Chapter 4 Pham Hong Quang

Embed Size (px)

Citation preview

  • 8/16/2019 Chapter 4 Pham Hong Quang

    1/33

    Fundamental of PhysicsChapter 4

    PETROVIETNAM UNIVERSITY

    FUNDAMENTAL SCENCE DEPA!TMENT

    Hanoi, August 2011

    Pham Hong QuangE-mail: [email protected]

  • 8/16/2019 Chapter 4 Pham Hong Quang

    2/33

    Chapter 4 Moton of a System of Partcles andof a Rigid Object

    Pham Hong Quang Fundamental Science Department    2

    4.1 Linear Momentum and Its Conservation

    4.2 Conservation of Energy and Momentum

    in Collisions

    4.3 Center of Mass

    4.4 otational Motion

    4.! otational Energy

    4." otational Inertia

    4.# $otal Me%hani%al Energy

    4.& Parallel '(is $heorem4.) $or*ue and Momentum

    4.1+ Conservation of 'ngular Momentum

    4.11 ,or- in otational Motion

  • 8/16/2019 Chapter 4 Pham Hong Quang

    3/33

    4.1 Lnear Momentum and Its Conservaton

    Pham Hong Quang Fundamental Science Department    3

    Conservation of Momentum•Law of Conservation of Momentum - Thetotal momentum of an isolated system ofbodies remains constant.

    Isolated system - one in which the onlyforces present are those between the objectsof the system.

    Momentum before = momentum afterm1vi1  m!vi! = m1v f1  m!v f!

  • 8/16/2019 Chapter 4 Pham Hong Quang

    4/33

    4.2 Conservaton of Energy and Momentum nCollisions

    Pham Hong Quang Fundamental Science Department    4

    Momentum is

    conserved in all

    collisions.

    Collisions in which

    "inetic ener#y is

    conserved as well are

    called elastic

    collisions$ and those

    in which it is not are

    called inelastic.f

  • 8/16/2019 Chapter 4 Pham Hong Quang

    5/33

    4.2 Conservaton of Energy and Momentum nCollisions

    Pham Hong Quang Fundamental Science Department    5

    %ere we have two

    objects collidin#

    elastically. &e "now the

    masses and the initial

    speeds.

    'ince both momentum

    and "inetic ener#y areconserved$ we can write

    two e(uations. This

    allows us to solve for the

    f d

  • 8/16/2019 Chapter 4 Pham Hong Quang

    6/33

    4.2 Conservaton of Energy and Momentum nCollisions

    Pham Hong Quang Fundamental Science Department    6

    2C f d

  • 8/16/2019 Chapter 4 Pham Hong Quang

    7/33

    4.2 Conservaton of Energy and Momentum nCollisions

    Pham Hong Quang Fundamental Science Department    7

    'uppose that the masses and initial velocities of

    both particles are "nown.*(uations +.1, and +.1+ can be solved for the)nal speeds in terms of the initial speeds becausethere are two e(uations and two un"nowns

    It is important to remember that theappropriate si#ns for v 1i and v 2i must be

    included in *(uations +.! and +.!1.

  • 8/16/2019 Chapter 4 Pham Hong Quang

    8/33

  • 8/16/2019 Chapter 4 Pham Hong Quang

    9/33

    4.3 Center ò Mass

    Pham Hong Quang Fundamental Science Department    9

    In 0a$ the diver2s motion is pure translation3 in 0b it

    is translation plus rotation. There is one point that moves in the same path aparticle would ta"e if subjected to the same force asthe diver. This point is called the center of mass

    0CM.

  • 8/16/2019 Chapter 4 Pham Hong Quang

    10/33

    4.3 Center of Mass

    Pham Hong Quang Fundamental Science Department    10

     The #eneral motion of an object can be

    considered as the sum of the translationalmotion of the CM$ plus rotational$ vibration orother forms of motion about the CM.

  • 8/16/2019 Chapter 4 Pham Hong Quang

    11/33

    4.3 Center of Mass

    Pham Hong Quang Fundamental Science Department    11

  • 8/16/2019 Chapter 4 Pham Hong Quang

    12/33

    4.3 Center of Mass

    Pham Hong Quang Fundamental Science Department    12

     The center of #ravity is the

    point where the #ravitationalforce can be considered toact. It is the same as thecenter of mass as lon# as the

    #ravitational force does notvary amon# di4erent parts ofthe object.

     The center of #ravity can be

    found e/perimentally bysuspendin# an object fromdi4erent points. The CM neednot be within the actualobject 5 a dou#hnut2s CM is inthe center of the hole.

  • 8/16/2019 Chapter 4 Pham Hong Quang

    13/33

    4.3 Center of Mas

    Pham Hong Quang Fundamental Science Department    13

     The total momentum of a system ofparticles is e(ual to the product ofthe total mass and the velocity ofthe center of mass.

