43
1 Chapter 25: All- Pairs Shortest-Paths

Chapter 25: All-Pairs Shortest-Paths

  • Upload
    kail

  • View
    52

  • Download
    3

Embed Size (px)

DESCRIPTION

Chapter 25: All-Pairs Shortest-Paths. Some Algorithms. When no negative edges Using Dijkstra’s algorithm: O(V 3 ) Using Binary heap implementation: O(VE lg V ) Using Fibonacci heap: O( VE + V 2 log V ) When no negative cycles Floyd- Warshall [1962] : O(V 3 ) time - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 25: All-Pairs Shortest-Paths

1

Chapter 25: All-Pairs Shortest-Paths

Page 2: Chapter 25: All-Pairs Shortest-Paths

2

Some AlgorithmsWhen no negative edges

– Using Dijkstra’s algorithm: O(V3)– Using Binary heap implementation: O(VE lg

V)– Using Fibonacci heap: O(VE + V2log V)

• When no negative cycles– Floyd-Warshall [1962]: O(V3) time

• When negative cycles– Using Bellman-Ford algorithm: O(V2 E) =

O(V4 )– Johnson [1977]: O(VE + V2log V) time based

on a clever combination of Bellman-Ford and Dijkstra

Page 3: Chapter 25: All-Pairs Shortest-Paths

3

A dynamic programming approach

1. characterize the structure of an optimal solution,2. recursively define the value of an optimal solution,3. compute the value of an optimal solution in a bottom-up fashion.

Page 4: Chapter 25: All-Pairs Shortest-Paths

4

The structure of an optimal solution

•Consider a shortest path p from vertex i to vertex j, and suppose that p contains at most m edges. Assume that there are no negative-weight cycles. Hence m ≤ n-1 is finite.

Page 5: Chapter 25: All-Pairs Shortest-Paths

5

The structure of an optimal solution (cont.)

• If i = j, then p has weight 0 and no

edge

• If i≠j, we decompose p into i ~ k -> j

where p’ contains at most m-1

edges.

• Moreover, p’ is a shortest path from i to k and δ(i,j) = δ(i,k) + wkj , where

δ(i,j) dente the shortest weight path

from i to j

'p

Page 6: Chapter 25: All-Pairs Shortest-Paths

6

Recursive solution to the all-pairs shortest-path problem

• Define: lij(m) = minimum weight of any path from i to j that contains at most m edges.

0 if i = j• lij(0) =

∞ if i ≠ j• Then lij(m) = min{ lij(m-1), min1≤k≤n

{lik(m-1) + wkj}} = min1≤k≤n {lik(m-1) + wkj} (why?)

Page 7: Chapter 25: All-Pairs Shortest-Paths

7

Recursive solution to the all-pairs shortest-path

problem• Since shortest path from i to j

contains at most n-1 edges, δ(i,j) = lij(n-1) = lij(n) = lij(n+1) = …• Computing the shortest-path weight

bottom up:– Compute L(1) ,L(2) ,…., L(n-1) where L(m)=(lij (m)) for all i and j– Note that L(1) = W.

Page 8: Chapter 25: All-Pairs Shortest-Paths

8

06

052

04

710

4830

)1(L

0618

20512

11504

71403

42830

)2(L

1

45

2

3

-4

17

2

6

-5

83

4

Example:

W =

L(2) = L(1) x W

Page 9: Chapter 25: All-Pairs Shortest-Paths

9

06158

20512

115047

11403

42330

)3(L

06158

20512

35047

11403

42310

)4(L

L(3) = L(2) x W

L(4) = L(3) x W

Page 10: Chapter 25: All-Pairs Shortest-Paths

10

EXTENDED-SHORTEST-PATHS(L, W)

• Given matrices L(m-1) and W return L(m)

1 n <- L.row2 Let L’ = (l’ij) be a new n x n matrix

3 for i = 1 to n4 for j = 1 to n5 l’ij = ∞

6 for k = 1 to n7 l’ij = min(l’ij, lik + wkj)

8 return L’

Page 11: Chapter 25: All-Pairs Shortest-Paths

11

Matrix Multiplication

Let l(m-1) -> a w -> b l(m) -> c min -> + + -> ‧

time complexity : O(n3)

