8+ /onds in the follo7ing polyheda@ :a= Si+40 :/= Al+0 :c= )g+.

    Solution

    :a= o Si+40 ? J 40 n J 40 and theefoe0 !sing %6!ation 4.1"0 %BS J ?n J 11 J 1.

    :/= o Al+0 ? J 30 n J 0 and th!s0 %BS J ?n J 3 J 12.

    :c= o )g+0 ? J 20 n J . Th!s0 %BS J ?n J 2 J 13.

    555555555555555555555555555555555555555555555555555555555555555555555555

    Conside an anion +m?8 7e ass!me that the total anionic chage :?8= is shaed

    22

  • 8/10/2019 Chapter 4 Structures of Solids

    23/51

    among the m o,ygen atoms. Accodingly0 the patial chage on each o,ygen atom is :8

    ?m=. (et !s f!the conside a metal ion0 )?F0 7hich foms a salt )+m. >e e6!ie

    that the patial chage caied /y each metal8ligand /ond :i.e.0 the electostatic /ond

    stength0 %BS= /e /alanced locally /y an e6!al /!t opposite chage on the /onded o,ygen

    atom this is the pinciple of local charge balancing. Th!s0 if a gi&en o,ide anion +28

    :/elonging to the o,yanion +m?8= paticipates in 9 coodination polyheda0 then 7e

    e,pect that the %BS of the coesponding 9 )8+ /onds sho!ld add !p to the patial chage

    on the specific o,ide ion. That is0

    :?m= J %BSiJ :?n=iJ 9:?n= :4.13=

    555555555555555555555555555555555555555555555555555555555555555555555555

    E5AMPLE 4.7 T#e electrot!tic /!lence rule.

    :a= o each of these comple, anions0 detemine the patial chage on each o,ygen atom@ Si+4480 P+4380

    S+4280 Cl+48.

    :/= The follo7ing compo!nds adopt the calcite st!ct!e@ DaD+30 CaC+30 nB+3. etemine the n!m/e

    of )+npolyheda associated 7ith each o,ygen of the especti&e anions.

    Solution

    :a= :i= Si+428@ o +m?80 mJ4 and ?J2. Theefoe0 patial chage J :8?m= J 824 J 812.

    :ii= P+438@ mJ40 ?J3 :8?m= J 834.

    :iii= S+428@ mJ40 ?J2 :8?m= J 824 J 812.

    :i&= Cl+48@ mJ40 ?J1 :8?m= J 814.

    :/= The calcite st!ct!e in&ol&es octahedal coodination0 i.e.0 )+. Th!s0 fo the gi&en metal cations0 the

    coesponding %BS ae ?n J F1 :Da8+=0 F2 J F13 :Ca8+=0 F3 J F12 :n8+=. The patial

    chages on the anionic o,ygens ae@ :813= :D+38=0 :823= :C+328=0 :833 J 81= :B+338=. Th!s0 efeing to

    %6!ation 4.130 fo chage ne!tali?ation0 7e e6!ie@

    :813= :D+38= F 9G1 :Da8+=H J ' i.e.0 9 J2.

    23

  • 8/10/2019 Chapter 4 Structures of Solids

    24/51

    DaF

    DaF

    D +

    +

    +

    Ca2F

    Ca2F

    C +

    +

    +

    n3F

    n3F

    B +

    +

    +

    131823 81

    12

    1213

    813

    1

    :823= :C+328= F 9G13 :Ca8+=H J ' i.e.0 9 J 2.

    :81= :B+338= F 9G12 :n8+=H J ' i.e.0 9 J 2.

    The coesponding st!ct!es ae as ill!stated /elo7.

    :Also see >ells0 p.32*=

    555555555555555555555555555555555555555555555555555555555555555555555555

    4.4." Met!l Oide

    The eathMs c!st consists of ; #'< o,ygen0 and inoganic mateials a/o!nd 7ith

    o,ygen8containing compo!nds. n this section0 7e conside :a= binary metal oxides0 i.e.0

    compo!nds that compise o,ygen and a metallic element0 and :/= complex metal oxides0

    i.e.0 compo!nds that contain t7o o moe metals in com/ination 7ith o,ygen. The elatedhydo,o compo!nds0 hydo,ides0 ):+-=n0 and o,yhydo,ides0 )+:+-=0 ae disc!ssed

    in Section 4.4.4.

    !inary etal %xides& Ta/le 4.* pesents a ta/le of the st!ct!es of selected

    /inay metal o,ides. A s!&ey of the /inay metal o,ides leads to a n!m/e of

    geneali?ations@

    :a= n most metal o,ides the /onding is ionic.

    :/= The metal atom typically has a high coodination n!m/e0 o .

    :c= The cystal st!ct!es adopted /y metal o,ides tend to /e the same as those

    fo the coesponding fl!oides.

    :d= The ionic adi!s of +28 is typically lage than that of the coesponding

    metal ion $/F0 CsF0 and TlFae the e,ceptions.

    24

  • 8/10/2019 Chapter 4 Structures of Solids

    25/51

    :e= The cystal st!ct!e !s!ally consists of a close8packed aay of +28 ions0

    7ith metal ions typically in the octahedal holes.

    :f= n some o,ides0 the metal may /e pesent in moe than one o,idation state0

    e.g.0 ):=0 ):=0 and ):K= in )3+4.

    :g= )any tansition metals e,hi/it de&iations fom stoichiomety0 and this es!lts

    in semicond!cti&ity :see Sections 4." and 4.=.

    T!%le 4.7 T#e cryt!l tructure o' %in!ry *et!l oide :ell0 -.$"4

    Ty-e o' tructure For*ul! Ty-e M C

  • 8/10/2019 Chapter 4 Structures of Solids

    26/51

    Chain st!ct!es -g+0 Se+20C+30

    S/2+3

    )olec!la st!ct!es $!+40 +s+4

    555555555555555555555555555555555555555555555555555555555555555555555555

    2

  • 8/10/2019 Chapter 4 Structures of Solids

    27/51

    $omplex %xides. n tems of stoichiometic fom!la0 7e can identify se&eal

    diffeent types of comple, o,ides0 e.g.0 0 AB+20 AB+30 AB+4 0 AB2+4. $epesentati&e

    st!ct!es ae pesented in Ta/le 4..

