135
Chapter 3 Discrete Random Variables 主主主 : 主主主

Chapter 3 Discrete Random Variables

Embed Size (px)

DESCRIPTION

Chapter 3 Discrete Random Variables. 主講人 : 虞台文. Content. Random Variables The Probability Mass Functions Distribution Functions Bernoulli Trials Bernoulli Distributions Binomial Distributions Geometric Distributions Negative Binomial Distributions Poisson Distributions - PowerPoint PPT Presentation

Citation preview

  • Chapter 3Discrete Random Variables:

  • ContentRandom VariablesThe Probability Mass FunctionsDistribution FunctionsBernoulli TrialsBernoulli DistributionsBinomial DistributionsGeometric DistributionsNegative Binomial DistributionsPoisson DistributionsHypergeometric DistributionsDiscrete Uniform Distributions

  • Chapter 3Discrete Random VariablesRandom Variables

  • Definition Random VariablesA random variable X of a probability space (, A, P) is a real-valued function defined on , i.e.,

  • Definition Random VariablesA random variable X of a probability space (, A, P) is a real-valued function defined on , i.e.,

  • Example 1

  • Example 11

  • Example 12

  • Example 1

  • Example 2

  • Example 2

  • Notations

  • Example 1

  • Example 1

  • Example 1

  • Definition Discrete Random VariablesA discrete random variable X is a random variable with range being a finite or countable infinite subset {x1, x2, . . .} of real numbers R.

  • Definition Discrete Random VariablesA discrete random variable X is a random variable with range being a finite or countably infinite subset {x1, x2, . . .} of real numbers R.What is countablity?The set of all integersThe set of all real numbers

  • Example 1X, Y and Z are discrete random variables. All are finite

  • Example 2X, Y and Z are not discrete random variables. All are uncountable

  • Example 2X, Y and Z are not discrete random variables. All are uncountableIn fact, they are continuous random variables.

  • Chapter 3Discrete Random VariablesThe Probability Mass Functions

  • Definition The Probability Mass Function (pmf)The probability mass function (pmf) of r.v. X, denoted by pX(x), is defined as

  • Example 4

  • Example 4

  • Example 4

  • Example 4

  • Properties of pmfsx

  • Chapter 3Discrete Random VariablesDistribution Functions

  • Cumulative Distribution Function (cdf)cdf

  • Cumulative Distribution Function (cdf)cdfpmf

  • Cumulative Distribution Function (cdf)cdfpmf

  • Cumulative Distribution Function (cdf)cdfpmfxpX(x)x1x2x3x4

  • Cumulative Distribution Function (cdf)cdfpmfxpX(x)x1x2x3x4

  • Cumulative Distribution Function (cdf)cdfpmfxpX(x)x1x2x3x41pX(x1)pX(x2)pX(x3)pX(x4)

  • Example 5

  • Example 5

  • Example 5

  • Example 5

  • Example 5

  • Example 5

  • Properties of cdfs xMonotonically nondecreasing.

  • Properties of cdfs xMonotonically nondecreasing.

    F(b)

    F(a)

  • Chapter 3Discrete Random VariablesBernoulli Trials

  • Bernoulli TrialsSuppose an experiment consists of n trials, n > 0.The trials are called Bernoulli trials if three conditions are satisfied:Each trial has a sample space {S =1, F =0} (two outcomes), S to be called success and F to be called failure.For each trial P(S) = p and P(F) = q, where 0 p 1 and q = 1 p.The trials are independent.

  • Example 6Tossing a die ten times, the actual face number in each toss is unnoted. Instead, the outcome of 1 or 2 will be considered a success, and the outcome of 3, 4, 5, or 6 will be considered a failure. What is the sample space of the experiment?Is this experiment to performing Bernoulli Trials?Why?

  • DiscussionWhat probabilities may interest us on performing Bernoulli Trials?

  • Chapter 3Discrete Random VariablesBernoulli Distributions

  • Bernoulli DistributionsLet r.v. X denote the outcome of a Bernoulli trial, and let the probability of success equal to p.

    Then, we havecdfpmf

  • Bernoulli DistributionsLet r.v. X denote the outcome of a Bernoulli trial, and let the probability of success equal to p.

