81
Chapter 2 Synthesis and characterization

Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Chapter 2

Synthesis and characterization

Page 2: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I

Synthesis of tetrahydropyrimidine

derivatives

Page 3: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 7

INTRODUCTION

Recently, synthesis of tetrahydropyrimidine and their derivatives is of high

interest in organic chemistry. The pyrimidine fragment is present in various biologically

active compounds, many of which have been found use in medical practice1,2. Thus,

recently, much attention has been paid to derivatives of pyrimidine, including their

hydrogenation products. This class of compounds displays wide ranges of biological and

pharmacological properties which show a very similar pharmacological profile to

classical dihydropyridine calcium channel modulators3-12.

Literature survey shows that lots of work has been done for

tetrahydropyrimidines. Many researchers have been synthesized tetrahydropyrimidines

using different methods13-15. Recently, one-pot multicomponent reactions have emerged

as a powerful tool in synthetic organic chemistry because of their significant

advantages16-19. Polyethylene glycol (PEG)-mediated facile one-pot synthesis of

polysubstituted-tetrahydropyrimidines under mild and green reaction conditions have

been developed by Kidwai et al.20. Iodine catalyst one pot synthesis of tetrahydro

pyrimidine derivatives have been reported by Veerababurao et al.21.

Molecular docking of tetrhydropyrimidine derivatives have been studied by Sun et

al.22. Ghorai and co-workers have reported a convenient synthetic route to 2-aryl-N-

tosylazetidines and their ZnX2 (X = I, OTf) mediated regioselective nucleophilic ring

opening reactions for the synthesis of tetrahydropyrimidine23. Baltork and co-workers24

have synthesized chemo selective tetrahydropyrimidines using nano-SiO2 as reusable

solid acid catalyst under microwave irradiation. Zhao et al. were synthesized

fluoroalkylated multifunctional 1,2,3,4-tetrahydropyrimidines for the first time by the

reaction of 3-fluoroalkyl-3-anilinoacrylic acid esters with primary amines and

formaldehyde under mild conditions25. Muravyova et al. have carried out multicomponent

reactions with ultrasonic activation used as key methods for the synthesis of

tetrahydropyrimidine derivatives26.

Using microwave irradiation, Roy and Bordoloi have synthesized some new

tetrahydropyrimidines27. The stereo mutations of conformational atropisomers of

hindered 1,2-diaryl tetrahydropyrimidines has been reported by Gracia and co-workers28.

Baldev et al. have reported the thermal and microwave assisted synthesis of

Page 4: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 8

tetrahydropyrimidines29. Synthesis and polymorph study of tetrahydropyrimidine

derivatives reported by Anatoly et al.30

Tetrahydropyrimidines are known to be versatile heterocyclic compound, which

has been subjected to a large variety of structural modifications in order to synthesize

derivatives with different biological properties. Many researchers have been worked on

QSAR study of tetrahydropyrimidines31-33. Their various condensed derivatives are

reported to possess calcium antagonist,34-36 anti-inflammatory,37-39 analgesic,40,41

antitumor,42,43 antidepressant44, antibacterial and antifungal effects45-47. Several synthetic

approaches have been reported for the synthesis of fused heterocyclic pyrimidine

derivatives48-50. These compounds also act as muscarinic agonist in the rat central nervous

system51, 52. Upshall53 has reported the nicotinic activity of these compounds.

In present chapter, some new tetrahydropyrimidines have been synthesized and

characterization of these synthesized compounds is done by IR, NMR and mass spectral

data.

Page 5: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 9

EXPERIMENTAL SECTION

Synthesis of 2,4-diamino-6-phenyl-1,4,5,6-tetrahydropyrimidine-5-carbonitrile

(PAB-101 - PAB-110):

A substituted aldehyde (0.01 mole), malenonitrile (0.01 mole) and freshly

prepared 30 ml of sodium ethoxide was taken in a flask. When the solution becomes

clear, guanidine hydrochloride (0.01 mole) was added and the reaction mixture was

refluxed for 12 hours. After the completion of reaction, the reaction mixture was poured

into crushed ice. The solution was neutralized with aqueous HCL solution and product

was extracted using chloroform (50 ml × 3), the combined organic layer was washed

using brine solution (20 ml × 2). The organic layer was dried on anhydrous sodium

sulphate and the solvent was removed under reduced pressure to acquire the solid

product. All the synthesized compounds were recrystallized from chloroform.

The formation of the compounds was checked by thin-layer chromatography and

accomplished on 0.2-mm pre coated plates of silica gel G60 F254 (Merck). Visualization

was made with UV light (254 and 365nm) or with an iodine vapor.

The melting point of all the synthesized compounds was determined in open

capillary tubes and was uncorrected.

The characterization of all these compounds was done by IR, NMR and mass

spectral data. The IR spectra were recorded on Shimadzu FT-IR-8400 instrument using

KBr pellet method. The Mass spectra were recorded on Shimadzu GC-MS-QP-2010

model using direct inlet probe technique. 1H NMR and 13C NMR was determined in

DMSO solution on a Bruker Ac 400 MHz spectrometer.

The physical constants of all the synthesized compounds are given in Table 2.1.1

Figures 2.1.1 to 2.1.4 show the IR, mass and NMR spectrum of a compound.

Page 6: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 10

Table 2.1.1: Synthesis of substituted tetrahydropyrimidine

Code R M.F M.W Yield (%) Rf valuePAB-101 C6H5- C11H13N5 215.25 78 0.68PAB-102 C6H4-CH=CH- C13H15N5 241.29 60 0.73PAB-103 3-Cl,C6H4- C11H12ClN5 249.70 68 0.44PAB-104 4-Cl,C6H4- C11H12ClN5 249.70 66 0.46PAB-105 4-F,C6H4- C12H15FN5 233.24 62 0.52PAB-106 4-OCH3,C6H4- C12H15N5O 245.28 84 0.42PAB-107 3-NO2,C6H4- C11H12N6O2 260.25 60 0.62PAB-108 3-0CH3,4-OHC6H4- C12H15N5O2 261.28 74 0.34PAB-109 4(α-C4H3O)- C9H11N5O 205.22 82 0.36PAB-110 4-OH-C6H4- C11H13N5O 231.25 56 0.30

SPECTRAL DATA

2,4-diamino-6-phnyl-1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-101). mp 141-

143°C; IR (KBr): 3151(N-H str), 3093(Ar, C-H str), 2943(C-Hstr), 2867(C-H str),

2245(C≡N str), 1610(Ar, C=C str), 1519(Ar, C=C str), 1512(Ar, C=C str), 1490(C-H ben),

1427(C-H ben), 1377(C-H ben), 1265(C-Cstr) cm-1; MS: m/z = 215 [M ]+

2,4-diamino-6-styryl-1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-102). mp 112-

114 °C; IR (KBr): 3161(N-H str), 3021(CH=CH str), 3091(Ar, C-H str), 2952(C-Hstr),

2879(C-H str), 2267(C≡N str), 1609(Ar, C=C str), 1515(Ar, C=C str), 1508(Ar, C=C str),

1481(C-H ben), 1425(C-H ben), 1379(C-H ben), 1252(C-C str) cm-1; MS: m/z = 241 [M ]+

2,4-diamino-6-(3-chlorophenyl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

103). mp 153-155 °C; IR (KBr): 3163(N-H str), 3097(Ar, C-H str), 2933(C-Hstr), 2877(C-

H str), 2265(C≡N str), 1608(Ar, C=C str), 1514(Ar, C=C str), 1502(Ar, C=C str), 1489(C-

H ben), 1421(C-H ben), 1371(C-H ben), 1255(C-Cstr), 744(C-Cl str) cm-1; MS: m/z = 249

[M ]+.

2,4-diamino-6-(4-chlorophenyl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

104). mp 162-164°C; IR (KBr): 3167(N-H str), 3092(Ar, C-H str), 2942(C-Hstr), 2876(C-

H str), 2260(C≡N str), 1609(Ar, C=C str), 1508(Ar, C=C str), 1518(Ar, C=C str), 1481(C-

H ben), 1422(C-H ben), 1376(C-H ben), 1250(C-Cstr), 742(C-Cl str) cm-1; MS: m/z = 249

[M ]+.

Page 7: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 11

2,4-diamino-6-(4-fluorophenyl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

105). mp 128-130°C; IR (KBr): 3170(N-H str), 3094(Ar, C-H str), 2949(C-Hstr), 2875(C-

H str), 2250(C≡N str), 1622(Ar, C=C str), 1510(Ar, C=C str), 1520(Ar, C=C str), 1486(C-

H ben), 1422(C-H ben), 1371(C-H ben), 1259(C-Cstr), 1065(C-F str) cm-1; MS: m/z = 233

[M ]+.

2,4-diamino-6-(4-methoxyphenyl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

106). mp 116-118 °C; IR (KBr): 3170(N-H str), 3094(Ar, C-H str), 2949(C-Hstr), 2875(C-

H str), 2250(C≡N str), 1619(Ar, C=C str), 1508(Ar, C=C str), 1518(Ar, C=C str), 1478(C-

H ben), 1426(C-H ben), 1368 (C-H ben), 1254(C-C str), 1157(C-O-C str) cm-1; MS: m/z =

245 [M ]+.

2,4-diamino-6-(3-nitrophenyl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

107). mp 141-143°C; IR (KBr): 3107(N-H str), 3086 (Ar, C-H str), 3047 (C-Hstr), 1597

(Ar, C=C str), 1527 (Ar, C=C str), 1512(Ar, C=C str), 1479(C-H ben), 1427(C-H ben),

1315(C-H ben), 1217(C-C str) cm-1; 1H NMR (400 MHz, DMSO): δ ppm 2.56 (s, 1H, -

CH) 3.20-3.34 (t, 1H, -CH), 4.06-4.08 ( d, J = 9.80 Hz 1H, -CH), 6.24 (s, 2H, NH2),

6.60(s, 2H, NH2), 7.84-7.88 (t, 1H, Ar-H), 8.35-8.37 (d, 1H, Ar-H), 8.44-8.47 (m, 1H, Ar-

H), 8.63 (s, 1H, -NH), 8.83(s, 1H, Ar-H). 13C NMR (100 MHz, DMSO): δ ppm 38.96,

39.17, 58.50, 119.68, 123.40, 128.37, 133.56, 138.54, 164.05 MS: m/z = 260 [M ]+.

2,4-diamino-6-(4-hydroxy-3-methoxyphenyl)-1,4,5,6-tetrahydropyrimidine-5

carbonitrile (PAB-108). Mp 132-134°C; IR (KBr): 3480(OH str), 3164(N-H str), 3023

(Ar, C-H str), 2947(C-H str), 2822(C-H str), 2241(C≡N str), 1606(Ar, C=C str), 1523(Ar,

C=C str), 1538(Ar, C=C str), 1482(C-H ben), 1357(C-H ben), 1330(C-H ben), 1230(C-C

str), 1078(C-O-C str), cm-1; MS: m/z = 261 [M ]+.

2,4-diamino-6-(furan -2-yl)- 1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-109).

m.p 72-74°C; IR (KBr): 3124(N-H str), 3043(Ar, C-H str), 2922(C-H str), 2847(C-H str),

2245(C≡N str), 1606(Ar, C=C str), 1552(Ar, C=C str), 1529(Ar, C=C str), 1456(C-H ben),

1394(C-H ben), 1330(C-H ben), 1230(C-C str), 1070(C-O-C str), 1022(C-O-C str) cm-1;

MS: m/z = 205 [M ]+.