    T!%le 4.8 Structure o' elected co*-le oide

    Ty-e C

  • 8/10/2019 Chapter 4 Structures of Solids

    28/51

    cylindically symmetic :i.e.0 dipola= species0 and :c= a 6!ad!pola species. As the

    cation deceases in si?e and inceases in chage0 c8type /eha&io /ecomes moe fa&oa/le

    in compaison 7ith /8type /eha&io. n its 6!ad!pola fom0 the +-8ion can !ndego

    hydogen /onding the negati&e and positi&e egions of diffeent +- 8 ions inteact. As a

    es!lt of the a/o&e consideations0 7e may di&ide metal hydo,ides into t7o main

    go!ps0 i.e.0 those 7hich ha&e no hydogen /onds :a8 and /8type /eha&ios=0 and those

    7ith hydogen /onds :c8type /eha&io=. Ta/le 4.# pesents st!ct!al infomation fo

    selected metal hydo,ides and o,yhydo,ides.

    T!%le 4.; T#e cryt!l tructure o' *et!l #ydroide !nd oy#ydroide

    in'o 'ro* :ell0 -.(2( ''

    Ty-e o' tructure For*ul! Ty-e M C

  • 8/10/2019 Chapter 4 Structures of Solids

    29/51

    (aye st!ct!es )+- (i+-0 Da+-

    ):+-=2 Cadmi!m iodide ) J )g0 Ca0 )n0 e0Co0 Di0 Cd

    2#

  • 8/10/2019 Chapter 4 Structures of Solids

    30/51

    T!%le 4.1 OH3M r!tio in #ydroy,oy!lt

    OH 3 M S!lt OH 3 M S!lt

    1" Ca":+-=:P+4=3 " En":+-=:C+3=212 C!2:+-=P+4 32 C!2:+-=3D+3

    11 C!:+-=+3 21 Th:+-=2S+4=======================================================================

    'ydroxysalts. The metals 7hich tend to fom /asic salts incl!de Be0 )g0 Al0

    se&eal of the A s!/go!p tansition metals :e.g.0 Ti0 E=0 3d metals :e.g.0 e0 Co0 Di=0 4f

    and "f metals :e.g.0 Ce0 Th0 U=0 a ma9oity of the B s!/go!p elements :e.g.0 n0 Sn0 P/0

    Bi=. n nat!e0 some impotant oe mineals occ! as /asic salts0 e.g.0 /ochantite0

    C!4:+-=S+40 and atacamite0 C!2:+-=3Cl. Coosion pod!cts may also occ! as /asic

    salts0 e.g.0 hydo?incite0 En":+-=:C+3=20 foms 7hen metallic ?inc is e,posed to moist

    ai. +the e,amples of /asic salts incl!de 7hite lead0 P/3:+-=2:C+3=20 !sed as a pigment0

    and )g2:+-=3Cl4-2+0 a eaction pod!ct in the hydation of Soels cement. Thee is a

    7ide &aiation in the +-@) atios enco!nteed in hydo,ysalts0 as ill!stated in Ta/le

    4.1' fo a seies of hydo,y8o,ysalts.

    :a=:/=

    Fi)ure 4.8 Structure o' #ydroy#!lide3 Cloed,-!c+ed -#ere o' ! 5OH0 % 5OH".

    3'

  • 8/10/2019 Chapter 4 Structures of Solids

    31/51

    -2+ +-

    Al

    -2+

    -2+

    -2+

    -2+-2+ +-

    Al

    -2+

    -2+

    4Fl

    +-

    :-2+=

    4E

    +-

    :-2+=4E

    +-

    E:-2+=

    4

    +-

    E:-2+=4

    +-

    +-

    +-

    +-

    Fl

    'ydroxyhalides. The st!ct!es of hydo,yfl!oides tend to follo7 those of

    o,yhdo,ides o o,ides. Th!s0 fo e,ample0 En:+-= has the diaspoe st!ct!e0

    Cd:+-=0 the CaCl2st!ct!e0 -g:+-=0 a !tile8type st!ct!e0 and n2:+-=0 a $e+38

    type st!ct!e. The most common hydo,ychloides and hydo,y/omides ae those of

    the types0 )+- and )2:+-=30 7hee ) J )g0 )n0 e0 Co0 Di0 C!:=. n the )+-

    st!ct!es0 and +- ions fom a close8packed laye0 as sho7n in ig!e 4.a :>ells0

    p.1'=. The metal atoms eside in 2"< of the octahedal sites. n the case of the

    )2:+-=3st!ct!es0 and +- ions fom a close8packed laye0 as sho7n in ig!e 4./

    :>ells0 p.1'=. The metal atoms eside in "'< of the octahedal sites.

    Fi)ure 4.; Structure %!ed on 'inite M,OH co*-lee3 ! >Al2OH2H2O8?4@0

    % >r4OH8H2O1(?8@

    'ydroxy-oxysalts. t is helpf!l to think of the st!ct!es of hydo,y8o,ysalts in

    tems of the nat!e of the )8+- comple,. Th!s the )8+- comple, o s!/!nit may /e

    :a= finite0 :/= infinite one8dimensional :chain=0 :c= infinite t7o8dimensional :sheet=0 and

    :d= infinite thee8dimensional. n the case of the fist thee sit!ations0 the o,yanions play

    the impotant ole of 9oining the s!/!nits into thee8dimensional st!ct!es. An e,ample

    of a st!ct!e /ased on a finite )8+- s!/!nit is the /asic al!min!m s!lfate 7ith the

    empiical fom!la Al2+3.2S+3.11-2+. The st!ct!al fom!la can /e e,pessed as

    GAl2:+-=2:-2+=H:S+4=2.2-2+. As can /e seen fom ig!e 4.#a0 thee ae t7o +-

    /idges linking t7o Al3Fcentes0 i.e.0 a dimeic comple,. The finite )8+- s!/!nit can

    also /e in the fom of a ing0 as e,emplified /y the st!ct!e of GE4:+-=:-2+=1HF:see

    ig!e 4.#/=.