Cij = k=1 to n aik‧bkj

lij(m) = min1≤k≤n {lik(m-1) + wkj}

Page 12: Chapter 25: All-Pairs Shortest-Paths

12

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

L(1) = L(0) ‧ W = WL(2) = L(1) ‧ W = W2

L(3) = L(2) ‧ W = W3

‧ ‧ ‧

L(n-1) = L(n-2) ‧W = Wn-1

Page 13: Chapter 25: All-Pairs Shortest-Paths

13

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

1 n = W.rows2 L(1) = W3 for m = 2 to n-14 let L(m) be a new n x n matrix5 L(m) = EXTENDED-SHORTEST-

PATHS( L(m-1), W )6 return L(n-1)

Time complexity : O(n4)

Page 14: Chapter 25: All-Pairs Shortest-Paths

14

Improving the running time

L(1) = WL(2) = W2 =W.WL(4) =W4 = W2.W2

. . .

i.e., using repeating squaring!

Time complexity: O(n3lg n)

12122)2( )1log()1log()1log()1log(

nnnn

WWWL

Page 15: Chapter 25: All-Pairs Shortest-Paths

15

FASTER-ALL-PAIRS-SHORTEST-PATHS(W)1. n =W.row2. L(1) =W3. m =14. while m < n-1 5. let L(2m) be a new n x n matrix

6. L(2m) = Extend-Shorest-Path(L(m), L(m))7. m = 2m8. return L(m)

FASTER-ALL-PAIRS-SHORTEST-PATHS

Page 16: Chapter 25: All-Pairs Shortest-Paths

16

The Floyd-Warshall algorithm

• A different dynamic programming formulation

‧The structure of a shortest path: Let V(G)={1,2,…,n}. For any pair of

vertices i, j єV, consider all paths from i to j whose intermediate vertices are drawn from {1, 2,…,k}, and let p be a minimum weight path among them.

Page 17: Chapter 25: All-Pairs Shortest-Paths

17

The structure of a shortest path

• If k is not in p, then all intermediate vertices are in {1, 2,…,k-1}.

• If k is an intermediate vertex of p,

then p can be decomposed into i ~ k

~ j where p1 is a shortest path from i

to k with all the intermediate vertices in {1,2,…,k-1} and p2 is a shortest path from k to j with all the intermediate vertices in {1,2,…,k-1}.

1 p 2 p

Page 18: Chapter 25: All-Pairs Shortest-Paths

18

A recursive solution to the all-pairs shortest path

• Let dij(k) =the weight of a shortest

path from vertex i to vertex j with all intermediate vertices in the set {1,2,…,k}.

dij(k) = wij if k = 0

= min(dij(k-1), dik

(k-1) + dkj(k-1)) if k ≥ 1

D(n) = (dij(n)) if the final solution!

Page 19: Chapter 25: All-Pairs Shortest-Paths

19

FLOYD-WARSHALL(W)

1. n = W.rows 2. D(0)= W 3. for k = 1 to n 4. Let D(k) = (dij

(k)) be a new n x n matrix 5. for i = 1 to n 6. for j = 1 to n 7. dij

(k) = min (dij(k-1), dik

(k-1) + dkj(k-

1)) 8. return D(n)

Complexity: O(n3)

Page 20: Chapter 25: All-Pairs Shortest-Paths

20

Constructing a shortest path

• π(0), π(1),…, π(n)

• πij(k) : is the predecessor of the vertex j

on a shortest path from vertex i with all intermediate vertices in the set {1,2,…,k}.

πij(0) = NIL if i=j or wij = ∞

= i if i ≠j and wij < ∞

πij(k) = πij

(k-1) if dij(k-1) ≤ dik

(k-1) + dkj(k-1)

= πkj(k-1) if dij

(k-1) > dik(k-1) + dkj

(k-1)

Page 21: Chapter 25: All-Pairs Shortest-Paths

21

Example

06

052

04

710

4830

)0(D

06

20552

04

710

4830

(1)D

NNNN

NNN

NNNN

NNN

NN

5

44

3

22

111

(0)

NNNN

N

NNNN

NNN

NN

5

1414

3

22

111

(1)

Page 22: Chapter 25: All-Pairs Shortest-Paths

22

06

20552

11504

710

44830

(2)D

NNNN

N

NN

NNN

N

5

1414

223

22

1211

(2)