Page 8: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 12

2,4-diamino-6-(4-hydroxyphenyl)-1,4,5,6-tetrahydropyrimidine-5-carbonitrile (PAB-

110). Mp 176-178°C; IR (KBr): 3635(O-H str), 3165(N-H str), 3088(Ar, C-H str), 2942(C-

H str), 2865(C-H str), 2250(C≡N str), 1619(Ar, C=C str), 1510(Ar, C=C str), 1528(Ar,

C=C str), 1482(C-H ben), 1426(C-H ben), 1371(C-H ben), 1259(C-C str), 1210 (C-O str)

cm-1; MS: m/z = 231 [M ]+.

Page 9: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 13

Figure 2.1.1: IR spectrum of compound PAB-107

Figure 2.1.2: Mass spectrum of compound PAB-107

45075010501350165019502250255028503150345037501/cm

-22.5

-15

-7.5

0

7.5

15

22.5

30

37.5

45

52.5

60

67.5

75

82.5

90

97.5

105%T

3107

.43

3086

.21

3047

.63

1597

.11

1566

.25

1527

.67

1479

.45

1357

.93

1315

.50

1217

.12

1111

.03

949.

0182

7.49

817.

8573

6.83

692.

4767

3.18

621.

1059

7.95

Page 10: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 14

Figure 2.1.3: 1H NMR Spectrum of compound PAB-107

Expanded 1H NMR spectrum of compound PAB-107

Page 11: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 15

Figure 2.1.4: 13C NMR spectrum of compound PAB-107

Page 12: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 16

REFERENCES

1. Mashkovskii, D.; Medicinals [in Russian], 12th ed., Meditsina, Moscow 1993,

Part 1, p. 736; 1993, Part 2, p. 688.

2. Nikolaeva, B.; (ed.), Medicinal Products from Foreign Firms in Russia [in

Russian], Astrafarmservis, Moscow, 1993, p. 720.

3. Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.;

Nakeuchi, Y.; Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.;

Ishihara, T.; Funahashi, K.; Satoh, F.; Morita, M.; Noguchi, “Dihydropyrimidines:

novel calcium antagonists with potent and long-lasting vasodilative and anti-

hypertensive activity”J. Med. Chem. 1989, 32, 2399–2406.

4. Atwal, K.; Swanson, B.; Unger, S.; Floyd, D.; Moreland, S.; Hedberg, A. and

O'Reilly, B. “Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-

aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally

effective antihypertensive agents” J. Med. Chem. 1991, 34, 806–811.

5. Rovnyak, G.; Kimball, S.; Beyer, B.; Cucinotta, G.; DiMarco, J.; Gougoutas, J.;

Hedberg, A.; Malley, M.; McCarthy, J.; Zhang, R. and Moreland, S.; “Calcium

Entry Blockers and Activators: Conformational and Structural Determinants of

Dihydropyrimidine Calcium Channel Modulators” J. Med. Chem. 1995, 38, 119–

129.

6. Rovnyak, G.; Atwal, K.; Hedberg, A.; Kimball, S.; Moreland, S.; Gougoutas, J.;

O'Reilly, B.; Schwartz, J. and Mary, F.; “Dihydropyrimidine calcium channel

blockers Basic 3-substituted-4- aryl-1,4-dihydropyrimidine-5-carboxylic acid

esters. Potent antihyper tensive agents.” J. Med. Chem. 1992, 35(17), 3254-3263.

7. Forray, C.; Bard, J.; Wetzel, J.; Chiu, G.; Shapiro, E.; Tang, R.; Lepor, H.; Hartig,

P.; Weinshank, R.; Branchek, T. and Gluchowski, C.; “The alpha 1-adrenergic

receptor that mediates smooth muscle contraction in human prostate has the

pharmacological properties of the cloned human alpha 1c subtype” Mol. Pharm.

1994, 45(4),703-708.

8. Vitolina, R. and Kimenis, A.; “Foridon, a new vasodilator and calcium

antagonist.” Khim. Farma. Z., 1989, 23(7), 889-892.

9. Kastron, V.; Vitolina, R.; Khanina, E.; Duburs, G.; Kimenis, A.; Kondratenko, N.;

Popov, V.; Yagupolskii, L. and Kolomeitsev, A.; “2-Oxo-4-(2’-

Page 13: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 17

difluoromethylthio-phenyl)-5-methoxycarbonyl-6-methyl-1,2,3,4-tetrahydro

pyrimidine” U.S.Patent, 4738965, 1988.

10. Remennikov, G. Y.; Shavaran, S. S.; Boldyrev, I. V.; Kapran, N. A.; Kurilenko,

L. K.; Shevchuk, Y. G. and Klebanov, B. M. “6-Methyl- and 1,6-dimethyl-4-aryl-

5-nitro-2-oxo-1,2,3,4-tetrahydropyrimidines: Modulators of calcium influx”

Pharm. Chem. J. 1994, 28(5), 322-326.

11. Ertan, M., Balkan, A., Sarac, S., Uma, S., Renaud, J. F. and Rolland, Y.

“Synthesis and calcium antagonistic activity of some new 2-thioxo-1,2,3,4-

tetrahydropyrimidine derivatives.” Arch. der Pharm. 1991, 324(3), 135-139.

12. Ertan, M., Balkan, A., Sarac, S., Uma, S., Ruebseman, K. and Renaud, J. F.

“Synthesis and biological evaluations of some 2-thioxo-1,2,3,4-

tetrahydropyrimidine derivatives.” Arzneimittel-Forschung, 1991, 41(7), 725-727.

13. Zhu, Q.; Jiang, H.; Li, J.; Zhang, M.; Wang, X. and Qi, C.” Practical synthesis and

mechanistic study of polysubstituted tetrahydropyrimidines with use of domino

multicomponent reactions” Tetrahedron 2009, 65, 4604-4613.

14. Srikrishna, A.; Sridharan, M. and Prasad, K. R.;” Reaction of dialkyl 2-butynoate

with aniline and formaldehyde: revision of the structure of the product”

Tetrahedron, 2010, 66, 3651-3654.

15. Das, B,; Kanth, B. S.; Shinde, D. B. and Kamble, V. T.;” Efficient Synthesis of

Tetrahydropyrimidines and Pyrrolidines by a Multicomponent Reaction of Dialkyl

Acetylenedicarboxylates (=Dialkyl But-2-ynedioates), Amines, and Formaldehyde

in the Presence of Iodine as a Catalyst” Helv. Chim. Acta, 2011, 94, 2087-2091.

16. Biswanath, D.; Boddu Shashi, K.; Digambar Balaji, S. and Kamble, V.; “Efficient

synthesis of tetrahydropyrimidines and pyrolidines by a multicomponent reaction

of dialkylendicarboxylates (Dialkyl but-2-ynedionates), amines and

formamaldehyde in the presences of iodine as a catalyst” Helvetica Chimica Acta

2011, 94(11), 2087-2091.

17. Deng, H.; Ping, L.; Yanguang, W.; Wei, L. and Wangze, S.; “Copper –catalyzed

one-pot synthesis of 2-allkylidine-1,2,3,4- tetrahydropyrimidines.” Adv. Syn. Cat.

2009, 351(11-12), 1768-1772.

18. Zhang, M.; Jiang, H.; Liu, H. and Zhu, Q.; “Convenient One-Pot Synthesis of

Multisubstituted Tetrahydropyrimidines via Catalyst-Free Multicomponent

Reactions” Org. Lett. 2007, 9(21), 4111–4113.

Page 14: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 18

19. Akbar, M.; Naser, F.; Golnar, K. and Neda, F.; “One pot synthesis of

tetrahydropyrimidines catalyzed by zeolite” Synth. React. Inorg. Met. Org. Chem.

2007, 37(4), 279-282.

20. Kidwai, M; Mishra, N; Bhatnagar, D and Jahan, A; “A green methodology for

one-pot synthesis of polysubstituted-tetrahydropyrimidines using PEG” Lett. Rev.

2011, 4(2) 109-115.

21. Veerababurao, K; Chunchi, L; Chun-Wei, K; Hulin, F. and Ching-Fa, Y; “Iodine

catalyzed one-pot synthesis of flavanone and tetrahydropyrimidine derivatives via

Mannich type reaction” Tetrahedron 2012, 68(4), 1321-1329.

22. Sun, C; Yang, D; Xing, J; Wang, H; Jin, J. and Zhu, J; “Nitromethylene

neonicotinoids analogues with tetrahydropyrimidine fixed cis-configuration:

synthesis, insecticidal activities, and molecular docking studies” J. Agri. Food

Chem. 2010, 58, 3415–3421.

23. Ghorai, M. K.; Das, K. and Kumar, A.; “An efficient synthetic route to substituted

tetrahydropyrimidines by Cu(OTf)2-mediated nucleophilic ring-opening followed

by the [4+2] cycloaddition of N-tosylazetidines with nitriles” Tet. Lett. 2009,

50(10), 1105-1109.

24. Baltork, M.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Eskandari, Z. and

Salavati, H. “Chemoselective synthesis of 2-aryloxazines and 2-

aryltetrahydropyrimidines using nano-SiO2 as a reusable solid acid catalyst under

thermal conditions and microwave irradiation” J. Iran. chem. soc. 2011, (8), 17-

27.

25. Zhao, F. L. and Jin-Tao, L.; “A novel and efficient synthesis of fluoroalkylated

multifunctional 1,2,3,4-tetrahydropyrimidines.” J. Fluor. Chem. 2004, 125(12),

1841-1845.

26. Muravyova, E. A.; Desenko, S. M.; Musatov, V. I.; Knyazeva, I. V.; Shishkina, S.

V.; Shishkin, O. V. and Chebanov, V. A.; “Ultrasonic-Promoted Three-

Component Synthesis of Some Biologically Active 1,2,5,6-

Tetrahydropyrimidines.” J. Comb.Chem. 2007, 9(5), 797-803.

27. Roy, D. and Bordoloi, M.; “Synthesis of some substituted 2-oxo-1,2,3,4-

tetrahydropyrimidines (3,4-dihydropyrimidin-2(1H)-ones) and 2-thioxo-1,2,3,4-

tetrahydropyrimidines, catalyzed by tin(II) chloride dihydrate and tin(II) iodide

under microwave irradiation.” Ind. J. Chem. 2006, 45B (4), 1067-1071.

Page 15: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 19

28. Garcia, M.; Grilli, S.; Lunazzi, L.; Mazzanti, A. and Orelli, L.; “Stereomutations

of conformational atropisomers of hindered 1,2-diaryltetrahydropyrimidines.”

Eur. J. Org. Chem. 2002, (23), 4018-4023.

29. Kumar, B.; Kaur, B.; Kaur, J.; Parmar, A.; Anand, R. and Kumar, H.;

“Thermal/microwave assisted synthesis of substituted tetrahydropyrimidines as

potent calcium channel blockers.” Ind. J. Chem. 2002, 41B (7), 1526-1530.

30. Shutalev, A; Savinkina E; Albov, D; Zamilatskov, I and Buravlev, E; “Synthesis

of 5-acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidine- 2-thione and structural

characterization of its polymorphs and complexes with 12-group metal iodides”

Struct Chem 2011, 22, 849–855.

31. Roy, D. and Bordoloi, M.; “Synthesis of some substituted 2-oxo-1,2,3,4-

tetrahydropyrimidines (3,4-dihydropyrimidin-2(1H)-ones) and 2-thioxo-1,2,3,4-

tetrahydropyrimidines, catalyzed by tin(II) chloride dihydrate and tin(II) iodide

under microwave irradiation.” Ind. J. Chem. 2006, 45B (4), 1067-1071.