    St!ct!es /ased on )8+- chains ae chaacteistic of many /asic salts of

    stoichiomety +-@) J 1. The )8+- chains ae linked &ia o,yanions to gi&e thee8

    dimensional st!ct!es. ig!e 4.1' ill!states the C!:+-=+3 st!ct!e. :>ells0 ig

    31

  • 8/10/2019 Chapter 4 Structures of Solids

    32/51

    a / c

    d e

    )F )F

    1 221

    21

    o

    oo

    )2F

    )2F

    14.1a0 p.4*=. A n!m/e of st!ct!es /ased on t7o8dimensional )8+- s!/!nits can /e

    &ie7ed as dei&ati&es of the Cd2st!ct!e. ist0 7e take the Cd2st!ct!e and eplace

    Cd /y ) and 2/y :+-=2. Then 7e eplace 2"< of the +- go!ps 7ith o,ygen atoms of

    o,yanions0 s!ch that the plane of the +n?8go!p is pependic!la to that of the laye.

    ! %

    o Cu I O OH

    Fi)ure 4.1 Structure o' #ydroy,oy !lt %!ed on t9o,di*enion!l M,OH

    u%unit. CuOHIO"3 ! Pl!nB % Ele/!tion0 9it# t#e oct!#edr!l c#!in

    -er-endicul!r to t#e -l!ne o' t#e -!-er. :ell0 -.(47.

    Fi)ure 4.11 Inter!ction o' 9!ter *olecule in cryt!l. T#e l!r)er #!ded circle

    re-reent M@0 OH,0 F,0 or oy)en o' oy,ion :ell0 -.((8.

    'ydrated Salts. -ee 7e shall /e concened 7ith hydates of halides oxysalts0

    32

  • 8/10/2019 Chapter 4 Structures of Solids

    33/51

    and hydroxides. >e leaned in Chapte 2 that the o,ygen atom in a 7ate molec!le

    possesses t7o lone pais of electons. These es!lt in t7o egions of negati&e chage on

    one end of the molec!le. At the same time0 d!e to the polai?ation of the 7ate molec!le0

    the t7o hydogen atoms ae elati&ely positi&e0 compaed 7ith the o,ygen atom. Th!s

    the t7o hydogen atoms epesent t7o egions of positi&e chage. As a es!lt0 the 7ate

    molec!le may /e &ie7ed as a "uadrupolarspecies0 7ith a tetahedal aangement of the

    t7o positi&e and t7o negati&e egions. The manne in 7hich a 7ate molec!le is linked

    in a hydate may /e ationali?ed in tems of the inteactions of anions0 metal ions0 o

    othe 7ate molec!les 7ith these chaged egions0 as ill!stated in ig!e 4.11 :>ells0

    p.=.

    A con&enient classification0 /ased on the coodination of the cation0 is ill!stated

    in Ta/le 4.11 fo a hydated salt ),Ay.7-2+0 7hee A sym/oli?es an anion s!ch as Cl80

    S+4280 and n is the coodination n!m/e of the metal ion. n class A0 ) is f!lly hydated0

    and thee is e,cess 7ate ::7,n= R 1=. This is a elati&ely small go!p. A epesentati&e

    compo!nd is )gCl2.12-2+. -ee the cation and anion ae each octahedally s!o!nded

    /y si, 7ate molec!les.

    T!%le 4.11 Cl!i'ic!tion o' #ydr!ted !lt !'ter :ell0 -.(7

    M Fully Hydr!ted M Inco*-letely Hydr!ted

    9n Ece H2O I

  • 8/10/2019 Chapter 4 Structures of Solids

    34/51

    1 C!S+4-2+

    34

  • 8/10/2019 Chapter 4 Structures of Solids

    35/51

    4.4.$ Met!l Silic!te

    Silicon and o,ygen make !p a/o!t *"< of the eathMs c!st0 7hee they e,ist

    pimaily as silicate mineals. The /asic /!ilding /lock in silicates is the Si+4

    tetahedon0 and as ill!stated in ig!e 4.12a0 it is con&enient to epesent this as a

    tiangle0 7hich sym/oli?es a top8do7n &ie7 of the tetahedon. The comple, st!ct!es

    of silicates can /e esol&ed in tems of the manne in 7hich the Si+4 tetaheda ae

    linked. %,amples of the possi/le linkages ae ill!stated in ig!es 4.12/8f especti&ely

    fo the disilicate anion :Si2+*8=0 a ing :Si+328=0 an infinite single chain :Si+3=n2n80 an

    infinite do!/le chain o /and0 :Si4+11=nn80 and a sheet o laye0 :Si2+"=n2n8. The chage

    /alance in the linked st!ct!es can /e o/tained /y asci/ing !nit negati&e chage :81= to a

    teminal + atom and ?eo chage to a shaed + atom. Taditional nomenclat!e@ the la/el

    ortho is !sed to signify that a species is completely hydated0 7hile the la/el metaindicates the elimination of a mole of 7ate fom the otho species. Ta/le 4.12 pesents a

    selection of silicate compo!nds0 7ith coesponding Si+4tetahedal linkages.

    :a= Si+4tetahedon

    :c= Si+328ing

    :/= isilicate anion :Si2+*8=

    :d= nfinite single chain ::Si+3=n2n8=

    3"

    + J o,ygen J silicon

  • 8/10/2019 Chapter 4 Structures of Solids

    36/51

    :e= nfinite do!/le chain ::Si4+11=nn8= :f= Sheet ::Si2+"=n2n8=

    Fi)ure 4.12 SiO4tetr!#edr!l lin+!)e.