    Then, we havecdfpmf

  • Bernoulli DistributionsLet r.v. X denote the outcome of a Bernoulli trial, and let the probability of success equal to p.

    Then, we havecdfpmf

  • Bernoulli DistributionsLet r.v. X denote the outcome of a Bernoulli trial, and let the probability of success equal to p.

    Then, we havecdfpmf

  • Bernoulli DistributionsLet r.v. X denote the outcome of a Bernoulli trial, and let the probability of success equal to p.

    Then, we havecdfpmf

  • Bernoulli Distributionscdfpmf

  • Chapter 3Discrete Random VariablesBinomial Distributions

  • pnXI(X)=?P(X=x)=?

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmfn trials

    x successes

    nx fails

    ppp(1p)(1p)(1p)......

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmfn trials

    x successes

    nx fails

    ppp(1p)(1p)(1p)......

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmfn trials

    x successes

    nx fails

    ppp(1p)(1p)(1p)......

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmf

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmfwithout closed-form

  • Binomial DistributionsConsider n Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #successes in the experiment.Then,cdfpmf

  • Binomial Distributionscdfpmf

  • Binomial Distributions

  • Example 7Verify that b(x; n, p) is a valid pmf.

  • Example 810% of IC chips from an IC manufacturer are known to be defective. Taking a sample of ten IC chips from the manufacture. Find the probabilities of1. no IC chip is defective;2. at least 2 IC chips are defective.

  • Example 810% of IC chips from an IC manufacturer are known to be defective. Taking a sample of ten IC chips from the manufacture. Find the probabilities of1. no IC chip is defective;2. at least 2 IC chips are defective.Let X denote #defectives

  • Chapter 3Discrete Random VariablesGeometric Distributions

  • pI(X)=?P(X=x)=?!!!X

  • Geometric DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote the number of trials up to and including the first success.Then,cdfpmfx trials

    x1 fails

    (1p)(1p)(1p). . .First successp

  • Geometric DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote the number of trials up to and including the first success.Then,cdfpmf

  • Geometric DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote the number of trials up to and including the first success.Then,cdfpmfThe parameter of the experiment.