06

20512

11504

710

44830

)3(D

NNNN

N

NN

NNN

N

5

1434

223

22

1211

(3)

Page 23: Chapter 25: All-Pairs Shortest-Paths

23

06158

20512

35047

11403

44130

(4)D

06158

20512

35047

11403

42310

(5)D

N

N

N

N

N

5434

1434

1234

1244

1241

(4)

N

N

N

N

N

5434

1434

1234

1244

1541

(5)

Page 24: Chapter 25: All-Pairs Shortest-Paths

24

Transitive closure of a directed graph

• Given a directed graph G = (V, E) with V = {1,2,…, n}

• The transitive closure of G is G*= (V, E*) where E*={(i, j)| there is a path from i to j in G}.

Modify FLOYD-WARSHALL algorithm:tij

(0) = 0 if i≠j and (i,j) ∉ E

1 if i=j or (i,j) є Efor k ≥ 1 tij

(k) = tij(k-1) (tik

(k-1) tkj(k-1))

Page 25: Chapter 25: All-Pairs Shortest-Paths

25

TRANSITIVE-CLOSURE(G)1 n = |G.V|2 Let T(0) = (tij

(0)) be a new n x n matrix

3 for i = 1 to n 4 for j =1 to n5 if i == j or (i, j) ∈ G.E6 tij

(0) = 1

7 else tij(0) = 0

8 for k =1 to n9 Let T(k) = (tij

(k)) be a new n x n matrix

10 for i = 1 to n11 for j =1 to n12 tij

(k) = tij(k-1) (tik

(k-1) tkj(k-1))

123 return T(n)

Time complexity: O(n3)

Page 26: Chapter 25: All-Pairs Shortest-Paths

26

Example

1101

0110

1110

0001

(0)T

1101

0110

1110

0001

(1)T

1101

1110

1110

0001

(2)T

1111

1110

1110

0001

(3)T

1111

1111

1111

0001

(4)T

① ②

③④

Page 27: Chapter 25: All-Pairs Shortest-Paths

27

Some AlgorithmsWhen no negative edges

– Using Dijkstra’s algorithm: O(V3)– Using Binary heap implementation: O(VE lg

V)– Using Fibonacci heap: O(VE + V2log V)

When no negative cycles– Floyd-Warshall [1962]: O(V3) time

• When negative cycles– Using Bellman-Ford algorithm: O(V2 E) =

O(V4 )– Johnson [1977]: O(VE + V2log V) time based

on a clever combination of Bellman-Ford and Dijkstra

Page 28: Chapter 25: All-Pairs Shortest-Paths

28

Johnson’s algorithm for sparse graphs

• If all edge weights in G are nonnegative,

we can find all shortest paths in O(V2lg V

+ VE) by using Dijkstra’s algorithm with

Fibonacci heap

• Bellman-Ford algorithm takes O(VE)

• Using reweighting technique

Page 29: Chapter 25: All-Pairs Shortest-Paths

29

Reweighting technique

• If G has negative-weighted edge, we compute a new set of nonnegative weight that allows us to use the same method. The new set of edge weight ŵ satisfies:

• 1. For all pairs of vertices u, v єV, a shortest path from u to v using weight function w is also a shortest path from u to v using the weight function ŵ

• 2. ∀(u,v) є E(G), ŵ(u,v) is nonnegative

Page 30: Chapter 25: All-Pairs Shortest-Paths

30

Lemma: (Reweighting doesn’t change shortest paths)

• Given a weighted directed graph G = (V, E) with weight function w:E→R , let h:V →R be any function mapping vertices to real numbers. For each edge (u,v) є E, ŵ(u,v) = w(u,v) + h(u) – h(v)

• Let P=<v0,v1,…,vk> be a path from vertex v0 to vk Then w(p) = δ(v0,vk) if and only if ŵ(p) = (v0,vk) Also, G has a negative-weight cycle using weight function w iff G has a negative weight cycle using weight function ŵ. 