    T!%le 4.12 Silic!te co*-ound

    &uildin) &loc+ Co*-ound

    iscete othosilicate :Si+448= anions )g2Si+40 :)g0 e=2Si+4:oli&ine=Da4Si+40 4Si+40 Be2Si+4:phenacite=En2Si+4:7illemite=0 ESi+4:?icon=):=3):=2:Si+4=30 ):= J Ca2F0)g2F0 e2F0 ):= J Al3F0 C3F0 e3F:ganets=

    iscete disilicate :Si2+*8= anions Sc2Si2+*:thot&eitite=

    Tisilicate ings :Si3+#8= BaTiSi3+#:/enitoite=0Da2ESi3+#-2+ :catapleite=

    -e,asilicate ings :Si+1128= C!Si+1-2+ :dioptase=0Be3Al2Si+1-2+ :/eyl=

    Single Chains :Pyo,enes :Si+3=n2n8= )gSi+3:enstatite=0Ca)g:Si+3=2:diopside=0(iAl:Si+3=2:spod!mene=

    o!/le Chains :Amphi/oles :Si4+11=nn8= Da2e":+-=2:Si4+11=2:cocidolite0 /l!e as/estos=:)g0e=*:+-=2:Si4+11=2:amosite=

    Sheets ::Si2+"=n2n8

    = Al2:+-=4Si2+":kaolinite=Al2:+-=2Si4+1':pyophyllite=)g3:+-=4Si2+":sepentine=)g3:+-=2Si4+1':talc=

    Al8s!/stit!ted sheets ::AlSi3+1'="8= Al2:+-=2Si3Al+1':m!sco&ite0 7hite mica=)g3:+-=2Si3Al+1':phlogopite0 )g8mica=:)g0e=3:+-=2Si3Al+1':/iotite0 /lack mica=

    3

  • 8/10/2019 Chapter 4 Structures of Solids

    37/51

    ame7ok Si+2:6!at? tidymite0 cisto/alite0 coesite0 stisho&ite=)Al28,Si2F,+:feldspas=),nnFGAl,Siy+2,F2yH,8?-2+ :?eolites=

    3*

  • 8/10/2019 Chapter 4 Structures of Solids

    38/51

    t sho!ld /e noted that silicate st!ct!es can also /e consideed in tems of a

    close8packed aay of +28ions0 7hee tetahedal holes ae occ!pied /y Si4Fions0 and

    octahedal and tetahedal holes /y metal ions.

    4.4.( Met!l Sul'ide

    The electonegati&ity of s!lf! is less than that of o,ygen. As a es!lt0 )8S /onds

    tend to /e less pola than )8+ /onds. Th!s0 7heeas the cystal st!ct!es of metal

    o,ides tend to /e simila to those of the coesponding fl!oides0 metal s!lfides pefe the

    st!ct!es of the moe co&alent chloides0 /omides0 and iodides. o e,ample0 laye

    st!ct!es ae !n!s!al among o,ides and fl!oides0 /!t ae fe6!ently o/se&ed among

    s!lfides and the hea&ie halides. )any of the s!lfides of inteest in a6!eo!s pocessing

    ha&e st!ct!es 7hich ae moe comple, than those listed in Ta/le 4.13. -o7e&e0 the

    st!ct!es of these moe comple, s!lfides :Ta/le 4.14= can often /e &ie7ed as dei&ati&esof the simple st!ct!es.

    T!%le 4.1" Cryt!l tructure o' *et!l ul'ide !'ter :ell0 -.74;

    Ty-e o' tructure M C

  • 8/10/2019 Chapter 4 Structures of Solids

    39/51

    T!%le 4.14 Met!l ul'ide

    Coppe S!lfides C!S :co&ellite=0 digenite :C!1.S=0 d9!leite :C!1.#S=0C!2S :chalcocite=0 C!1F,S :/la!/leinde co&ellite=0C!3AsS4:enagite=0C!"eS4:/onite=0 C!eS2:chalcopyite=0C!e2S3:c!/anite=0 C!3eS4:idaite=

    on S!lfides e#S1':m pyhotite :"C==0 e11S12:m pyhotite :C==0e1'S11:m pyhotite :11C==0 eS2:pyite=0 eS2:macasite=0e1F,S :mackina7ite=0 e#S1'e11S12:Don8integal pyhotite :nC==0eS :toilite=0 e*S:monoclinic pyhotite :4C==0 e3S4:geigite=0eAsS :asenopyite=0 eDi2S4:&iolaite=0 :e0 Di=#S11:smythite=

    Dickel S!lfides DiS2:&aesite=0 DiS :milleite=0 Di3S2:hea?le7oodite=0 8Di*S08Di*S:godle&skite=0 Di3S4:polydymite=0 :Di0e=#S:pentlandite=

    Co/alt S!lfides CoS :9aip!ite =0 Co3S4 :linnaeite=0 CoS2:cattieite=0

    Co#S:co/alt pentlandite=0 :Co0e=AsS :co/altite=

    Sil&e S!lfides 8Ag2S :agentite=0 8Ag2S :acanthite=

    Asenic S!lfides 8AsS :ealga=0 8AsS :8asenic s!lfide=0 As2S3:opiment=

    Einc S!lfides 8EnS :sphaleite=0 8EnS :7!t?ite=

    3#

  • 8/10/2019 Chapter 4 Structures of Solids

    40/51

    4.$ Molecul!r Or%it!l T#eory !nd t#e &!nd Model o' Solid

    4.$.1 Molecul!r Or%it!l !nd Ener)y &!nd

    Conside the /!ild8!p of a cystal0 one atom at a time. As t7o atoms appoach

    each othe0 a stage is eached 7hee the highe enegy o/itals :7hich e,tend f!thest

    a7ay fom the n!cle!s= /egin to inteact. >hen the distance of appoach is s!fficiently

    close0 the t7o o!temost o/itals 7ill com/ine to gi&e t7o molec!la o/itals. Addition

    of a thid atom yields a thid molec!la o/ital0 and e&ent!ally n atoms gi&e n molec!la

    o/itals. Typically inoganic solid mateials contain on the ode of " , 1'22atoms pe

    cm3. Th!s fo a patic!la atomic o/ital0 the es!lting molec!la o/itals geneated fom

    the inteaction of ; 1'22atoms 7ill /e n!meo!s and 7ill /e confined in s!ch a limited

    space that they 7ill essentially appea as a band of closely8spaced molec!la o/itals.