     The sum of all the forces actin# ona system is e(ual to the total massof the system multiplied by theacceleration of the center of mass

  • 8/16/2019 Chapter 4 Pham Hong Quang

    14/33

    4.4 Rotational Motion

    Pham Hong Quang Fundamental Science Department    14

     RotationalMotion

    QuantityLinear

    Motion

    θ Position  x 

    Δθ Displaceent Δ x 

    ω   Velocity v 

    α   Acceleration a 

    t   Tie t  

    otational and Linear inemati%s

  • 8/16/2019 Chapter 4 Pham Hong Quang

    15/33

    4.4 Rotational Motion

    Pham Hong Quang Fundamental Science Department    15

  • 8/16/2019 Chapter 4 Pham Hong Quang

    16/33

    4.4 Rotational Motion

    Pham Hong Quang Fundamental Science Department    16

    Centri/etal0or%e

  • 8/16/2019 Chapter 4 Pham Hong Quang

    17/33

    4.5 Rotational Energy

    Pham Hong Quang Fundamental Science Department    17

  • 8/16/2019 Chapter 4 Pham Hong Quang

    18/33

    4.6 Rotational Inertia

    Pham Hong Quang Fundamental Science Department    18

    • The rotational inertia for a collection ofparticles is de)ned as

    • The rotational "inetic ener#y 6*7 of a ri#idobject rotatin# with an an#ular speed 8about a )/ed a/is and havin# a rotational ofinertia I is

    !

    i i

    i

     I m r =∑

    Requirement: 8 must be e/pressed in rad9s.SI Unit of Rotational Kinetic Energy: joule

    0:

  • 8/16/2019 Chapter 4 Pham Hong Quang

    19/33

    4.6 Rotational Inertia

    Pham Hong Quang Fundamental Science Department    19

  • 8/16/2019 Chapter 4 Pham Hong Quang

    20/33

    4.6 Rotational Inertia

    Pham Hong Quang Fundamental Science Department    20

  • 8/16/2019 Chapter 4 Pham Hong Quang

    21/33

    4.6 Rotational Inertia

    Pham Hong Quang Fundamental Science Department    21

  • 8/16/2019 Chapter 4 Pham Hong Quang

    22/33

    4.7 Total mechanical Energy

    Pham Hong Quang Fundamental Science Department    22

    ;n object that under#oes combined rotational and

    translation motion has two types of "ineticener#y

    01a rotational "inetic ener#y due to its rotationabout its center of mass

    0!a translational "inetic ener#y due to translation

    of its center of mass. The total mechanicalener#y is

  • 8/16/2019 Chapter 4 Pham Hong Quang

    23/33

    4.8 Parallel Axis Theorem

    Pham Hong Quang Fundamental Science Department    23

     This theorem will allow us to calculate the

    moment of inertia of any rotatin# body around

    any a/is$ provided we "now the moment of

    inertia about the center of mass.

    It basically states that the Moment of Inertia I/

    around any a/is

  • 8/16/2019 Chapter 4 Pham Hong Quang

    24/33

    4.9 Torque and Momentum

    Pham Hong Quang Fundamental Science Department    24

    $or*ue magnitude anddire%tion

     F r  ×=τ    ⊥⊥   ===   F r  F r  F r    ""sin"" φ τ 

  • 8/16/2019 Chapter 4 Pham Hong Quang

    25/33

    4.9 Torque and Momentum

    Pham Hong Quang Fundamental Science Department    25

    'ngularmomentummagnitude anddire%tion

    ⊥⊥   ===   P r  P r  P r  L   ""sin"" φ 

    ω   I  P r  L   =×=

  • 8/16/2019 Chapter 4 Pham Hong Quang

    26/33

    4.9 Torque and Momentum

    Pham Hong Quang Fundamental Science Department    26

    →→→→

    →→→→

    =×=×+×=   ∑ τ  F r dt 

     P d r  P 

    dt 

    r d 

    dt 

     Ld 

    →→

    =   vdt 

    r d 

    #=×=×→→→

     P v P 

    dt 

    r d  ∑→

    =   F dt 

     P d 

    %ere

    and

    >The net tor(ue actin# on a particle is e(ual to thetime rate of chan#e of its an#ular momentum?.

    elation et5een $or*ue and

    Momentum

  • 8/16/2019 Chapter 4 Pham Hong Quang

    27/33

    4.9 Torque and Momentum

    Pham Hong Quang Fundamental Science Department    27

    @ecause

    ω   I  P r  L   =×=

     Then α ϖ τ     I dt 

    d  I dt 

     Ld  ===

    %ere dt 

    d ϖ α =

    6e%ond 7e5ton La5 in otational

    motion

  • 8/16/2019 Chapter 4 Pham Hong Quang

    28/33

    49TorqueandMomentum

  • 8/16/2019 Chapter 4 Pham Hong Quang

    29/33

    4.9 Torque and Momentum

    Pham Hong Quang Fundamental Science Department    29

    ∧→

    =#

     z mgbτ  

    ∧→→→

    =×=#

     z bmgt vmr  L

    →∧→

    == τ # z bmg dt 

     Ld 

    6olution

    i f l

  • 8/16/2019 Chapter 4 Pham Hong Quang

    30/33

    4.10 Conservation of Angular Momentum

    Pham Hong Quang Fundamental Science Department    30

    dt 

     Ld 

    ext 

    →→

    =∑τ    #=∑  →

    ext τ  

    t cons L   tan=→

    >if the net e/ternal tor(ueactin# on a system is Aero$the total vector an#ular

    momentum of the systemremains constant?

    Brom If  

     Then

  • 8/16/2019 Chapter 4 Pham Hong Quang

    31/33

  • 8/16/2019 Chapter 4 Pham Hong Quang

    32/33

  • 8/16/2019 Chapter 4 Pham Hong Quang

    33/33

    N V A 33

    Thank you!