  • Geometric Distributionscdfpmf

    Chart4

    0.1

    0.09

    0.081

    0.0729

    0.06561

    0.059049

    0.0531441

    0.04782969

    0.043046721

    0.0387420489

    0.034867844

    0.0313810596

    0.0282429536

    0.0254186583

    0.0228767925

    0.0205891132

    0.0185302019

    0.0166771817

    0.0150094635

    0.0135085172

    0.0121576655

    0.0109418989

    0.009847709

    0.0088629381

    0.0079766443

    0.0071789799

    0.0064610819

    0.0058149737

    0.0052334763

    0.0047101287

    0.0042391158

    0.0038152042

    0.0034336838

    0.0030903154

    0.0027812839

    0.0025031555

    0.00225284

    0.002027556

    0.0018248004

    0.0016423203

    x

    pX(x)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    Sheet1

    -4

    20.027777777800.0277777778

    30.05555555560.02777777780.0833333333

    40.08333333330.08333333330.1666666667

    50.11111111110.16666666670.2777777778

    60.13888888890.27777777780.4166666667

    70.16666666670.41666666670.5833333333

    80.13888888890.58333333330.7222222222

    90.11111111110.72222222220.8333333333

    100.08333333330.83333333330.9166666667

    110.05555555560.91666666670.9722222222

    120.02777777780.97222222221

    1811

    Sheet1

    Sheet2

    Sheet4

    -2

    10.027777777800.0277777778

    20.08333333330.02777777780.1111111111

    30.13888888890.11111111110.25

    40.19444444440.250.4444444444

    50.250.44444444440.6944444444

    60.30555555560.69444444441

    10

    0.0555555556

    Sheet4

    Sheet3

    10.1

    20.09

    30.081

    40.0729

    50.06561

    60.059049

    70.0531441

    80.04782969

    90.043046721

    100.0387420489

    110.034867844

    120.0313810596

    130.0282429536

    140.0254186583

    150.0228767925

    160.0205891132

    170.0185302019

    180.0166771817

    190.0150094635

    200.0135085172

    210.0121576655

    220.0109418989

    230.009847709

    240.0088629381

    250.0079766443

    260.0071789799

    270.0064610819

    280.0058149737

    290.0052334763

    300.0047101287

    310.0042391158

    320.0038152042

    330.0034336838

    340.0030903154

    350.0027812839

    360.0025031555

    370.00225284

    380.002027556

    390.0018248004

    400.0016423203

    x

    pX(x)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    200.50.250.75

    00.00000095370.00317121190

    10.00001907350.02114141290.0000000001

    20.00018119810.06694780760.0000000016

    30.00108718870.13389561520.000000028

    40.00462055210.18968545490.0000003569

    50.01478576660.20233115190.0000034265

    60.03696441650.16860929320.0000256987

    70.0739288330.11240619550.0001541923

    80.12013435360.06088668920.0007516875

    90.16017913820.02706075080.0030067501

    100.1761970520.00992227530.0099222753

    110.16017913820.00300675010.0270607508

    120.12013435360.00075168750.0608866892

    130.0739288330.00015419230.1124061955

    140.03696441650.00002569870.1686092932

    150.01478576660.00000342650.2023311519

    160.00462055210.00000035690.1896854549

    170.00108718870.0000000280.1338956152

    180.00018119810.00000000160.0669478076

    190.00001907350.00000000010.0211414129

    200.000000953700.0031712119

    111

    x

    b(x;20,0.5)

    b(x;20,0.25)

    x

    x

    b(x;20,0.75)

  • Example 9Tossing a fair die, find:the probability of the first appearing of 1 is in the 5th toss;the probability of the first appearing of 1 is in the first five tosses.

  • Example 9Tossing a fair die, find:the probability of the first appearing of 1 is in the 5th toss;the probability of the first appearing of 1 is in the first five tosses.Let X denote #tossing to reach the 1st 1

  • Memoryless or Markov Property12m?

  • Memoryless or Markov Property12mm+1m+2m+n12n

  • Memoryless or Markov PropertyX

  • Memoryless or Markov Property

  • Memoryless or Markov PropertyA r.v. X is said to have memoryless or Markov property if it satisfies

  • Theorem 1Let r.v. X have image 1, 2,. Then, XG(p) P(X > m + n|X > m) = P(X > n)where m, n be any positive integers.

  • Theorem 1PF)

  • Theorem 1PF)Define

  • Theorem 1Let r.v. X have image 1, 2,. Then, XG(p) P(X > m + n|X > m) = P(X > n)where m, n be any positive integers.

  • Geometric DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote the number of trials up to and including the first success.Then,cdfpmfModifiedYY0,1,2,Yyy = 0,1,y+1Yyy < 00 yyfailures

  • Modified Geometric DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. Y denote the number of failures up to the first success.Then,cdfpmf

  • Modified Geometric Distributionscdfpmf

  • Chapter 3Discrete Random VariablesNegative Binomial Distributions

  • pI(X)=?P(X=x)=?!!!rX:r

  • Negative Binomial DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #trials up to and including the rth success.Then,cdfpmfrX = x

    x1r1

  • Negative Binomial DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #trials up to and including the rth success.Then,cdfpmf

  • Negative Binomial DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #trials up to and including the rth success.Then,cdfpmfwithout closed-form

  • Negative Binomial DistributionsConsider a sequence of Bernoulli trials with the probability of success on each trial being p.Let r.v. X denote #trials up to and including the rth success.Then,cdfpmfwithout closed-form

  • Negative Binomial DistributionscdfpmfFact:

  • Negative Binomial Distributionscdfpmf

    Chart1

    0.00032

    0.00128

    0.003072

    0.0057344

    0.00917504

    0.0132120576

    0.0176160768

    0.0221459251

    0.0265751101

    0.0307090162

    0.0343940981

    0.0375208343

    0.0400222233

    0.0418694028

    0.0430656714

    0.0436398804

    0.0436398804

    0.04312647

    0.042168104

    0.0408364797

    0.0392030205

    0.03733621

    0.0352996895

    0.0331510127

    0.0309409452

    0.0287131971

    0.0265044897

    0.0243448646

    0.0222581619

    0.0202626026

    0.0183714263

    0.0165935464

    0.0149341917

    0.0133955174

    0.0119771685

    0.0106767902

    0.0094904802

    0.0084131824

    0.0074390245

    0.0065616011

    0.0057742089

    0.0050700371

    0.0044423182

    0.0038844457

    0.0033900617

    0.0029531204

    0.0025679308

    0.0022291825

    0.0019319582

    0.0016717352

    0.0014443792

    0.0012461311

    0.0010735899

    0.0009236924

    0.0007936913

    0.0006811314

    0.0005838269

    0.0004998378

    0.0004274475

    0.0003651416

    0.0003115875

    0.0002656156

    0.0002262016

    0.0001924509

    0.0001635833

    0.00013892

    0.0001178715

    0.0000999269

    0.0000846439

    0.0000716407

    0.0000605875

    0.0000512007

    0.0000432362

    x

    pX(x)

    X~NB(5,0.2)

    Sheet1

    -4

    20.027777777800.0277777778

    30.05555555560.02777777780.0833333333

    40.08333333330.08333333330.1666666667

    50.11111111110.16666666670.2777777778

    60.13888888890.27777777780.4166666667

    70.16666666670.41666666670.5833333333

    80.13888888890.58333333330.7222222222

    90.11111111110.72222222220.8333333333

    100.08333333330.83333333330.9166666667

    110.05555555560.91666666670.9722222222

    120.02777777780.97222222221

    1811

    Sheet1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet2

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    Sheet3

    -2

    10.027777777800.0277777778

    20.08333333330.02777777780.1111111111

    30.13888888890.11111111110.25

    40.19444444440.250.4444444444

    50.250.44444444440.6944444444

    60.30555555560.69444444441

    10

    0.0555555556

    Sheet3

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet4

    00

    00

    00

    00

    00

    00

    00

    00

    Sheet5

    200.50.250.75

    00.00000095370.00317121190

    10.00001907350.02114141290.0000000001

    20.00018119810.06694780760.0000000016

    30.00108718870.13389561520.000000028

    40.00462055210.18968545490.0000003569

    50.01478576660.20233115190.0000034265

    60.03696441650.16860929320.0000256987

    70.0739288330.11240619550.0001541923

    80.12013435360.06088668920.0007516875

    90.16017913820.02706075080.0030067501

    100.1761970520.00992227530.0099222753

    110.16017913820.00300675010.0270607508

    120.12013435360.00075168750.0608866892

    130.0739288330.00015419230.1124061955

    140.03696441650.00002569870.1686092932

    150.01478576660.00000342650.2023311519

    160.00462055210.00000035690.1896854549

    170.00108718870.0000000280.1338956152

    180.00018119810.00000000160.0669478076

    190.00001907350.00000000010.0211414129

    200.000000953700.0031712119

    111

    Sheet5

    x

    b(x;20,0.5)

    b(x;20,0.25)

    x

    x

    b(x;20,0.75)