    4.$.2 Met!l0 Inul!tor0 !nd Se*iconductorf a /and is dei&ed fomso/itals0 then the es!lting /and is called ans/and.

    Similaly0pand d/ands may /e const!cted fompand do/itals especti&ely. L!st ass

    pand do/itals lie at diffeent enegy le&els0 so aes pand d/ands typically sepaated

    /y enegy gaps. The /ands ae filled 7ith electons0 stating fom the lo7est enegy

    /and. The occ!pied /onding o/itals constit!te the valence band0 and the empty o/itals

    epesent the cond!ction /and. The enegy of the lo7est molec!la o/ital of the

    cond!ction /and is denoted as %c 7hile the !ppe8most enegy le&el of the &alence /and

    is denoted as %&.

    n geneal0 the &alence and cond!ction /ands do not o&elap0 /!t ae sepaated /y

    a band gap0 %g. The &al!e of %g detemines 7hethe a mateial is a metal0 an insulator0

    o a semiconductor0 as ill!stated in ig!e 4.13. )etals ae chaactei?ed /y the

    pesence of enegy /ands that ae patially filled0 o /y occ!pied enegy le&els that

    o&elap 7ith !nfilled o patially occ!pied /ands. +n the othe hand ins!latos and

    semicond!ctos ae chaactei?ed /y the pesence of enegy gaps %g R 2eK fo an

    ins!lato0 and %gI 2eK fo a semicond!cto. Ta/le 4.1" pesents &al!es of the /and gapsfo selected mateials.

    4'

  • 8/10/2019 Chapter 4 Structures of Solids

    41/51

    :a= :/= :c=

    %D%$ AP

    C+DUCT+DBAD

    KA(ADC% BAD

    C+DUCT+DBAD

    C+DUCT+DBAD

    KA(ADC% BAD

    KA(ADC% BAD

    %D%$ AP

    %

    Fi)ure 4.1" &!nd *odel o' olid3 ! Met!lB % Se*iconductorB c Inul!tor

    T!%le 4.1$ &!nd)!- o' Selected M!teri!l

    Se*iconductor Ty-e o'

    Conducti/ity

    &!nd)!-

    e

    Se*iconductor Ty-e o'

    Conducti/ity

    &!nd)!-

    e

    e n0 p '. Ag2S n ; 1.Si n 1.1 Bi2S3 n 1.2

    Bi2+3 n0 p 2. CdS n 2.4Cd+ n 2.2 C!2S p ;1C!2+ p 2.2 C!S p ;1C!+ p 1.* e18,S p e3+4 n0 p '.1 eS2 n0 p '.#

    e2+3 n 2.2 )oS2 n0 p '.3 8 1)n+2:Pyol!site=

    n '.2" P/S n0 p '.3*

    Sn+2 n 3.* S/2S3 1.*Ti+2 n 3.' EnS n 3. V 3.#K2+" m 2.23 C!eS2 n '.>+3 n 2.* C!"eS2 p ;1En+ n 3.2 eAsS n0 p ;'.2E+2 n ".' aAs n0 p 1.3" V 1.43P/+ n 2. CdTe n0 p 1."

    D/2+" n 3.4 CaP n0 p 2.24Ta2+" n 4.' nP p 1.3

    BaTi+3 n 3.3 CdSe n 1.*4eTi+3 n 2. EnTe p 2.3Ti+3 n 3." SiC p 3.'STi+3 n 3.4

    NBased on $.T. Sh!ey0 Semicond!cting +e )ineals0 %lse&ie0 1#*" A. L. Do?ik0WPhotoelectochemisty@ Applications to Sola %negy Con&esionX0 Ann. $e&. Phys. Chem.02#0 1#8222 :1#*= . $a9esh7a0 P. Singh0 and L. !/o70 W%negy Con&esion in

    41

  • 8/10/2019 Chapter 4 Structures of Solids

    42/51

    Photoelectochemical Systems V A $e&ie7X0 %lectochim. Acta0 230 111*81144 :1#*=.4.$." Intrinic !nd Etrinic Se*iconductor

    >hen the magnit!de of %gis s!fficiently lo70 it is possi/le fo themal agitation to

    pomote an electon fom the &alence /and into the cond!ction /and of a p!e mateial0

    thee/y pod!cing an electron holein the &alence /and. This mateial is then temed an

    intrinsic semiconductor. A mateial can also ac6!ie cond!ction /and electons and

    &alence /and holes /y ecei&ing imp!ities. Conside the addition of phospho!s0 7hich

    has fi&e &alence electons0 to gemani!m0 7hich has fo! &alence electons. n ode fo

    P to fit into the e st!ct!e0 only fo! &alence electons ae e6!ied. The e,ta electon

    fom P emains !nde the infl!ence of the F" chaged P n!cle!s and stays in an enegy

    le&el 7hich is 7ithin the e /and gap. f the electon is e,cited o!t of this locali?ed /and

    into the e cond!ction /and0 then the P /ecomes positi&ely chaged. At the same time

    the e lattice /ecomes negati&ely chaged and is theefoe called an n-typesemicond!cto. Phospho!s is temed a donorimp!ity since it donates electons to the

    e cond!ction /and.

    +n the othe hand0 7hen a /oon atom0 7ith thee &alence electons0 is intod!ced

    in the gemani!m cystal st!ct!e0 it is necessay to find a fo!th &alence electon in

    ode to fit this imp!ity into the e st!ct!e. The needed electon is taken fom the e

    &alence /and0 thee/y ceating a hole 7ith an effecti&e positi&e chage. The B8doped

    mateial is called ap-typesemicond!cto since B has donated a positi&e chage to the e

    enegy8/and st!ct!e.