32. China Raju, B; Nageswara Rao, R; Suman, P; Yogeeswari, P; Sriram, D; Shaik, T;

Kalivendi, S; “Synthesis, structure–activity relationship of novel substituted 4H-

chromen-1,2,3,4 tetrahydropyrimidine-5-carboxylates as potential anti-

mycobacterial and anticancer agents” Bioorg. Med. Chem. Lett. 2011, 10(15),

2855-2859.

33. Desai, N.; Chhabaria, M.; Dodiya, A.; Bhavsar, A. and Baldaniya, B.;

“Synthesis, characterization, anticancer activity and QSAR-studies of some new

tetrahydropyrimidines” Med. Chem. Res. 2011, 20(8) 1331-1339.

34. Balkan, A., Uma, S., Ertan, M. and Wiegrebe, W. “Thiazolo[3,2-a]pyrimidine

derivatives as calcium antagonists” Pharmazie, 1992, 47(9), 687-688.

35. Balkan, A., Tozkoparan, B., Ertan, M., Sara, Y. and Ertekin, N. “New

thiazolo[3,2-a] pyrimidine derivatives, synthesis and calcium antagonistic

activities. ” Bolle. chimi. farma.1996, 135(11), 648-652.

36. Kaur, K. and Knaus, E.; “Synthesis of alkyl 6-methyl-4-(2-pyridyl)-1,2,3,4-

tetrahydro-2H-pyrimidine-2-one-5-carboxylates for evaluation as calcium channel

antagonists” J. Het. Chem. 2007, 44(3), 745-747.

37. Bahekar, S.; Shinde, D.; “Synthesis and anti-inflammatory activity of some [4,6-

(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid

derivatives” Bioorg. Med. Chem. Lett. 2004, 14(7), 1733-1736.

Page 16: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 20

38. Mokale, S.; Shinde, S.; Elgire, R.; Sangshetti, J. and Shinde, D.; “Synthesis and

anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-

tetrahydropyrimidin-5-yl) propanoic acid derivatives” Bioorg. Med. Chem. Lett.

2010, 20(15), 4424-4426.

39. Tozkoparan, B.; Ertan, M.; Kelicen, P. and Demirdamar, R.; “Synthesis and anti-

inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives.” Farmaco,

1999, 54(9), 588-593.

40. Arora, N. and Pandeya, S.; “Synthesis and analgesic activity of novel pyrimidine

derivatives” Int. J. Pharm. Sci. Rev. Res. 2011, 11(1), 48-52.

41. Linsheng, L.; Guibao, Z.; Chuanlin, Y.; Qun, Z. and Nana, C.; “Application of

1,3-dicyclohexyl-1,2,3,6-tetrahydropyrimidine-4,5-dicarboxylic acid diethyl ester

in preparing anti-inflammatory and analgesic medical preparations” Faming

Zhuanli Shenqing 2011, CN 102228461 A 20111102

42. Li, Baoqiu; Li, Lingzi. and Ji, Gao.; “Antitumor composition comprising

gemcitabine and tetrahydropyrimidine or tetrahydropyrimidine derivative for

treating pancreatic cancer” Faming Zhuanli Shenqing 2011, CN 102274238 A

20111214.

43. Ji-Xin, Y.; Xiao-Qing, C.; Di-Mei, C. and Mao-Lin, H.; “Synthesis, Structure

Analysis, and Antitumor Activity of (R)-2,4-Dioxo-5-fluoro-1-[1-

(methoxycarbonyl) Ethylaminocarbonylmethyl]-1,2,3,4-tetrahydropyrimidine”

Chin. J. Chem. 2007, 25(3), 417–421.

44. Weinhardt, K.; Wallach, M. B. and Marx, M. “Synthesis and antidepressant

profiles of phenyl-substituted 2-amino- and 2-[(alkoxycarbonyl)amino]-1,4,5,6-

tetrahydropyrimidines” J. Med. Chem. 1985, 28(6), 694-698.

45. Champaneri, H. R.; Modi, S. R. and Naik, H. B.; “Studies on pyrimidines. Part II.

Synthesis and antibacterial activity of 7-(2-hydroxy-5-methylphenyl)-2-acetyl-5-

phenyl-3-oxo-2,3,4,5-tetrahydrothiazolo[3,2-a]pyrimidines.” Asian J. Chem. 1994,

6(3), 737-738.

46. Satyavathi, K.; Naga Ravi, K.T.; Bhoja, R. P. and Sharmila, M.; “Synthesis and

screening of 3-formyl-2-thio-1,2,3,4-tetrahydro pyrimidine analogues as

antibacterial agents” Asian J.Chem. 2010, 22(7), 5182-5186.

Page 17: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-I Synthesis of tetrahydropyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 21

47. Basavaraja, H. S.; Basavaraj, P.; Vijaykumar, M.; Hussain, M. M. and

Chidananda, B. N.; “Synthesis and antimicrobial screening of some substituted

INH- and THPHM-linked pyrimidines” Ind. J. Het. Chem. 2011, 20(3), 237-240.

48. Kappe, C. O. and Roschger, P.; “Synthesis and reactions of Biginelli-compounds.

Part I.” J. Het.Chem.1989, 26(1), 55-64.

49. Chanda, K.; Dutta, M. C. and Vishwakarma, J. N.; “A facile one-pot synthetic

route to substituted fused tetrahydropyrimidines. Part 4. Synthesis of 1-

(aralkyl/aryl)-3-(alkyl/aralkyl/aryl)-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazolines

and 1-(aralkyl/aryl)-3-(alkyl/aralkyl/aryl)-7,7-dimethyl-5-oxo-1,2,3,4,5,6,7,8 octa-

hydroquinazolines.” Ind. J. Chem., 2006, 45B (4), 1076-1079.

50. Mobinikhaledi, A.; Foroughifar, N. and Goodarzi, F.; “Synthesis of some bicyclic

thiazolo- and thiazepinopyrimidine derivatives.” Phosp. Sul. Sili. Rel. Ele. 2004,

179(3), 507-512.

51. Dunbar, P. G.; Durant, G. J.; Rho, T.; Ojo, B.; Huzl, J. J.; Smith, D. A.; El-Assadi,

A. A.; Sbeih, S.; Ngur, D. O.; Periyasamy, S.; Hoss, W. and Messer, W. S.;

“Design, Synthesis, and Neurochemical Evaluation of 2-Amino-5-

(alkoxycarbonyl)-3,4,5,6-tetrahydropyridines and 2-Amino-5-(alkoxycarbonyl)-

1,4,5,6-tetrahydropyrimidines as M1 Muscarinic Receptor Agonists.” J. Med.

Chem. 1994, 37(17), 2774-2782.

52. Messer, W. S.; Rajeswaran, W. G.; Cao, Y.; Hai-Jun, Z.; El-Assadi, A. A.;

Dockery, C.; Liske, J.; O'Brien, J.; Williams, F. E.; Huang, X. P.; Wroblewski, M.

E.; Nagy, P. I. and Peseckis, S. M.; “Design and development of selective

muscarinicagonists for the treatment of alzheimer's disease: characterization of

tetrahydropyrimidine derivatives and dev” Pharm. chem. Lib. 2000, 31, 135–140.

53. Upshall, D. G. “Correlation of chick embryo teratogenicity with the nicotinic

activity of a series of tetrahydropyrimidines.” Teratology, 1972, 5(3), 287-294.

Page 18: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II

Synthesis of Tetrazolopyrimidine

derivatives

Page 19: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 22

INTRODUCTION

Pyrimidine nucleus is one of the most important heterocycles exhibiting

remarkable pharmacological activities. The practice of medicinal chemistry is devoted to

the discovery and development of new agents for treating diseases. The process of

establishing a new drug is exceeding complex and involves talent of people from variety

of disciplines 1. An important aspect of medicinal chemistry has been to establish a

relationship between chemical structure and pharmacological activity 2. Pyrimidine is a

six membered cyclic compound containing four carbon and two nitrogen atoms and is

pharmacologically inactive but its synthetic derivatives possess an important role in

modern medicine.

In medicinal chemistry, pyrimidine derivatives have been very well known for

their therapeutic applications. The presence of a pyrimidine base in thymine, cytosine and

uracil, which are the essential building blocks of nucleic acids, DNA and RNA is one of

possible reasons for their activities3.

Literature survey shows that lots of work has been done for tetrazolopyrimidines.

In recent years, synthesis of Tetreazolopyrimidine and their derivatives is of high interest

in organic chemistry4-8.

Tetrazolopyrimidines are known to be synthesized using mineral acid9, sulfamic

acid10, strontium chloride hexahydrate11 etc. Recently, in synthetic organic chemistry,

one-pot multicomponent reactions are very popular because of their significant

advantages12. Chemoselective reduction of fused tetrazoles using phase-Transfer

condition has been reported by Desai et al.13.

Their related fused heterocycles are of interest as potential bioactive molecules.

They are known to exhibit biological activities such as anti algeric15,16, anti microbial17,18,

anti malerial19, anti hypertensive20, anti cancer21, anti tumor22, anti inflamatory23, anti

bacterial24, analgesic25,26, anti fungal27, anti viral28 etc. These derivatives have also been

reported to be used for the treatment of thyroid cancer29.

Thus, in present chapter, some new tetrazolopyrimidine derivatives have been

synthesized and characterization of these synthesized compounds is done by IR, NMR

and mass spectral data.

Page 20: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 23

EXPERIMENTAL SECTION

Synthesis of 3-oxo-N-phenylbutanamide:

A mixture of aniline (0.01 mole), ethyl acetoacetate (0.01 mole), and catalytic

amount of sodium or potassium hydroxide (10 %) in 50 ml toluene was refluxed at 110 oC

for 12-15 hours. After completion of reaction, the solvent was removed under vacuum

and the residue was crystallized from methanol.

Synthesis of 7-(4-bromophenyl)-4, 7-dihydro-5-methyl-N-phenyl tetrazolo [1,5-a]

pyrimidine-6-carboxamide (PAB-201-PAB-210):

A mixture of 3-oxo-N-phenylbutanamide (0.01mol), aromatic aldehyde (0.01

mol), 5-aminotetrazole (0.01 mol) and (10 mol% I2/i-PrOH) was dissolved in 10 ml

isopropyl alcohol. The reaction mixture was refluxed for 3-4 hrs and then was cooled at

room temperature. The resulting precipitate was filtered, washed with chilled isopropyl

alcohol to give pure product.

The formation of the compounds was checked by thin-layer chromatography and

accomplished on 0.2-mm precoated plates of silica gel G60 F254 (Merck). Visualization

was made with UV light (254 and 365nm) or with an iodine vapor.

The melting point of all the synthesized compounds was determined in open

capillary tubes and was uncorrected. The characterization of all these compounds was

done by IR, NMR and mass spectral data. The IR spectra were recorded on Shimadzu FT-

IR-8400 instrument using KBr pellet method. The Mass spectra were recorded on

Shimadzu GC-MS-QP-2010 model using direct inlet probe technique. 1H NMR and 13C

NMR was determined in DMSO solution on a Bruker Ac 400 MHz spectrometer.

Page 21: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 24

The physical constants of all the synthesized compounds are given in Table 2.2.1

Figures 2.2.1 to 2.2.4 show the IR, mass and NMR spectrum of a compound.

Table 2.2.1: Physical constant of tetrazolopyrimidine derivatives.