    10.1

    20.09

    30.081

    40.0729

    50.06561

    60.059049

    70.0531441

    80.04782969

    90.043046721

    100.0387420489

    110.034867844

    120.0313810596

    130.0282429536

    140.0254186583

    150.0228767925

    160.0205891132

    170.0185302019

    180.0166771817

    190.0150094635

    200.0135085172

    210.0121576655

    220.0109418989

    230.009847709

    240.0088629381

    250.0079766443

    260.0071789799

    270.0064610819

    280.0058149737

    290.0052334763

    300.0047101287

    310.0042391158

    320.0038152042

    330.0034336838

    340.0030903154

    350.0027812839

    360.0025031555

    370.00225284

    380.002027556

    390.0018248004

    400.0016423203

    x

    pX(x)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    50.00032

    60.00128

    70.003072

    80.0057344

    90.00917504

    100.0132120576

    110.0176160768

    120.0221459251

    130.0265751101

    140.0307090162

    150.0343940981

    160.0375208343

    170.0400222233

    180.0418694028

    190.0430656714

    200.0436398804

    210.0436398804

    220.04312647

    230.042168104

    240.0408364797

    250.0392030205

    260.03733621

    270.0352996895

    280.0331510127

    290.0309409452

    300.0287131971

    310.0265044897

    320.0243448646

    330.0222581619

    340.0202626026

    350.0183714263

    360.0165935464

    370.0149341917

    380.0133955174

    390.0119771685

    400.0106767902

    410.0094904802

    420.0084131824

    430.0074390245

    440.0065616011

    450.0057742089

    460.0050700371

    470.0044423182

    480.0038844457

    490.0033900617

    500.0029531204

    510.0025679308

    520.0022291825

    530.0019319582

    540.0016717352

    550.0014443792

    560.0012461311

    570.0010735899

    580.0009236924

    590.0007936913

    600.0006811314

    610.0005838269

    620.0004998378

    630.0004274475

    640.0003651416

    650.0003115875

    660.0002656156

    670.0002262016

    680.0001924509

    690.0001635833

    700.00013892

    710.0001178715

    720.0000999269

    730.0000846439

    740.0000716407

    750.0000605875

    760.0000512007

    770.0000432362

    x

    pX(x)

    X~NB(5,0.2)

  • Negative Binomial Distributionspmf

  • Negative Binomial DistributionspmfVerify that nb(x;r,p) is a valid pmf.Exercise

  • pI(X)=?P(X=x)=?!!!rX:r

  • pI(Y)=?P(Y=y)=?!!!rY:rFact: Y = X r

  • Negative Binomial DistributionspmfModifiedFact: Y = X rYYyyy =0,1,2, yyy

  • Modified Negative Binomial DistributionspmfFact:

  • Chapter 3Discrete Random VariablesPoisson Distributions

  • A Toll Station

  • Arriving/Failure Rate:

  • Poisson DistributionsConsider a highway toll station.Assume that, on average, vehicles pass the station per unit time interval (e.g., an hour). Let X denote #vehicles passing in a time interval of duration t, i.e., (0, t].: Arriving rateX: #vehicles passing in (0, t]I(X) = ?P(X=x) = ?{0, 1, 2, }

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]P(X=x) = ? ?

    t

    n

    n

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]P(X=x) = ? ?

    t

    n

    n()?010101001000110001010

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]P(X=x) = ? ?

    t

    n

    nn

    p = ?

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]P(X=x) = ? ?

    t

    n

    nn

    p = ?np

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]P(X=x) = ? ?

    t

    n

    nn

    p = ?

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]

    =1, n

    =1, n

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]Let

  • Poisson Distributions: Arriving rateX: #vehicles passing in (0, t]

  • Poisson DistributionsConsider a highway toll station.Assume that, on average, vehicles pass the station per unit time interval (e.g., an hour). Let X denote #vehicles passing in a time interval of duration t, i.e., (0, t].: Arriving rateX: #vehicles passing in (0, t]cdfpmfwithout closed-form

  • Poisson DistributionsConsider a highway toll station.Assume that, on average, vehicles pass the station per unit time interval (e.g., an hour). Let X denote #vehicles passing in a time interval of duration t, i.e., (0, t].cdfpmfwithout closed-formin an interval the same interval

  • Poisson DistributionscdfpmfVerify that p(x;) is a valid pmf.Exercise

  • Poisson DistributionscdfpmfVerify that p(x;) is a valid pmf.Exercise

    Chart1

    0

    0.0000000003

    0.0000000043

    0.0000000362

    0.000000226

    0.0000011302

    0.0000047092

    0.0000168185

    0.0000525578

    0.000145994

    0.000364985

    0.0008295113

    0.0017281486

    0.0033233628

    0.0059345764

    0.0098909606

    0.0154546259

    0.0227273911

    0.0315658209

    0.0415339749

    0.0519174686

    0.0618065102

    0.0702346707

    0.0763420334

    0.0795229515

    0.0795229515

    0.0764643764

    0.0708003485

    0.0632145969

    0.0544953422

    0.0454127851

    0.0366232138

    0.0286118858

    0.0216756711

    0.0159379934

    0.011384281

    0.0079057507

    0.0053417234

    0.0035142917

    0.0022527511

    0.0014079694

    0.000858518

    0.0005110226

    0.0002971062

    0.0001688103

    0.0000937835

    0.0000509693

    0.0000271113

    0.0000141205

    0.0000072043

    0.0000036022

    0.0000017658

    0.0000008489

    0.0000004004

    0.0000001854

    0.0000000843

    0.0000000376

    0.0000000165

    0.0000000071

    0.000000003

    0.0000000013

    0.0000000005

    0.0000000002

    0.0000000001

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    x

    pX(x)