    4.$.4 T#e Fer*i Le/el in ! Solid

    Conside a solid const!cted /y appopiating anselecton fom each of D atoms.

    At a/sol!te tempeat!e :T J '= one8half of the lo7e8lying o/itals 7ill /e occ!pied.

    The topmost occ!pied o/ital is designated the ermi leveland it is located mid7ay

    /et7een the /and. At highe tempeat!es0 the po/a/ility :f= that an enegy le&el 7ith

    enegy %0 is occ!pied /y an electon is gi&en /y the emi disti/!tion f!nction@

    f J 1G1 F e,p:%8%=kTH :4.14=

    7hee %is temed theermi energy0 and k is the Bolt?mann constant. The emi enegy

    is tempeat!e dependent at T J ' it is simply the enegy associated 7ith the emi le&el.42

  • 8/10/2019 Chapter 4 Structures of Solids

    43/51

    >hen % J %0 f J 12. That is0 the po/a/ility of occ!pancy is one8half 7hen a le&el is at

    the emi enegy.

    The position of the emi le&el is dependent on the nat!e of the mateial. o a

    metal0 the enegies of /oth the occ!pied and &acant states ae located nea %. At oom

    tempeat!e0 the emi le&el of an intinsic semicond!cto lies in the cente of the /andgap. +n the othe hand fo e,tinsic semicond!ctos0 % occ!s 9!st /eneath the

    cond!ction /and in n8type mateials0 and 9!st a/o&e the &alence /and in p8type mateials.

    >hen the enegy le&el %clies significantly a/o&e the emi le&el :i.e.0 :%c8 %= R

    2kT=0 then the po/a/ility that it is occ!pied is gi&en /y %6!ation 4.14 as@

    f J e,p8:%c8 %=kT :4.1"=

    Th!s0 if the cond!ction /and is chaactei?ed /y a density of enegy le&els :i.e.0 n!m/e

    of enegy le&els pe !nit &ol!me= of Dc0 then the electon density :n= in the cond!ction

    /and is gi&en /y

    n J Dce,pG8:%c8 %=kTH :4.1=

    Similaly if :%8 %&= R 2kT0 then the density of holes :p= in the &alence /and is gi&en /y@

    p J D&e,pG8:%8 %&=kTH :4.1*=

    7hee D&is the density of enegy le&els in the &alence /and. t follo7s fom %6!ations

    4.1 and 4.1* that@

    np J DcD&e,pG8:%c8%&=kTH J DcD&e,p:8%gkT= :4.1=

    43

  • 8/10/2019 Chapter 4 Structures of Solids

    44/51

    4.( Electronic Structure o' Solid

    4.(.1 Molecul!r Or%it!lEner)y &!nd Model

    n light of the cystal st!ct!al chaacteistics e&ie7ed a/o&e0 the /asic /!ilding

    /locks of o,ides s!ch as Si+20 Ti+20 and Di+ can /e taken as the Si+40 Ti+0 and Di+

    polyheda especti&ely. Similaly0 in the case of s!lfides0 epesentati&e /!ilding /locksae EnS4:fo EnS=0 C!S40 and eS4:fo C!eS2=0 and eSfo eS2. The fomation of

    these cl!stes can /e &is!ali?ed in tems of the inteaction /et7een the o!te atomic

    o/itals associated 7ith the metal and o,ygen o s!lf! atoms. )olec!la o/ital enegy

    le&el diagams fo the cl!stes can /e dei&ed fom 6!ant!m chemical calc!lations.

    ig!e 4.14 sho7s the es!lts fo :EnS4=8and :C!S4=8 the enegy scale is taken elati&e

    to the non8/onding S 3p type o/itals :i.e.0 1t1 fo the tetahedal cl!stes=. n solid

    mateials0 the molec!la o/itals of the n!meo!s cl!stes o&elap to gi&e /ands0 and this

    is ill!stated /y the coesponding /and diagam fo sphaleite. n tems of the /and

    model0 the highest occ!pied molec!la o/ital :-+)+= epesents the topmost laye of

    the &alence /and0 7heeas the lo7est !nocc!pied molec!la o/ital :(U)+= epesents

    the lo7est enegy le&el in the cond!ction /and.

    5

    4

    3

    2

    1

    0

    -1

    -2

    -3

    -4

    -5

    OrbitalEnergy

    (eV)

    3a1

    4t2

    3t2

    1t1

    2e

    2a1

    1e2t

    2

    Antibonding M-S Conduction and

    Cry!tal-"iel d-#y$e %e&el!

    'onbonding Sul(ur and

    onding M-S and

    S$)alerite

    ZnS4-6

    (Zn )2+

    1

    CuS4-6

    4t2

    2e

    lt1

    3t2

    1e

    ,

    2t2

    2a1

    Fi)ure 4.14 Ener)y le/el di!)r!* #o9in) t#e electronic tructure o' t#e nS4(,

    !nd CuS4(,cluter0 !nd t#e %!nd *odel o' -#!lerite !'ter !u)#!n !nd Toell.

    44

  • 8/10/2019 Chapter 4 Structures of Solids

    45/51

    4.(.2 Electronic Structure o' Met!l Oide

    +n the /asis of the oigin of thei enegy gaps0 tansition metal o,ides may /e

    classified into empty d8shell :d'0 non8d8/and= o,ides0 closed d8shell :d8/and= o,ides0

    and open d8shell :d8/and= o,ides0 as indicated in Ta/les 4.10 4.1*0 and 4.1 fo selected

    compo!nds. The metal o,ides that fall !nde the d' categoy come fom the ealie

    tansition elements@ !p to )n0 $!0 and +s especti&ely fo the 3d0 4d0 and "d seies.