Code R M.F M.W Yield (%) Rf valuePAB-201 4-OH C18H16N6O2 348.36 67 0.42PAB-202 2,5diOCH3 C20H20N6O3 392.41 62 0.51PAB-203 4-Br C18H15BrN6O 411.26 70 0.48PAB-204 4-CH3 C19H18N6O 346.39 68 0.52PAB-205 2-OCH3 C19H18N6O2 362.39 75 0.56PAB-206 4-NO2 C18H15N7O3 377.36 72 0.44PAB-207 3-Cl C18H15ClN6O 366.80 73 0.41PAB-208 3-NO2 C18H15N7O3 377.36 66 0.53PAB-209 3-OCH3 C19H18N6O3 378.38 69 0.52PAB-210 3-Br C18H15BrN6O 411.26 62 0.56

SPECTRAL DATA

7-(4-hydroxyphenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-201). mp 140-142°C; IR (KBr): 3629(O-H str), 3452(N-H str),

3300(N-H str), 3034(Ar, C-H str), 2944(C-H str), 1682 (C=O str), 1540(Ar, C=C str),

1520(C-N str), 1497(Ar, C=C str), 1479(C-H ben), 1053(C-O str) cm-1; MS: m/z = 348

[M ]+

7-(2,5-dimethoxyphenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-

6-carboxamide (PAB-202). mp 128-130°C; IR (KBr): 3452(N-H str), 3300(N-H str),

3034(Ar, C-H str), 2944(C-H str), 1682 (C=O str), 1540(Ar, C=C str), 1520(C-N str),

1497(Ar, C=C str), 1479(C-H ben), 1153(C-O-C str)cm-1; MS: m/z = 392 [M ]+

7-(4-bromophenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-203). mp 162-164°C; IR (KBr): 3483(N-H str), 3377(N-H str), 3198

(Ar, C-H str), 2943(C-H str), 1672 (C=O str), 1530(Ar, C=C str), 1589(C-N str), 1489(Ar,

C=C str), 1450(C-H ben), 1068(C-O str),756(C-Br str) cm-1; 1H NMR (400 MHz,

DMSO): δ ppm 2.51 (s, 3H, -CH3), 5.32 (s, 1H, -CH), 6.90-6.94 (t, 3H,- ArH), 7.33-7.35

(d, 2H, ArH), 7.47-7.49 (d, 2H, ArH) 7.87-7.89 (d, 2H, ArH), 9.94 (S, 1H, -NH), 10.73

(S, 1H, -NH), 13C NMR (100 MHz, DMSO): δ ppm 17.38, 55.39, 104.84, 112.62,

113.93, 114.70, 115.85, 122.91, 127.84, 137.00, 147.77, 153.82, 160.08. MS: m/z =411

[M ]+

Page 22: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 25

5-methyl-N-phenyl-7-(p-tolyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxamide

(PAB-204). mp 156-158°C; IR (KBr): 3452(N-H str), 3350(N-H str), 3031(Ar, C-H str),

2944(C-H str), 1682 (C=O str), 1520(C-N str), 1497(Ar, C=C str), 1454(C-H ben)cm-1;

MS: m/z = 346 [M ]+

7-(2-methoxyphenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-205). mp 134-136°C; IR (KBr): 3456(Amide, N-H str), 3343(N-H

str), 3023(Ar, C-H str), 2946(C-H str), 1687 (C=O str), 1542(Ar, C=C str), 1492(Ar,

C=C str), 1453(C-H ben), 1154(C-O-C str) cm-1; MS: m/z = 362 [M ]+

5-methyl-7-(4-nitrophenyl)-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-206). mp 150-152°C; IR (KBr): 3432(N-H str), 3338(N-H str),

3054(Ar, C-H str), 2954(C-H str), 2830(C-H str), 1679 (C=O str), 1531(Ar, C=C str),

1525(C-N str), 1486(Ar, C=C str), 1472(C-H ben)cm-1; MS: m/z =377 [M ]+

7-(3-chlorophenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-207). mp 144-146°C; IR (KBr): 3452(N-H str), 3334(N-H str),

3037(Ar, C-H str), 2946(C-H str), 1689 (C=O str), 1540(Ar, C=C str), 1520(C-N str),

1495(Ar, C=C str), 1474(C-H ben), 755(C-Cl str)cm-1; MS: m/z = 366 [M ]+

5-methyl-7-(3-nitrophenyl)-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-208). mp 159-161°C; IR (KBr): 3438(N-H str), 3354(N-H str),

2954(Ar, C-H str), 2830(C-H str), 1684 (C=O str), 1517(Ar, C=C str), 1486(Ar, C=C str),

1472(C-H ben)cm-1; MS: m/z = 377 [M ]+

7-(4-hydroxy-3-methoxyphenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-

a]pyrimidine-6-carboxamide (PAB-209). mp 167-169°C; IR (KBr): 3638(O-H str),

3443(Amide, N-H str), 3310(N-H str), 3034(Ar, C-H str), 2944(C-H str), 1686 (C=O str),

1530(Ar, C=C str), 1497(Ar, C=C str), 1459(C-H ben),1160(C-O-C str) 1053(C-O

str)cm-1; MS: m/z = 378 [M ]+

7-(3-bromophenyl)-5-methyl-N-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-

carboxamide (PAB-210). mp 172-174°C; IR (KBr): 3446(N-H str), 3354(N-H str),

3022(Ar, C-H str), 2941(C-H str), 1689 (C=O str), 1530(Ar, C=C str), 1481(Ar, C=C str),

1471(C-H ben), 722(C-Br str) cm-1; MS: m/z = 411 [M ]+

Page 23: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 26

Figure: 2.2.1 IR spectrum of compound PAB-203

Figure: 2.2.2 Mass spectrum of compound PAB-203

45075010501350165019502250255028503150345037501/cm

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100%T

3483

.56

3377

.47

3198

.08

2943

.47

2794

.95

1672

.34

1641

.48

1589

.40 14

89.1

014

50.5

213

94.5

812

98.1

4

1157

.33

1068

.60

997.

23

902.

7282

7.49

756.

1269

4.40

663.

5358

0.59

N

NH

NNN

O

NH

Br

N

NH

NNN

O

NH

Br

Page 24: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 27

Figure: 2.2.3 1H NMR Spectrum of compound PAB-203

Expanded 1H NMR spectrum of compound PAB-203

N

NH

NNN

O

NH

Br

N

NH

NNN

O

NH

Br

Page 25: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 28

Figure: 2.2.4 13C NMR spectrum of compound PAB-203

N

NH

NNN

O

NH

Br

Page 26: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 29

REFERENCES

1. Delgado, J. N. and Remers, W. A.; “Wilson and Giswold’s- Textbook of

Organic Chemistry Medicinal and Pharmaceutical Chemistry”; 10th ed.

Philadelphia: Lippincott Raven; 1998.

2. Miller, D.; “Remington- The Science and Practice of Pharmacy”; 19th ed.

Pennsylvania: MACK Publishing Company 1995, 425.

3. Fedorova, O. V.; Zhidovinova, M. S.; Rusinov, G. L. and Ovchinnikova, I. G.;

“Aminoazoles in the three component synthesis of 7-substituted 6-

ethoxycarbonyl-5-methyl-4,7-dihydroazolo[1,5 a]Pyrimidines” Russ. Chem. Bull.

Int. Ed. 2003, 52, 1768-1769.

4. Ciszewski, K.; Celewicz, L. and Golankiewicz, K.; “Synthesis of 6-substituted

tetrazolo[1,5-c]pyrimidin-5(6H)ones: New modification of 3′-azido-3′-

deoxythymidine” Biochem. Biophy. Res. Comm.1992, 187(3), 1545-1550.

5. Kappe, T.; Roschger, P. and Färber, G.; “Synthesis and reactions of tetrazolo[1,5-

α]pyrimidines” J. Heterocyc. Chem. 1993, 30(5), 1267-1271.

6. Desai, N. D. “Synthesis of Fused Tetrazolo[1,5‐c] pyrrolo[3,2‐e]pyrimidines and

Their Reductive Conversion to New 4‐Aminopyrrolo[2,3‐d]pyrimidines” Synth.

Comm. 2006, 36(15), 2169-2182.

7. Abu-Zied, K. M.; El-Gazzar, A. B. A. and Hassan, N.; “Synthesis and Reactions

of Some Novel Triazolo-, Azolo-, Tetrazolo-pyridopyrimidine and their

Nucleoside Derivatives” A.; J. Chin. Chem. Soc. 2008, 55, 209-216.

8. Gein, V. L.; Mishunin, V. V.; Tsyplyakova, E. P.; Vakhrin, M. I. and Slepukhin.

P. A.; “Synthesis of methyl 7-aryl-6-(2-thenoyl)-4,7-dihydro-tetrazolo[1,5-

a]pyrimidine-5-carboxylates and their reaction with hydrazine hydrate” Russ. J.

Org. Chem. 2011, 47(7), 1077-1082.

9. Fedorova, O. V.; Zhidovinova, M. S.; Rusinov, G. L. and Ovchinnikova, I. G.;

Aminoazoles in the three component synthesis of 7-substituted 6-ethoxycarbonyl-

5-methyl-4,7-dihydroazolo[1,5 a]Pyrimidines” Russian Chem. Bull. Int. Ed. 2003,

52, 1768-1769.

10. Yao, C.; Lei, S.; Wang, C.; Yu, C. and Tu, S.; “Solvent-free Synthesis of 5-

methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylicesters Catalyzed

by Sulfamic acid” J. Heterocy. Chem. 2008, 45, 1609-1613.

Page 27: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 30

11. Chitra S., Devanathan D., and Pandiarajan K. “Synthesis and in vitro

Microbiological evaluation of novel 4-aryl-5-isopropoxycarbonyl-6-methyl-3,4-

dihydropyrimidinones”, Eur. J. Med. Chem. 2010, 45, 367–371.

12. Zeng L.-Y. and Cai C.; “Iodine catalyzed one-pot multicomponent synthesis of a

library of compounds containing tetrazolo [1, 5-a] pyrimidine Core” J. Comb.

Chem. 2010, 12, 35–40.

13. Desai, N. D. and Shah, R. D.; “Improved Synthesis and Efficient Chemoselective

Reductionof Fused Tetrazoles under Phase-Transfer Conditions” Synthesis 2006,

19, 3275-3279.

14. Herr, R. J.; “5-Substituted-1H-tetrazoles as carboxylic acid isosteres medicinal

chemistry and synthetic methods” Bioorg. Med. Chem. 2002, 10, 3379-3393.

15. Klaubert, D. H.; Sellstedt, J. H.; Guinosso, C. J.; Bell, S. C. and Capetola', R. J.;

“5-Tetrazolecarboxamides and Their Salts: New Orally Active Antiallergy

Agents” J. Med. Chem.1981, 24, 748- 752.

16. Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Pen-rose, A. J.; Ramsden, C.

A.; Summers, A. J.; Walker, J. L. and Wright, D. E.; “Synthesis and Quantitative

Structure-Activity Relationships of Antiallergic 2-Hydroxy-N-1H-tetrazol-5-

ylbenzamides and N-( 2-Hydroxypheny1)- 1H-tetrazole-5-carboxamides” J. Med.

Chem. 1986, 29, 538–549.

17. Bondock, S.; Fadaly, W. and Metwally, M. A.; “Enaminonitrile in heterocyclic

synthesis: Synthesis and antimicrobial evaluation of some new pyrazole, isoxazole

and pyrimidine derivatives incorporating a benzothiazole moiety” Eur. J. Med.

Chem. 2009, 44, 4813 –4818.