    Sheet1

    -4

    20.027777777800.0277777778

    30.05555555560.02777777780.0833333333

    40.08333333330.08333333330.1666666667

    50.11111111110.16666666670.2777777778

    60.13888888890.27777777780.4166666667

    70.16666666670.41666666670.5833333333

    80.13888888890.58333333330.7222222222

    90.11111111110.72222222220.8333333333

    100.08333333330.83333333330.9166666667

    110.05555555560.91666666670.9722222222

    120.02777777780.97222222221

    1811

    Sheet1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet2

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    Sheet3

    -2

    10.027777777800.0277777778

    20.08333333330.02777777780.1111111111

    30.13888888890.11111111110.25

    40.19444444440.250.4444444444

    50.250.44444444440.6944444444

    60.30555555560.69444444441

    10

    0.0555555556

    Sheet3

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Sheet4

    00

    00

    00

    00

    00

    00

    00

    00

    Sheet5

    200.50.250.75

    00.00000095370.00317121190

    10.00001907350.02114141290.0000000001

    20.00018119810.06694780760.0000000016

    30.00108718870.13389561520.000000028

    40.00462055210.18968545490.0000003569

    50.01478576660.20233115190.0000034265

    60.03696441650.16860929320.0000256987

    70.0739288330.11240619550.0001541923

    80.12013435360.06088668920.0007516875

    90.16017913820.02706075080.0030067501

    100.1761970520.00992227530.0099222753

    110.16017913820.00300675010.0270607508

    120.12013435360.00075168750.0608866892

    130.0739288330.00015419230.1124061955

    140.03696441650.00002569870.1686092932

    150.01478576660.00000342650.2023311519

    160.00462055210.00000035690.1896854549

    170.00108718870.0000000280.1338956152

    180.00018119810.00000000160.0669478076

    190.00001907350.00000000010.0211414129

    200.000000953700.0031712119

    111

    Sheet5

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    x

    b(x;20,0.5)

    Sheet6

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    b(x;20,0.25)

    x

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    x

    b(x;20,0.75)

    10.1

    20.09

    30.081

    40.0729

    50.06561

    60.059049

    70.0531441

    80.04782969

    90.043046721

    100.0387420489

    110.034867844

    120.0313810596

    130.0282429536

    140.0254186583

    150.0228767925

    160.0205891132

    170.0185302019

    180.0166771817

    190.0150094635

    200.0135085172

    210.0121576655

    220.0109418989

    230.009847709

    240.0088629381

    250.0079766443

    260.0071789799

    270.0064610819

    280.0058149737

    290.0052334763

    300.0047101287

    310.0042391158

    320.0038152042

    330.0034336838

    340.0030903154

    350.0027812839

    360.0025031555

    370.00225284

    380.002027556

    390.0018248004

    400.0016423203

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    x

    pX(x)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    50.00032

    60.00128

    70.003072

    80.0057344

    90.00917504

    100.0132120576

    110.0176160768

    120.0221459251

    130.0265751101

    140.0307090162

    150.0343940981

    160.0375208343

    170.0400222233

    180.0418694028

    190.0430656714

    200.0436398804

    210.0436398804

    220.04312647

    230.042168104

    240.0408364797

    250.0392030205

    260.03733621

    270.0352996895

    280.0331510127

    290.0309409452

    300.0287131971

    310.0265044897

    320.0243448646

    330.0222581619

    340.0202626026

    350.0183714263

    360.0165935464

    370.0149341917

    380.0133955174

    390.0119771685

    400.0106767902

    410.0094904802

    420.0084131824

    430.0074390245

    440.0065616011

    450.0057742089

    460.0050700371

    470.0044423182

    480.0038844457

    490.0033900617

    500.0029531204

    510.0025679308

    520.0022291825

    530.0019319582

    540.0016717352

    550.0014443792

    560.0012461311

    570.0010735899

    580.0009236924

    590.0007936913

    600.0006811314

    610.0005838269

    620.0004998378

    630.0004274475

    640.0003651416

    650.0003115875

    660.0002656156

    670.0002262016

    680.0001924509

    690.0001635833

    700.00013892

    710.0001178715

    720.0000999269

    730.0000846439

    740.0000716407

    750.0000605875

    760.0000512007

    770.0000432362

    x

    pX(x)