Page 31: Chapter 25: All-Pairs Shortest-Paths

31

Proof• ŵ(p) = w(p) + h(v0) – h(vk)

ŵ(p) = ŵ(vi-1 ,vi)

= (w(vi-1 ,vi) + h(vi-1)-h(vi))

= w(vi-1 ,vi) + h(v0)-h(vk)

=w(p) + h(v0) – h(vk)

k

i 1

k

i 1

k

i 1

Page 32: Chapter 25: All-Pairs Shortest-Paths

32

Proof

• Because h(v0) and h(vk) do not depend on the path, if one path from v0 to vk is shorter than another using weight function w, then it is also shorter using ŵ. Thus,

w(p) = δ(v0,vk) if and only if ŵ(p) = (v0,vk)

Page 33: Chapter 25: All-Pairs Shortest-Paths

33

Proof

• G has a negative-weight cycle using w iff G has a negative-weight cycle using ŵ. 

• Consider any cycle C=<v0,v1,…,vk> with v0=vk . Then ŵ(C) = w(C) + h(v0) – h(vk) = w(C) .

Question: how to setting the value of h(vi) for all i?

Page 34: Chapter 25: All-Pairs Shortest-Paths

34

Producing nonnegative weight by reweighting

• Given a weighted directed graph G = (V, E)

• We make a new graph G’= (V’,E’), V’ = V ∪ {s}, E’ = E ∪{(s,v): v є V} and w(s,v) = 0, for all v in V

• Let h(v) = δ(s, v) for all v V’• We have h(v) ≤ h(u) + w(u, v) (why?)• ŵ(u, v) = w(u, v) + h(u) – h(v) ≥ 0

Page 35: Chapter 25: All-Pairs Shortest-Paths

35

-41

7

2

6

-5

8

3 42

3

45

1

Example:

Page 36: Chapter 25: All-Pairs Shortest-Paths

36

-4

1

7

2

6

-5

8

3 4 2

3

5 4

1

0S

0

0

0

0

0

Page 37: Chapter 25: All-Pairs Shortest-Paths

37

-4

1

7

2

6

-5

8

3 4-1

-5

-4 0

0

2

3

45

1

0S

0

0

0

0

0

Page 38: Chapter 25: All-Pairs Shortest-Paths

38

0

0

10

2

2

0

13

4 0-1

-5

-4 0

0

2

3

45

1

0S

4

0

0

1

5

h(v) = δ(s, v)ŵ(u, v) = w(u, v) + h(u) – h(v)

Page 39: Chapter 25: All-Pairs Shortest-Paths

39

JOHNSON algorithm

1 Computing G’, where G’.V = G.V ∪ {s}and G’.E= G.E ∪{(s, v): v є G.V} and w(s, v) = 0.

2 if BELLMAN-FORD(G’, w, s)= FALSE3 print “the input graph contains negative

weight cycle”4 else for each vertex v є G’.V5 set h(v) to be the value of δ(s, v) computed

by the BF algorithm6 for each edge (u, v) є G’.E, ŵ(u, v) = w(u, v)

+ h(u) – h(v)

Page 40: Chapter 25: All-Pairs Shortest-Paths

40

JOHNSON algorithm

7 Let D = (duv) be a new n x n matrix

8 for each vertex u є G.V run DIJKSTRA (G, ŵ, u) to compute (u, v)

for all v є V[G] .10 for each vertex v є G.V 11 duv = (u, v) + h(v) – h(u)

12 return DComplexity: O(V2lgV + VE)

Page 41: Chapter 25: All-Pairs Shortest-Paths

41

00

10

2

2

0

13

4 0

2

3

45

1

2/1

2/-3

2/20/-4

0/0

00

10

2

2

0

13

4 0

2

3

45

1 0/0

2/3 0/-4

0/12/-1

00

10

2

2

0

13

4 03

45

1 0/0

0/4

2/7

2/3 0/5

2

Page 42: Chapter 25: All-Pairs Shortest-Paths

42

0 010

2

2

0

13

4 0

2

3

45

1

2/2

0/-1

0/-5

0/02/-2

00

10

2

2

0

13

4 0

2

3

45

12/5

4/8

0/0

2/1

2/6

Page 43: Chapter 25: All-Pairs Shortest-Paths

43

Homework• Practice at home: Exercises: 25.1-1,

25.1-3, 25.1-6• Practice at home : 25.2-4, 25.2-6• Exercises: 25.2-8 (Due: Jan. 4)• Practice at home : 25.3-2, 25.3-6• Exercises: 25.3-5 (Due: Jan. 4)• Bonus: Write a program to find all

pairs shortest path of a graph G. There may exist negative weight cycle on graph G.