18. Chitra, S.; Devanathan, D. and Pandiarajan, K.; “Synthesis and in vitro

Microbiological evaluation of novel 4-aryl-5-isopropoxycarbonyl-6-methyl-3,4-

dihydropyrimidinones” Eur. J. Med. Chem. 2010, 45, 367–371.

19. Biot, C.; Bauer, H.; Schirmer, H. and Davioud-Charvet, E.; “5-Substituted

Tetrazoles as Bioisosteres of Carboxylic Acids. Bioisosterism and Mechanistic

Studies on Glutathione Reductase Inhibitors as Antimalarials” J. Med. Chem.

2004, 47(24) 5972–5983.

20. Takaya, T.; Murata, M. and Ito, K.; “Pyrimidine compounds having activity as a

cardiotonic anti-hypertensive cerebrovascular vasodilator and anti-platelet

aggregation agent” US Patent No. 4725600, 1988.

Page 28: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-II Synthesis of tetrazolopyrimidine derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 31

21. Rostom, S. A.; Ashour, H. M. and Abd El Razik, H. A.; “Synthesis of Some

Pyrazolines and Pyrimidines Derived from Polymethoxy Chalcones as Anticancer

and Antimicrobial Agents” Arch. Pharm. 2009, 344, 572-587.

22. Ahmed, O. M.; Mohamed, M. A.; Ahmed, R. R. and Ahmed, S. A.; “Synthesis

and anti-tumor activities of some new pyridines and pyrazolo[1,5 a]pyrimidines”

Eur. J. Med. Chem. 2009, 44, 3519-3523.

23. Rashad, A. E.; Heikal, O. A.; El-Nezhawy, A. O. and Abdel-Megeid, M. E.

“Synthesis and isomerization of thienotriazolopyrimidine and

thienotetrazolopyrimidine derivatives with potential anti-inflammatory activity” J.

Heterocy. Chem. 2005, 16(3), 226–234.

24. Shah, R. D. “Annellation of Triazole and Tetrazole Systems onto Pyrrolo[2,3-

d]pyrimidines: Synthesis of Tetrazolo[1,5-c]-pyrrolo[3,2-e]-pyrimidines and

Triazolo[1,5-c]pyrrolo-[3,2-e]pyrimidines as Potential Antibacterial Agents”

Molecules 2002, 7, 554-556.

25. Rajasekaran, A. and Thampi, P. P.; “Synthesis and analgesic evaluation of some

5-[b-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles” Eur. J. Med. Chem.

2004, 39, 273–279.

26. Kozikowski, A. P.; Zhang, J.; Nan, F.; Petukhov, A.; Grajkowska, E.;

Wroblewski, J. T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B. and Neale, J. H.;

“Synthesis of Urea-Based Inhibitors as Active Site Probes of Glutamate

Carboxypeptidase II:  Efficacy as Analgesic Agents” J. Med. Chem. 2004,

47,1729–1738.

27. Upadhayaya, R.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R. and Arora, S. K.;

“Synthesis of nove l substituted tetrazoles having antifungal activity” Eur. J. Med.

Chem. 39, 2004, 579–592.

28. Zarubaev, V. V.; Golod, E. L.; Anfimov, P. M.; Shtro, A. A.; Saraev, V. V.;

Gavrilov, A. S.; Logvinov, A. V. and Kiselev, O. I.; “Synthesis and anti-viral

activity of azolo-adamantanes against influenza A virus” Bioorg. Med. Chem.

2010, 18, 839-848.

29. Aspnes, G. E. and Chiang, Y. P.; “Tetrazole compounds as thyroid receptor

ligands” US Patent No. 6441015, 2002.

Page 29: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III

Synthesis of Dihydropyrazole

derivatives

Page 30: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 32

INTRODUCTION

The chemistry of pyrazoles has been reviewed by Jarobe in 1967. Pyrazoles have

attracted attention of medicinal chemists for both with regard to heterocyclic chemistry

and the pharmacological activities associated with them. Pyrazoles are well known

nitrogen containing five member heterocycles.

Pyrazoles have been studied extensively because of ready accessibility, diverse

chemical reactivity, broad spectrum of biological activity1-6 and varieties of industrial

applications7.

As evident from the literature, in recent years a significant portion of research

work in heterocyclic chemistry has been devoted to pyrazoles containing different alkyl,

aryl and heteroaryl groups as substituents.

Different methods are available from the literature for the preparation of 2-

pyrazole derivatives8-13.The most common procedure for the synthesis of 2-pyrazoles is

the reaction of an aliphatic or aromatic hydrazine with α,β-unsaturated carbonyl

compounds14,15.

Suzuki et al. have reported gold catalyzed synthesis of some dihydropyrazoles16.

De17 et al. have reported cellulose beads as a new versatile solid support for microwave

assisted synthesis of pyrazole and isoxazole libraries.A solid-phase synthesis of pyrazole

dicarboxylic acid derivatives by functionalization of cyanoformate have been reported by

Morelli et al.18. Ren and coworkers19 have synthesized pyrazole derivatives using liquid

phase synthesis strategy. Kim et al. have reported the synthesis of cyanopyrazoline

derivatives20 whereas Koval et al. have synthesized and studied the structures of new

copper complexes with the pyrazole-containing ligands21. Ali has reported stereoselective

synthesis of N-vinyl pyrazoles in solvent-free conditions using dipotassium hydrogen

phosphate powder22.

Thus, in literature, various catalysts have been used for the synthesis of pyrazoles.

Some of these catalysts are metals23, conjugate base24, iodine25, hafnium chloride26,

tungstophosphoricacid27, p-toluene sulphonic acid28, sulfamicacid29, ytterbium(III)

perfluorooctanoate30, silver31, organocatalysts32, etc..

Much attention was paid to pyrazole as a potential antimicrobial agent after the

discovery of the natural pyrazole C-glycoside pyrazofurin which demonstrated a broad

spectrum of antimicrobial activity33. Some pyrazole derivatives used as potent and

Page 31: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 33

selective inhibitors against DNA gyrase are capable to cause bacterial cell death, for

example, Hoffmann – La Roche’s group34,35 has developed a new lead DNA gyrase

inhibitor. Literature survey shows that 2-pyrazolines are better therapeutic agents. They

possess valuable bioactivities like, antiinflammatory36,37, antitumor38,39, analgesic40,41,

bactericidal42, Fungicidal43, anticancer44, anticonvulsant45, pesticidal46, antidepressant47,

antiamoebic48, insecticidal49 ,antineoplastic50,51,antitubercular52 etc.

Thus, in present chapter, some new dihydropyrazoles have been synthesized and

characterization of these synthesized compounds is done by IR, NMR and mass spectral

data.

Page 32: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 34

EXPERIMENTAL SECTION

[A] Synthesis of substituted chalcones:

Substituted aldehydes (0.01 mole) was dissolved in 15 ml of methanol. 0.01 mole

of substituted acetophenones and 3-4 drops of saturated sodium hydroxide solution (as a

catalyst) was added and the reaction mixture was stirred for 24 hours. After the

completion of reaction, the reaction mass was filtered and washed with chilled methanol.

Similarly, other compounds are also prepared using different aldehydes.

[B] Synthesis of 6-chloro-4-phenylchroman-2-one:

To a mixture of cinnamic acid (0.1 mole), p-chloro phenol (0.1, mole), catalytic

amount of concentrated H2SO4 was added with stirring and the reaction mixture was

heated at 70o-80oC to become clear solution. The temperature was then increased up to

120o-125oC and heating was continued for 3-4 hours. After the completion of reaction,

the reaction mixture was cooled up to 80oC. Then 40 ml of toluene and 40 ml of water

was added to the reaction mixture and stirred it for 30 minutes. The toluene layer was

separated and washed with saturated sodium bicarbonate solution (2 x 20 ml) and water

(2 x 20 ml). The resulting toluene layer was then dried using sodium sulphate under

vacuum. 25 ml of isopropyl alcohol added to the resulting oily mass and stirring was done

for 30 minutes at 0-5o C. The product was filtered and washed with chilled iso-propyl

alcohol (2 x 5 ml) and dried to give 6-chloro-4-phenylchroman-2-one

[C] Synthesis of methyl 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanoate:

A mixture of 6-chloro-4-phenylchroman-2-one (0.1 mole), potassium carbonate

(0.12 mole), benzyl chloride (0.12 mole), sodium iodide (0.05 mole), 100 ml of acetone

and 100 ml of methanol was heated with stirring. After the completion of reaction,

solvent was removed under vacuum. Then, dichloromethane (100 ml) and water (100 ml)

was added to the reaction mixture and was stirred for 30 minutes. The organic layer was

Page 33: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 35

separated and dried using sodium sulphate and distilled completely under vacuum to get

oily residue of 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanoate.

[D] Synthesis of 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanehydrazide:

3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanoate (0.01 mole) was dissolved

in 20 ml of methanol. 2 ml of hydrazine hydrate (99 %) was added to this solution and the

resulting mixture was heated for 10-12 hours at reflux temperature. After the completion

of reaction, the reaction mass was filtered and washed with chilled methanol (2 x 5 ml) to

give pure product.

Cl

OH H2SO4

120-125 oC

O

Cl

O

K2CO3, NaI

Acetone, MeOH

55-60 oC

COOCH3

O

Cl

NH2-NH2.H2OMeOHReflux

CONHNH2

O

Cl

COOH

Cl

BC

D

[E] Synthesis of 3-(2-benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(p-

tolyl)-4,5-dihydro-1H-pyrazol-1yl)-3-phenylpropan-1-one:

To a mixture of 3-(2-benzyloxy)-5-chlorophenyl)-3-phenylpropanehydrazide

(0.01 mol) and different substituted chalcones (0.01 mol), 10 ml of glacial acetic acid was

added with stirring. The reaction mixture was refluxed on oil bath for 12 hours. After the

completion of reaction, the mixture was poured into crushed ice to give solid product. The

solid mass was filtered and purified by column chromatography using eluent hexane:

ethyl acetate (7:3). Similarly other compounds were also prepared with different

chalcones.

Page 34: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 36

The formation of the compounds was checked by thin-layer chromatography and

accomplished on 0.2-mm pre coated plates of silica gel G60 F254 (Merck). Visualization

was made with UV light (254 and 365nm) or with an iodine vapor.

The melting point of all the synthesized compounds was determined in open

capillary tubes and was uncorrected.

The characterization of all these compounds was done by IR, NMR and mass

spectral data. The IR spectra were recorded on Shimadzu FT-IR-8400 instrument using

KBr pellet method. The Mass spectra were recorded on Shimadzu GC-MS-QP-2010

model using direct inlet probe technique. 1H NMR and 13C NMR was determined in

DMSO solution on a Bruker Ac 400 MHz spectrometer.

The physical constants of all the synthesized compounds are given in Table 2.3.1.

Figures 2.3.1 to 2.3.4 show the IR, mass and NMR spectrum of a compound.