    Among the tansition metal o,ides0 these mateials e,hi/it the simplest electonic

    st!ct!es. To ill!state the geneal chaacteistics of the electonic st!ct!e of d'metal

    o,ides0 7e t!n to !tile Ti+2. >e kno7 fom the cystal st!ct!e that Ti4F is

    octahedally coodinated to +28. )olec!la o/ital calc!lations /ased on the Ti+8

    cl!ste gi&e the enegy le&els sho7n in ig!e 4.1". >e can identify fi&e go!ps of

    molec!la o/itals@ :1= the + 2s non/onding o/itals :"a1g0 4t1!0 1eg=0 :2= the /onding

    o/itals :"t1!0 a1g0 1t2g0 2eg=0 :3= the + 2p non/onding o/itals :1t2!0 t1!0 1t1g=0 :4= thecystal8field o/itals :2t2g0 3eg= and :"= the anti8/onding cond!ction /and o/itals :*a1g0

    *t1!=. The main feat!e 7e 7ant to note hee is the nat!e of the highest filled o/ital and

    the lo7est !nfilled o/ital0 since these epesent %&and %cespecti&ely. The filled o/ital

    7ith the highest enegy is the 1t1g0 and this epesents the top of the &alence /and. +n the

    othe hand0 the 2t2gis the lo7est8lying !nocc!pied molec!la o/ital.

    T!%le 4.1( &!nd )!- 'or elected d*et!l oide A'ter Co0 1;;2

    &in!ry Co*-ound Tern!ry Co*-ound

    Co*-ound E)e Co*-ound E)e

    3d' Ti+2:!tile= 3.' )gTi+3 3.*Ti+2:anatase= 3.2 STi+3 3.4

    BaTi+3 3.2(a2Ti2+* 4.'

    K2+" 2.2C+3 2

    4d' SE+3 ".4D/2+" 3.# (iD/+3 3.

    D/+3 3.3)o+3 3.'

    "d' Ta2+" 4.2 (iTa+3 3.DaTi+3 3.

    >+3 2.

    4"

  • 8/10/2019 Chapter 4 Structures of Solids

    46/51

    T!%le 4.17 Electronic -ro-ertie o' elected cloed,#ell dn*et!l oide A'ter Co0 1;;2

    Co*-ound Ionic For*ul! Elec. Con'i). Met!l Coordin!tion E)e

    C!2+ :C!F=2+28 3d1' 2 :(inea= 2.1Ag+ AgFAg3F:+28=2 4d1'0 4d 2 :(inea=0 4 :S6.

    plan.=

    Pd+ Pd2F

    +28

    4d

    4 :S6!ae plana= 1(aCo+3 (a3FCo3F:+28=3 3d :+ctahedal= '.1(a$h+3 (a3F$h3F:+28=3 4d :+ctahedal= 1.

    T!%le 4.18 Electronic -ro-ertie o' elected o-en,#ell dn*et!l oide A'ter Co0

    1;;2

    &in!ry Co*-ound Tern!ry Co*-ound

    Co*-ound S-in E)e Co*-ound S-in E)e

    3d' (aK+3 1

    C2+3 32 3.3 (aC+3 32 )n+ "2 3. (a)n+3 2 )n+2 32 e+ 2 2.4 (ae+3 "2 8e2+3 "2 1.# 3e"+12 "2 3Co+ 32 2.Di+ 1 3.C!+ 12 1.4

    $losed d-shell metal oxides. The chaacteistic feat!e of this categoy of metalo,ides is the pesence of a closed shell of d8electons and the fact that the !ppemost

    o/ital of the &alence /and has d8chaacte. n the case of the d1'compo!nd0 C!2+0 the

    closed shell aises /eca!se all the fi&e d o/itals ae f!lly occ!pied0 7ith an electon8pai

    in each o/ital. The /and gap is /o!nded /y the lo7e8lying filled C! 3d le&els0 and the

    highe8lying /!t empty C! 4s le&el. The chemical fom!la0 Ag+0 easily gi&es the

    impession that this compo!nd contains sil&e in the pl!s t7o o,idation state :Ag:==. n

    fact0 this is a mi,ed &alency compo!nd0 7hose ionic fom!la in&ol&es Ag:=0 d1'0 and

    Ag:=0 d. As fo!nd in the case of C!:= a/o&e0 in the Ag:= o,idation state0 the sil&e

    atom is coodinated to t7o o,ygen atoms. Also0 as 7ith C!F0 AgFis closed8shelled since

    all a&aila/le d o/itals ae filled. The Ag:= ion is tetahedally coodinated to fo!

    o,ygens. The /and gap po/a/ly lies /et7een the filled AgF4d o/itals and the empty

    Ag3F4d o/itals.

    4

  • 8/10/2019 Chapter 4 Structures of Solids

    47/51

    Fi)ure 4.1$ Molecul!r or%it!l di!)r!* 'or t#e TiO(8,cluter Toell !nd !u)#!n0

    -.188.

    %pen-shell dn metal oxides. The o,ides that fall !nde this categoy contain

    !npaied electons and theefoe they ha&e magnetic popeties.

    4.(." Electronic Structure o' Met!l Sul'ide

    )olec!la o/ital enegy le&el diagams fo the tetahedal cl!stes of En2F0 C!F0

    C!2F0 e2F0 and e3F0 and the octahedal cl!ste of e2F0 ha&e /een dei&ed fom 6!ant!m

    chemical calc!lations /y Ka!ghan and Tossell. The es!lts ae pesented in ig!e 4.1.

    n compaing the diffeent cl!stes0 the follo7ing o/se&ations can /e made@

    4*

  • 8/10/2019 Chapter 4 Structures of Solids

    48/51

    2e

    5

    4

    3

    2

    1

    0

    -1

    -2

    -3

    -4

    -5

    OrbitalEnergy

    (eV)

    3a1

    4t2

    3t2

    1t1

    2e

    2a1

    1e2t

    2

    Antibonding M-S Conduction and

    Cry!tal-"iel d-#y$e %e&el!