    X~NB(5,0.2)

    00

    10.0000000003

    20.0000000043

    30.0000000362

    40.000000226

    50.0000011302

    60.0000047092

    70.0000168185

    80.0000525578

    90.000145994

    100.000364985

    110.0008295113

    120.0017281486

    130.0033233628

    140.0059345764

    150.0098909606

    160.0154546259

    170.0227273911

    180.0315658209

    190.0415339749

    200.0519174686

    210.0618065102

    220.0702346707

    230.0763420334

    240.0795229515

    250.0795229515

    260.0764643764

    270.0708003485

    280.0632145969

    290.0544953422

    300.0454127851

    310.0366232138

    320.0286118858

    330.0216756711

    340.0159379934

    350.011384281

    360.0079057507

    370.0053417234

    380.0035142917

    390.0022527511

    400.0014079694

    410.000858518

    420.0005110226

    430.0002971062

    440.0001688103

    450.0000937835

    460.0000509693

    470.0000271113

    480.0000141205

    490.0000072043

    500.0000036022

    510.0000017658

    520.0000008489

    530.0000004004

    540.0000001854

    550.0000000843

    560.0000000376

    570.0000000165

    580.0000000071

    590.000000003

    600.0000000013

    610.0000000005

    620.0000000002

    630.0000000001

    640

    650

    660

    670

    680

    690

    700

    710

    720

    730

    740

    750

    760

    770

    780

    790

    800

    810

    820

    830

    840

    850

    860

    870

    880

    890

    900

    910

    920

    930

    940

    950

    960

    970

    980

    990

    1000

    x

    pX(x)

  • Example 12On average, a job arrives for CPU service every 6 seconds. Find the probability that there will be less than or equal to 4 arrivals in a given minute? = 1/6 job/sec.Let X denote #arrivals in the minute.t = 60 secs. = t = 10 jobs.

  • Poisson ApproximationThe binomial distribution is important, but the probability values associated with it are hardly evaluated.

  • Poisson Approximationppnp

  • Poisson Approximationpp

  • Poisson Approximationpppp

  • Poisson Approximation

  • Poisson ApproximationnpE.g., n 20 and p 0.05.

  • Example 13A manufacture produces IC chips, 1% of which are defective. A box contains 100 chips. Find the probability that1. the box contains no defective.2. the box contains less than or equal to 2 defectives.Let X denote the number of defectives.

  • Chapter 3Discrete Random VariablesHypergeometric Distributions

  • Hypergeometric Distributions+= N

    d

    NdI(X)=?P(X=x)=?

  • Hypergeometric DistributionsI(X)=?P(X=x)=?cdfpmfwithout closed-form

  • Hypergeometric Distributionspmf

  • Example 14Compute the probability of obtaining three defectives in a sample of size ten taken without replacement from a box of twenty components containing four defectives.Let X denote the number of defectives.

  • Hypergeometric Distributionspmf

  • Example 15A box contains 200 red balls and 800 black balls. Now 10 balls are taken without replacement. Find the probability of obtaining none red ball.Let X denote #red balls taken.

  • Chapter 3Discrete Random VariablesDiscrete Uniform Distributions

  • Discrete Uniform DistributionsA r.v. X is said to possess a discrete uniform distribution if it has a finite image {x1, x2, , xN} and has the pmf

  • Example 16One ball is drawn from a box containing 10 balls numbered 1,2,. . . ,10. Find the probability that the ball number is less than 4.Let r.v. X denote the ball number.Is uniform distribution really that simple?

  • ReviewBernoulli DistributionsBinomial DistributionsGeometric DistributionsNegative Binomial DistributionsPoisson DistributionsHypergeometric DistributionsDiscrete Uniform Distributions