Page 35: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 37

Table 2.3.1: Physical constant of dihydropyrazole derivatives

Code R R1 M.F M.W

Yield

(%) Rf value

PAB-301 2-Cl 4-F C37H29Cl2FN2O 623.54 71 0.52

PAB-302 4-NO2 4-CH3 C38H32ClN3O4 630.13 64 0.58

PAB-303 4-F 3-NO2 C37H29ClFN3O4 634.10 70 0.54

PAB-304 3,4 di –OCH3 4-Cl C39H34Cl2N2O4 665.60 62 0.48

PAB-305 4-F 4-NO2 C37H29ClFN3O4 634.10 65 0.56

PAB-306 4-NO2 2-NO2 C37H29ClN4O6 661.10 60 0.55

PAB-307 C6H5 4-Cl C37H30Cl2N2O2 605.55 58 0.58

PAB-308 2-NO2 4-Cl C37H29Cl FN2O4 650.55 66 0.62

PAB-309 3,4 di –OCH3 4-F C39H34Cl2N2O4 649.15 74 0.51

PAB-310 2-NO2 C6H5 C37H30Cl2N3O4 616.10 72 0.60

PAB-311 4-CH3 4-Cl C38H32Cl2N2O2 619.58 70 0.64

PAB-312 4-Cl C6H5 C37H30Cl2N2O2 605.55 61 0.48

PAB-313 4-F 4-Br C37H29BrClFN2O2 667.99 67 0.47

PAB-314 4-NO2 4-Cl C37H29Cl2N3O4 650.55 71 0.51

PAB-315 4-Cl 4-F C37H29Cl2FN2O2 623.54 74 0.56

PAB-316 4-NO2 4-F C37H29ClFN3O4 634.10 69 0.48

PAB-317 4-F 4-Cl C37H29Cl2FN2O2 623.54 63 0.55

PAB-318 4-OCH3 4-Cl C38H32Cl2N2O3 635.58 70 0.62

PAB-319 4-OCH3 4-F C38H32ClFN2O3 619.12 77 0.58

PAB-320 4-F C6H5 C37H30ClFN2O2 589.10 76 0.64

Page 36: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 38

SPECTRAL DATA

3-(2-benzyloxy)-5-chlorophenyl)-1-(5-(2-chlorophenyl)-3(4-fluorophenyl)-4,5-

dihydro-1H-pyrazol-1yl)-3-phenylpropan-1-one (PAB-301). mp 162-164°C; IR (KBr):

3030(Ar, C-H str), 2956(C-H str), 2821(C-H str), 1692(C=O str), 1616(Ar, C=C str),

1563(Ar, C=C str), 1535(Ar, C=C str), 1479(C-H ben), 1078(C-O-C str), 1030(C-F

str),736(C-Cl str) cm-1; MS: m/z = 623 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-nitrophenyl)-5-(p-tolyl)-4,5-dihydro-1H-

pyrazol-1-yl)-3-phenylpropan-1-one (PAB-302). mp 154-156°C; IR (KBr): 3026(Ar, C-

H str), 2914(C-Hstr), 1662(C=O str), 1613(Ar, C=C str), 1551(Ar, C=C str), 1533(Ar,

C=C str), 1472(C-H ben), 1076(C-O-C str), 734(C-Cl str) cm-1; MS: m/z = 630 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(4-fluorophenyl)-3-(3-nitrophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-303). mp 145-147°C; IR

(KBr): 3061(Ar, C-H str), 1666(C=O str), 1626(Ar, C=C str), 1535(Ar, C=C str), 1479(C-

H ben), 1020(C-O-C str), 1030(C-F str), 734(C-Cl str) cm-1; MS: m/z = 634 [M ]+

3-(2-benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(3,4-dimethoxyphenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-304). mp 178-180°C; IR

(KBr): 3029(Ar, C-H str), 2959(C-H str), 2829(C-H str), 1662(C=O str), 1617(Ar, C=C

str), 1563(Ar, C=C str), 1535(Ar, C=C str), 1443(C-H ben), 1078(C-O-C str), 1030(C-F

str),739(C-Cl str) cm-1; MS: m/z = 665 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(4-fluorophenyl)-3-(4-nitrophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-305). mp 170-172°C; IR

(KBr): 3064(Ar, C-H str), 1668(C=O str), 1599(Ar, C=C str), 1404(C-H ben), 1012(C-O-

C str), 1028(C-F str), 734(C-Cl str) cm-1; MS: m/z = 634 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(2-nitrophenyl)-5-(4-nitrophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-306). mp 149-151°C; IR

(KBr): 3069(Ar, C-H str), 2969(C-H str), 2822(C-H str), 1669(C=O str), 1616(Ar, C=C

str), 1539(Ar, C=C str), 1476(C-H ben), 1026(C-O-C str), 739(C-Cl str) cm-1; MS: m/z =

661 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-phenyl-4,5-dihydro-1H-

pyrazol-1-yl)-3-phenylpropan-1-one (PAB-307). mp 138-140°C; IR (KBr): 3079(Ar, C-

Page 37: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 39

H str), 2967(C-H str), 2842(C-H str), 1661(C=O str), 1636(Ar, C=C str), 1519(Ar, C=C

str), 1472(C-H ben), 1023(C-O-C str), 750 ( C-H ben), 729(C-Cl str) cm-1; MS: m/z =

605 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(2-nitrophenyl)-4,5-

dihydro-1H pyrazol-1-yl)-3-phenylpropan-1-one (PAB-308). mp 161-163°C; IR

(KBr): 3067(Ar, C-H str), 1676(C=O str), 1636(Ar, C=C str), 1532(Ar, C=C str), 1473(C-

H ben), 1028(C-O-C str), 745(C-H ben), 734(C-Cl str) cm-1; MS: m/z = 650 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(3,4-dimethoxyphenyl)-3-(4-fluorophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-309). mp 140-142°C; IR

(KBr): 3025(Ar, C-H str), 2956(C-H str), 2829(C-H str), 1666(C=O str), 1617(Ar, C=C

str), 1573(Ar, C=C str), 1532(Ar, C=C str), 1453(C-H ben), 1071(C-O-C str), 1023(C-F

str), 736(C-Cl str) cm-1; MS: m/z = 649 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(2-nitrophenyl)-3-phenyl-4,5-dihydro-1H-

pyrazol-1-yl)3-phenylpropan-1-one (PAB-310). mp 147-149°C; IR (KBr): 3073(Ar, C-

H str), 2963(C-H str), 2862(C-H str), 1667(C=O str), 1626(Ar, C=C str), 1520(Ar, C=C

str), 1471(C-H ben), 1025(C-O-C str), 750( C-H ben), 739(C-Cl str) cm-1; MS: m/z = 616

[M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-

pyrazol-1-yl)-3-phenylpropan-1-one (PAB-311). mp 167-169°C; IR (KBr): 3043(Ar,

C-H str), 2922(C-H str), 2847(C-H str), 1606(C=O str), 1529(Ar, C=C str), 1466(C-H

ben), 1022(C-O-C str), 750 ( C-H ben), 729(C-Cl str) cm-1; 1H NMR (400 MHz,

DMSO): δ ppm 2.45 (s, 3H, -CH3), 3.0-3.04 (d, 2H, -CH2), 3.54-3.59 (d, 2H, -CH2), 3.93

(t, 1H,-CH), 4.93-5.01(m, 3H, -CH2-CH),6.58-6.62 (dd, 2H, ArH), 6.84-6.88 (t, 4H,

ArH), 6.97-7.35 (m,7H, ArH), 7.42-7.51 (m, 7H, ArH), 8.05 (s, 1H, ArH). 13C NMR

(100 MHz, DMSO): δ ppm 20.47, 36.63, 43.41, 44.63, 56.28, 61.64, 108.46, 114.13,

117.43, 119.28, 119.80, 124.11, 129.29, 130.19, 132.77, 134.38, 141.49, 143.20, 152.48,

155.79, 168.52. MS: m/z = 619 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-

pyrazol-1-yl)-3-phenylpropan-1-one (PAB-312.) mp 164-166°C; IR (KBr): 3069(Ar, C-

H str), 2967(C-H str), 2832(C-H str), 1667(C=O str), 1631(Ar, C=C str), 1519(Ar, C=C

Page 38: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 40

str), 1474(C-H ben), 1022(C-O-C str), 743( C-H ben), 732(C-Cl str) cm-1; MS: m/z = 605

[M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-313). mp 175-177°C; IR

(KBr): 3059(Ar, C-H str), 2961(C-H str), 2822(C-H str), 1667(C=O str), 1631(Ar, C=C

str), 1529(Ar, C=C str), 1472(C-H ben), 1032(C-O-C str), 1023(C-F str), 740( C-H ben),

733(C-Cl str), 575(C-Br str) cm-1; MS: m/z = 667 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(4-nitrophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-314). mp 180-182°C; IR

(KBr): 3062(Ar, C-H str), 1679(C=O str), 1639(Ar, C=C str), 1542(Ar, C=C str), 1475(C-

H ben), 1029(C-O-C str), 741( C-H ben), 731(C-Cl str) cm-1; MS: m/z = 650 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(4-chlorophenyl)-3-(4-fluorophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-315). mp 144-146°C; IR

(KBr): 3069(Ar, C-H str), 2963(C-H str), 2826(C-H str), 1677(C=O str), 1635(Ar, C=C

str), 1527(Ar, C=C str), 1474(C-H ben), 1039(C-O-C str), 1027(C-F str), 740( C-H ben),

732(C-Cl str) cm-1; MS: m/z = 623 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-fluorophenyl)-5-(4-nitrophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-316). mp 135-137°C; IR

(KBr): 3052(Ar, C-H str), 1677(C=O str), 1634(Ar, C=C str), 1541(Ar, C=C str), 1476(C-

H ben), 1037(C-O-C str), 1022(C-F str), 743( C-H ben), 731(C-Cl str) cm-1; MS: m/z =

634 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-317). mp 161-163°C; IR

(KBr): 3068(Ar, C-H str), 2965(C-H str), 2829(C-H str), 1674(C=O str), 1632(Ar, C=C

str), 1521(Ar, C=C str), 1475(C-H ben), 1035(C-O-C str), 1028(C-F str), 742( C-H ben),

735(C-Cl str) cm-1; MS: m/z = 623 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-chlorophenyl)-5-(4-methoxyphenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-318). mp 174-176°C; IR

(KBr): 3021(Ar, C-H str), 2953(C-H str), 2822(C-H str), 1662(C=O str), 1619(Ar, C=C

Page 39: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 41

str), 1579(Ar, C=C str), 1531(Ar, C=C str), 1455(C-H ben), 1072(C-O-C str), 1021(C-F

str), 737(C-Cl str) cm-1; MS: m/z = 635 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(3-(4-fluorophenyl)-5-(4-methoxyphenyl)-4,5-

dihydro-1H-pyrazol-1-yl)-3-phenylpropan-1-one (PAB-319). mp 162-164°C; IR

(KBr): 3029(Ar, C-H str), 2957(C-H str), 2826(C-H str), 1666(C=O str), 1611(Ar, C=C

str), 1572(Ar, C=C str), 1533(Ar, C=C str), 1453(C-H ben), 1071(C-O-C str), 1024(C-F

str), 733(C-Cl str) cm-1; MS: m/z = 619 [M ]+

3-(2-(benzyloxy)-5-chlorophenyl)-1-(5-(4-fluorophenyl)-3-phenyl-4,5-dihydro-1H-

pyrazol-1-yl)-3-phenylpropan-1-one (PAB-320). mp 150-152°C; IR (KBr): 3024(Ar, C-

H str), 2955(C-H str), 2820(C-H str), 1660(C=O str), 1613(Ar, C=C str), 1572(Ar, C=C

str), 1531(Ar, C=C str), 1443(C-H ben), 1077(C-O-C str), 1022(C-F str), 731(C-Cl str)

cm-1; MS: m/z = 589 [M ]+

Page 40: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 42

Figure 2.3.1: IR spectrum of compound PAB-311

Figure 2.3.2: Mass spectrum of compound PAB-311

45075010501350165019502250255028503150345037501/cm

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100%T

3124

.79

3043

.77

2922

.25 28

47.0

3

1606

.76

1529

.60

1456

.30

1394

.58

1330

.93

1296

.21

1153

.47

1022

.31

NN O

O

ClCl

CH3

NN O

O

ClCl

CH3

Page 41: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 43

Figure 2.3.3: 1H NMR Spectrum of compound PAB-311

Expanded 1H NMR spectrum of compound PAB-311

Page 42: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 44

Figure 2.3.4: 13C NMR spectrum of compound PAB-311

Page 43: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 45

REFERENCES

1. Elguero, J.; Katrizky, A. and Reis. C.; “Compre. Heterocyc. Chem.” 1984, 5, 168.

2. Taylor, E. C.; Patel,H. H.; “Synthesis of Pyrazol[3,4-d]pyrimidine Analogues of

The Potent Agent N-{4-[2-(2-amino-4(3H)-oxo-7Hpyrrolo[2,3-d]pyrimidin-5-

yl)ethyl] benzoyl} -L- glutamic acid (LY231514)” Tetrahedron 1992, 48, 8089-

8100.