    'onbonding Sul(er and

    onding M-S and

    S$)alerite "erroan S$)alerite C)alco$yrite

    ZnS4

    -6(Zn )

    2+

    FeS4-6

    (Fe )2+

    1

    t2e

    3t2

    1t1

    2a1

    1e2t

    2

    e

    4t2

    t2

    t2

    et

    2

    e4t

    2

    e

    3a1

    FeS4-5

    (Fe )+3

    CuS4-7

    (Cu )+

    Fi)ure 4.1( Ener)y le/el di!)r!* #o9in) t#e electronic tructure o' *et!l ul'ide

    cluter !'ter !u)#!n !nd Toell.

    :1= The highest occ!pied molec!la o/ital :-+)+= of the EnS4cl!ste :the 4t2

    o/ital= is of pedominantly non/onding s!lf! 3p chaacte. n contast0 the

    -+)+s of the othe cl!stes ae epesented /y anti/onding metal 3d8type

    o/itals. The -+)+s of :C!S4=*8and :C!S4=8ae filled and patially filled

    4t2 o/itals especti&ely. n the case of :eS4=8

    0 the fo! !npaied 3delectons in this st!ct!e ca!se the enegy le&els to di&ide into spin8!p and

    spin8do7n go!ps the empty 1't2 and patially occ!pied 3e molec!la

    o/itals lie at the top of the &alence /and. The 2t2go/ital se&es as the

    -+)+ and &alence /and fo :eS=1'8.

    :2= o /oth :EnS4=8 and :C!S4=*80 the (U)+ is the anti/onding 3a1 o/ital.

    -o7e&e0 since the 4t2o/ital of the :C!S4=8cl!ste is incompletely filled0 it

    epesents the (U)+. n the case of :eS4=80 the empty anti/onding #a1

    :mostly e 4s= and 11t2 :mostly S 3p= o/itals epesent the cond!ction

    /and0 7hile the empty 3ego/itals se&e as the (U)+ fo the cl!ste0 and

    theefoe0 fo eS2.

    4

  • 8/10/2019 Chapter 4 Structures of Solids

    49/51

    :3= n the :EnS4=8electonic st!ct!e0 the metal 3d8type o/itals ae /!ied fa

    /elo7 the /onding )8S o/itals. This is in contast to the othe cl!stes0

    7hee the opposite odeing is o/se&ed.

    Antibonding M-S

    Conduction Band

    Crystal-Field-Type Levels

    Nonbonding

    Sulfur Band

    BondingM-S Band

    Chalcopyrite

    e

    t2

    t2

    e

    !

    "

    2

    #

    $

    -#-2

    -"

    -!

    -

    %rbital&

    nergy'e()

    "t2#t#

    2a#

    #e2t2

    !t2

    e

    "a#

    2e

    !t2

    FeS4

    5-(Fe )

    3+CuS 4

    7-(Cu )

    +

    Fi)ure 4.17 T#e electronic tructure o' c#!lco-yrite CuFeS2!'ter !u)#!n !nd

    Toell.

    4#

  • 8/10/2019 Chapter 4 Structures of Solids

    50/51

    Sphalerite

    !

    "

    2

    #

    $

    -#

    -2

    -"

    -!

    -

    "a#

    !t2

    "t2

    #t#2e

    2a#

    #e2t2

    Antibonding M-SConduction Band

    Crystal-Field-Type Levels

    Bonding M-S

    Band

    Nonbonding

    Sulfur Band

    Crystal-Field-

    Type Levels

    6

    5

    4

    3

    2

    1

    0

    -1

    -2

    -3

    -4

    -5

    -6

    -7

    Energy

    (eV)

    2gt

    1gt1ut

    ge2ut

    1ut

    2gt1ga

    ge

    *yrite

    'FeS )2

    '+nS)

    ,-BAN, S&MC%N,.CT%/ N%N-,-BAN, S&MC%N,0

    Bonding M-S

    Band

    Fi)ure 4.18 Co*-!rion o' t#e electronic tructure o' -yrite FeS2 !nd -#!lerite

    nS !'ter !u)#!n !nd Toell

    "'

  • 8/10/2019 Chapter 4 Structures of Solids

    51/51

    Furt#er Re!din)

    1. A. . >ells0 Structural *norganic $hemistry0 "th ed.0 +,fod0 De7 ok0 1#4.

    2. P. A. Co,0 +ransition etal %xides0 +,fod0 De7 ok0 1##2.

    3. P. A. Co,0 +he ,lectronic Structure and $hemistry of Solids0 +,fod0 De7 ok01#*.

    4. . L. Ka!ghan and L. $. Caig0 ineral $hemistry of etal Sulfides0 Cam/idge0De7 ok0 1#*.

    ". L. A. Tossell and . L. Ka!ghan0 +heoretical eochemistry. Application of /uantumechanics in the ,arth and ineral Sciences0 +,fod0 De7 ok0 1##2.

    . (. Pa!ling0 +he 0ature of the $hemical !ond0 3d. ed.0 Conell Uni&esity Pess0thaca0 De7 ok0 1#'.

    *. L. %. -!heey0 %.A. eite0 and $. (. eite0 *norganic $hemistry& Principles ofStructure and 1eactivity0 4th ed.0 -ape Colins0 1##3.

    . A. . Shape0*norganic $hemistry0 3d. ed.0 (ongman0 (ondon0 1##2.

    #. . %. Shi&e0 P. >. Atkins0 and C. -. (angfod0 *norganic $hemistry0 eeman0De7 ok0 1##'.

    1'. B. >e/ste0 $hemical !onding +heory0 Black7ell0 +,fod0 1##'.

    11. . A. Cotton and . >ilkinson0Advanced *norganic $hemistry0 "th ed.0 >iley0 De7ok0 1#.

    12. (. %. +gel0An *ntroduction to +ransition - etal $hemistry. 2igand-ield +heory2nd ed.0 >iley0 De7 ok0 1#.

    13. . (ie/a!0 Structural $hemistry of Silicates0 Spinge8Kelag0 De7 ok0 1#".