3. Korgaokar, S. S.; Patil, P. H.; Shah, M. J. and Parekh, H. H.; “Studies on

Pyrazolines: Preparation and Antimicrobial Activity of 3-

(3'(PChlorophenyesulphonamidophenyl)-5-aryl-1H/acetyl pyrazolines.” Ind. J.

Pharm. Sci., 1996, 58, 222-225.

4. Udupi, R. H.; Kushnoor, A. S. and Bhat A. R.; “Synthesis and Biological

Evaluation of Certain Pyrazoline Derivatives of 2-[6-methoxynaphthyl]-propionic

Acid (Naproxen)” Ind. J. Heterocycl. Chem., 1998, 8, 63-66.

5. Girisha, K. S.; Kalluraya, B. and Padmashree, V. N.; “Synthesis and

pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-

1H-pyrazol-4-yl)-2-pyrazoline” Eur. J. Med. Chem. 2010, 45(10), 4640–4644.

6. Sharshira, E. M. and Mahrous Hamada, N. M.; “Synthesis and Antimicrobial

Evaluation of Some Pyrazole Derivatives- Molecules 2012, 17(5), 4962-4971.

7. Theobald, R. and Ansell, M.; “Rodd’s Chemistry of carbon compounds”, Ed. F.

IV, Part C, Ch. 16, 2nd Ed., Elsevier Science Publishers B.V., Amsterdam, 1998,

59.

8. Lévai, A. and Jek, J.; “Synthesis of carboxylic acid derivatives of 2-pyrazolines”

ARKIVOC 2007, (i) 134-145.

9. Jagrut, V. B.; Lingampalle, D. L.; Phase, R. P. and Jadhav, W. N.; “Eco-friendly

synthetic route for new pyrazolines bearing sulfonamido and quinolino

pharmacophore in PEG-400” J. Chem. Bio. Phy. Sci. 2012, 2(3) 1166-1170.

10. Rivett, D. E.; Rosevear, J. and Wilshire, J. F. K.; “The Preparation and

Spectroscopic properties of some di- and tri-substituted 1, 3, 5-Triphenyl-2-

pyrazolines and related 2-pyrazolines” Aust. J. Chem. 1983, 36, 1649-1658.

11. Wagner, A.; Schellhammer, C. W. and Petersen, S.; “Aryl-Δ2-pyrazolines as

Optical Brighteners” Angew. Chem., Int. Ed. Engl. 1966, 5, 699-704.

12. Rurack, K.; Bricks, J. L.; Schulz, B.; Maus, M.; Reck, G. and Resch-Genger, U.;

“Substituted 1,5- Diphenyl-3-benzothiazol-2-yl-_2-pyrazolines: Synthesis, X-ray

Page 44: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 46

Structure, Photophysics, and Cation Complexation Properties.” J. Phys. Chem. A.

2000, 104, 6171-6188.

13. Singh, P.; Negi, J. S.; Pant, G. J.; Rawat, M. S. M. and Budakoti, A.; “Synthesis

and Characterization of a Novel 2-Pyrazoline” Molbank 2009, M614.

14. Corradi, A.; Leonelli, C.; Rizzuti, A.; Rosa, R.; Veronesi, P.; Grandi, R.;

Baldassari, S.and Villa, C.; “New Green Approaches to the Synthesis of Pyrazole

Derivatives” Molecules 2007, 12(7), 1482-1495.

15. Seitaro, K.; “Preparation, optical resolution, and formulation of 1-(3-

pyridylcarbonyl)-5-methyl-2-pyrazoline as cerebrovascular protective agent” Eur.

Pat. Appl., 373512.

16. Suzuki, Y.; Naoe, S.; Oishi, S.; Fujii, N. and Ohno H.; “Gold-Catalyzed Three-

Component Annulation: Efficient Synthesis of Highly Functionalized

Dihydropyrazoles from Alkynes, Hydrazines, and Aldehydes or Ketones” Org.

Lett. 2012, 14 (1), 326–329.

17. De, L.; Giacomelli, G.; Porcheddu, A.; Salaris, M. and Taddei, M.; “Cellulose

Beads:  a New Versatile Solid Support for Microwave- Assisted Synthesis.

Preparation of Pyrazole and Isoxazole Libraries” J. Comb. Chem. 2003, 5(4), 465-

471.

18. Morelli, C.; Saladino, A.; Speranza, G. and Manitto, P.; “Expeditious Solid-Phase

Synthesis of Pyrazoledicarboxylic Acid Derivatives by Functionalization of

Resin-Bound Cyanoformate” Eur. J. Org. Chem. 2005, (21), 4621-4627.

19. Ren, X.; Li, H.; Wu, C. and Yang, H.; “Synthesis of a small library containing

substituted pyrazoles” ARKIVOC 2005, XV, 59-67.

20. Ahn, J.; Kim, H.; Jung, S.; Kang, S.; Kim, K.; Rhee, S.; Yong, D.; Cheon, H. and

Kim, S.; “ Synthesis and DP-IV inhibition of cyanopyrazoline derivatives as

potent anti diabetic agents” Bio. Med. Chem. Lett. 2004, 14, 4461–4465.

21. Koval, I.; Schuitema, A.; Driessen W. and Reedijk, J.; “Unprecedented copper

(II)-assisted acetal formation of a formyl substituted bis pyrazole. The X-ray

structures of copper [1, 2-bis-(3_-dimethoxymethylpyrazol-1_-yl) ethane]

dichloride and dibromide “J. Chem. Soc. Dal. Transa. 2001, 3663–3667.

22. Ali, R.; Issa, A. and Abdolhossain, M.; “Synthesis of 4H-1,4-Benzothiazine-1,1-

dioxides (Sulfones) and Phenothiazine-5,5-dioxides (Sulfones)” Phos. Sul. Sili.

Rel. Elem. 2006, 181(10), 2225-2229.

Page 45: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 47

23. Alex, K.; Tillack, A.; Schwarz, N. and Beller, M.; “Zinc-Catalyzed Synthesis of

Pyrazolines and Pyrazoles via Hydrohydrazination” Org. Lett. 2008, 10(12),

2377-2379.

24. Saikia, A.; Barthakur, M.; Borthakur, M.; Saikia, C.; Bora, U. and Boruah, R.;

“Conjugate base catalysed one-pot synthesis of pyrazoles from β-formyl

enamides”Tetrahedran. Lett. 2005, 47(1), 43-46.

25. Agarwal, R.; Kumar, V. and Singh, S.; “Synthesis of some new 1-(6-

fluorobenzothiazol-2-yl)- 3-(4-fluoro- phenyl)-5-arylpyrazolines and their

iodine(III) mediated oxidation to corresponding pyrazoles” Ind. J. Chem. B, 2007,

46(8), 1332-1336.

26. Aburatani, S. Kawatsura, M. and Uenishi, J.; “Hafnium Chloride Catalyzed

Conjugate Addition of Pyrrole, Pyrazole and Imidazole to α, β-Unsaturated

Ketones” Heterocycles 2007, 71(1), 189-196.

27. Chen, X.; She, J.; Shang, Z.; Wu, J.; Wu, H. and Zhang P.; “Synthesis of

pyrazoles, diazepines, enaminones, and enamino Esters Using 12-

Tungstophosphoric Acid as a Reusable Catalyst in Water” Synthesis 2008, (21),

3478-3486.

28. Dekhane, D. V. Pawar, S. S.; Gupta, S.; Shingare, M. S.; Patil, C. R.; Thore, S.

N.; “Synthesis and anti-inflammatory activity of some new 4,5-dihydro-1,5-diaryl-

1H-pyrazole-3-substituted-heteroazole derivatives” Bioorg. Med. Chem. Lett.

2011, 21(21), 6527–6532.

29. Shinde, S.; Jadhav, W.; Kondre, J.; Gampawar, S. and Karade, N.; “Sulfamic acid

catalysed one-pot three-component condensation for the synthesis of 1,4-

dihydropyrano[2,3-c]pyrazoles” J. Chem. Res. 2008, 5, 278-279.

30. Li, S.; Cao, S.; Liu, N.; Wu, J.; Zhu, L. and Qian, X.; “Ytterbium(III)

Perfluorooctanoate Catalyzed One-Pot, Three-Component Synthesis of Fully

Substituted Pyrazoles under Solvent-Free Conditions” Syn. Lett. 2008, 9, 1341-

1344. ”

31. Lee, Y. and Chung, Y.; “Silver (I)-Catalyzed Facile Synthesis of Pyrazoles from

Propargyl N-Sulfonylhydrazones” J. Org. Chem. 2008, 73(12), 4698-4701.

32. Shi, C.; Shi, D.; Kim, S.; Huang, Z.; Ji, S. and Ji, M.; “A novel and efficient one-

pot synthesis of furo [3′,4′:5,6] pyrido[2,3-c] pyrazole derivatives using

organocatalysts” Tetrahedron 2008, 64(10), 2425-2432.

Page 46: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 48

33. Comber, R.; Gray, R. and Secrist, J.; “Acyclic analogues of pyrazofurin: syntheses

and antiviral evaluation” Carbohydr. Res. 1991, 216, 441-452.

34. Boehm, H.; J.; Boehringer, M.; Bur, D.; Gmuender, H.; Huber, W.; Klaus, W.;

Kostrewa, D.; Kuehne, H.; Luebbers, T.; Nathalie, M. and Mueller, F.; “Novel

Inhibitors of DNA Gyrase:  3D Structure Based Biased Needle Screening, Hit

Validation by Biophysical Methods, and 3D Guided Optimization. A Promising

Alternative to Random Screening” J. Med. Chem. 2000, 43, 2664-2674.

35. Lubbers, T.; Angehrn, P.; Gmunder, H.; Herzig, S. and Kulhanek, J.; “Design,

synthesis, and structure–activity relationship studies of ATP analogues as DNA

gyrase inhibitors” Bioorg. Med. Chem. Lett. 2000, 10, 821-826.

36. Ajali, U.; Odigwe, A. and Ezema, B.; Inter. J. Chem. 2010, 20(2), 77-81.

37. Shoman, M.; Mohamed, A.; Aly, O.; Farag, H. and Morsy, M.; “Synthesis and

investigation of anti-inflammatory activity and gastric ulcerogenicity of novel

nitric oxide-donating pyrazoline derivatives” Eur. J. Med. Chem. 2009, 44(7),

3068-3076.

38. Congiu, C.; Onnis, V.; Vesci, L.; Castorina, M. and Pisano, C.; “Synthesis and in

vitro antitumor activity of new 4, 5-dihydropyrazole derivatives” Bioorg. Med.

Chem. 2010, 18(17), 6238-6248.

39. Hua Liu, X.; Feng, B.; Xin, R.; An Song, L.; Hong Jing, L.; Yang, J.; Zhu, Y. and

Hai Qi, X.; “Design and synthesis of N-phenylacetyl (sulfonyl) 4,5-

dihydropyrazole derivatives as potential antitumor agents” Bioorg. Med. Chem.

Lett. 2011, 21(10), 2916-2920.

40. Karabasanagouda, T.; Adhikari, A.; Girisha, M.; “Synthesis of some new

pyrazolines and isoxazoles carrying 4-methylthiophenyl moiety as potential

analgesic and anti-inflammatory agents” Ind. J. Chem. B 2009, 48(3), 430-437.

41. Shaaban, M. R.; Mayhoub, A. S.; Farag, A. M.; “Recent advances in the

therapeutic applications of pyrazolines” Exp. Opi. Thera. Pat. 2012, 22(3), 253-

291.

42. Liu, X.; Wang, S. and Song, B.; “Synthesis and bactericidal activities of novel

pyrazole-1-carbothioamide derivatives” Front. Chem. China 2007, 2(3), 311-314.

43. Liu, X.; Zhu, J.; Pan, C.; Song, B. and Li, B.; “Synthesis and fungicidal activity

of novel 3,5-diarylpyrazole derivatives” Front. Chem. China 2008, 3(4), 418-421.

Page 47: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-III Synthesis of dihydropyrazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 49

44. Havrylyuk, D.; Natalya, K.; Borys, Z.; Olexandr, V. and Roman, L.; “Synthesis

and Anticancer Activity of Isatin-Based Pyrazolines and Thiazolidines

Conjugates” Arch. der Pharm. 2011, 344(8), 514-522.

45. Calis, U.; Gumusel, B.; Bilgin, A. A.; Ozdemir, Z. and Ruhoglu, O.; “Synthesis of

and Pharmacological Studies on The Antidepressant and Anticonvulsant

Activities of Some 1,3,5- trisubstituted pyrazolines” Arzn. Fors. Drug Res. 2005,

55, 431-436.

46. Ait-Aissa, S.; Laskowski, S.; Laville, N.; Porcher, J. and Brion, F.; “Anti-

androgenic activities of environmental pesticides in the MDA-kb2 reporter cell

line” Toxicology in Vitro 2010, 24(7), 1979-1985.

47. Sule, G.; Murat, D.; Oezdemir, A. and Turan-Zitouni, G.; “Evaluation of

antidepressant-like effect of 2-pyrazoline derivatives” Med. Chem. Res. 2010,

19(1), 94-101.

48. Bhat, A.; Athar, F. and Azam, A.; “Bis-pyrazolines: Synthesis, characterization

and antiamoebic activity as inhibitors of growth of Entamoeba histolytica” Eur. J.

Med. Chem. 2009, 44(1), 426-431.

49. Liu. G.; Huani, D.; Xiaolin, K.; Chengxia, T.; Wei, Y. and Jiahua, X.; “Synthesis

and insecticidal activity of dihydro-pyrazole-carboxamides” Nongyaoxue Xuebao

2011, 13(3), 327-330.

50. Demirayak, S.; Kayagil, I.; Yurttas, L. and Aslan, R.; “Synthesis of some

imidazolyl-thioacetyl-pyrazolinone derivatives and their antinociceptive and

anticancer activities” J. Enzy. Inh. Med. Chem.2010, 25(1), 74-79.

51. Shaharyar, M.; Abdullah, M.; Bakht, M. and Majeed, J.; “Pyrazoline bearing

benzimidazoles: Search for anticancer agent” Eur. J. Med. Chem., 2010, 45(1),

114-119.

52. Kini, S. G.; Bhat, A. R.; Bryant, B.; Williamson, J. S. and Dayan, F. E.;

“Synthesis, antitubercular activity and docking study of novel cyclic azole

substituted diphenyl ether derivatives” Eur. J. Med. Chem. 2008, 41, 1-9.

Page 48: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV

Synthesis of oxadiazole

Derivatives

Page 49: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 50

INTRODUCTION

Oxadiazoles belong to an important group of heterocyclic compounds having –

N=C-O- linkage. 1,3,4-oxadiazole(1) is a thermally stable aromatic heterocycle and exist

in two partially reduced forms; 2,3-dihydro-1,3,4-oxadiazole(1,3,4-oxadiazoline)(2) and

2,5-dihydro-1,3,4-oxadiazole(1,3,4-oxadiazoline)(3) depending on the position of the

double bond. The completely reduced form of the 1,3,4-oxadiazole is known as 2,3,4,5-

tetrahydro-1,3,4-oxadiazole (1,3,4-oxadiazolidine)(4)1

1,3,4-Oxadiazole is a heterocyclic molecule with oxygen atom at 1 and two nitrogen

atoms at 3 and 4 positions. They have been known for about 80 years, it is only in the last

decade that investigations in this field have been intensified because of large number of

applications of 1,3,4-oxadiazoles in the most diverse areas viz. drug synthesis2,3, heat

resistant materials 4,5, photo luminescence6,7, light and display devices8 etc.

There were several routes for the synthesis of 1,3,4-oxadiazoles reported in the

literature, among which the most important aspects of synthesis were discussed as under.

One of the popular methods involves cyclization of diacylhydrazines prepared from the

reaction of acyl chlorides and hydrazine. Several cyclodehydrating agents such as BF3–

OEt29 ,1,1,1,3,3,3-hexamethydisilazane10, triflic anhydride11, phosphorus pentoxide12,

polyphosphoric acid13, thionyl chloride14, phosphorus oxychloride15 and sulfuric acid16

have been used.

One-pot syntheses of 1,3,4-oxadiazoles from hydrazine with carboxylic acids have

also been reported17. Green chemistry and one-pot, solvent-free using microwave

mediated synthesis of 1,3,4-oxadiazoles were reported by Polshettiwar18. Ali et al. have

synthesized some derivatives of 1,3,4-oxadiazoles by four-component condensation19

reaction. Microwave assisted 1,3,4 oxadiazole have synthesized by Jha et al.20 whereas

Kumar et al.21 have given electrochemical synthesis of oxadiazoles.

Another synthetic route for the preparation of these compounds is via acylation of

tetrazoles22. 1,3,4-Oxadiazoles have also been prepared by oxidation of acyl hydrazones

with different oxidizing agents23-26, Reaction of acyl hydrazides with orthoesters in the

Page 50: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 51

presence of an acidic catalyst27 and solid phase synthesis of oxadiazoles28 are other

approaches for the synthesis of this group of compounds.

Oxidation of acylhydrazones derived from aldehydes has been developed into a

useful route to disubstituted oxadiazoles29. A mild, general, convenient, and efficient one-

pot synthesis of 2-phenyl-5-substituted-1,3,4-oxadiazoles were reported by Stabile30. The

use of potassium permanganate with acetone as solvent was claimed to give better yields

than the use of other oxidizing agents (e.g.halogens) 31. An improved synthesis of bis-

oxadiazolyl benzenes involved oxidation of bis hydrazones with lead tetraacetate32. The

synthesis of amino-oxadiazoles by oxidative cyclization of semicarbazone was also

reported33. Srimanta et al. have synthesized 2,5-substituted 1,3,4-oxadiazoles using cu(II)

catalyst34. Iodine (III) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4-

oxadiazole were reported by Om Prakash35 . The molecular docking of 2-chloropyridine

derivatives possessing 1,3,4-oxadiazole have studied by Quing-Zhong et. Al36 .

1,3,4-Oxadiazoles are a class of heterocycles, which have attracted significant

interest in medicinal chemistry37. 1,3,4-Oxadiazoles are known as a versatile heterocyclic

compounds which has been subjected to a large variety of structural modifications in

order to synthesize derivatives with different biological properties. Their various

condensed derivatives are reported to possess antibacterial38, antiinflammatory39,

analgesic40, anticancer41 , antihypertensive42 , anticonvulsant43,44, antifungal45,

cardiovascular46, hypoglycemic47, Mao inhibitor48,49, antituberculosis50, anti-tumor51,

anthelmintic,52 antioxidant53. QSAR study of substituted 1,3,4-oxadiazole were reported

by Ravichandran54. Singh et al.55 have prepared new azole containing 1,3,4-oxadiazoles

and studied their antimicrobial activities. Zheng et al.56 have synthesized 2,5-

disubstituted-1,3,4-oxadiazole derivatives and screened for their insecticidal activity.

Thus, due to the importance of biological active 1,3,4-Oxadiazoles in the present

chapter, the synthesis and characterization of some 1,3,4-Oxadiazoles derivatives, are

discussed.

Page 51: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 52

EXPERIMENTAL

[A] Synthesis of 6-chloro-4-phenylchroman-2-one:

As per Chapter 2 section III [B]

[B] Synthesis of methyl 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanoate:

From Chapter 2 section III [C]

[C] Synthesis of 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanehydrazide:

From Chapter 2 section III [D]

[D] Synthesis of 2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(o tolyl)-

1,3,4-oxadiazole:

A mixture of 3-(2-(benzyloxy)-5-chlorophenyl)-3-phenylpropanehydrazide (0.01

mole) and different aryl acids (0.01 mole) in phosphorous oxychloride (10 ml) was

refluxed for 10-12 hours at 100 oC with continue stirring. After completion of the

reaction, reaction was poured in to ice and neutralized with saturated sodium bicarbonate

solution. The product was extracted in ethyl acetate. The organic extract was washed with

water (2 x 10 ml) and the resulting crude product was purified by column

chromatography.

The melting point of all the synthesized compounds was determined in open

capillary tubes and was uncorrected.

The characterization of all these compounds was done by IR, NMR and mass

spectral data. The IR spectra were recorded on Shimadzu FT-IR-8400 instrument using

KBr pellet method. The Mass spectra were recorded on Shimadzu GC-MS-QP-2010

Page 52: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 53

model using direct inlet probe technique. 1H NMR and 13C NMR was determined in

DMSO solution on a Bruker Ac 400 MHz spectrometer.

The physical constants of all the synthesized compounds are given in Table 2.4.1.

Figures 2.4.1 to 2.4.4 show the IR, mass and NMR spectrum of a compound.

Table 2.4.1: Physical constant of oxadiazole derivatives

Code R M.F M.W Yield (%)

Rf value

PAB-401 4-OCH3C6H4 C30H25ClN2O3 496.98 71 0.65

PAB-402 4-Br C6H4 C29H22BrClN2O2 545.85 62 0.70

PAB-403 4-Cl C6H4 C29H22Cl2N2O2 501.40 59 0.62

PAB-404 4-CH3 C6H4 C30H25ClN2O2 480.98 70 0.68

PAB-405 C6H5 C29H23ClN2O2 466.96 64 0.71PAB-406 2,4 di Cl C6H3 C29H21Cl3N2O2 535.85 61 0.60

PAB-407 C7H7 C30H25ClN2O2 480.98 56 0.58

PAB-408 2-OCOCH3C6H4 C31H25ClN2O4 524.99 55 0.72

PAB-409 2-Cl, 5-NO2C6H4 C29H21Cl2N3O4 546.40 58 0.64

PAB-410 2-Cl C6H4 C29H22Cl2N2O2 501.40 62 0.62PAB-411 3-Cl C6H4 C29H22Cl2N2O2 501.40 65 0.54

PAB-412 3-NO2 C6H4 C29H22ClN3O4 511.96 55 0.57

PAB-413 3,4 di OCH3 C31H27ClN2O4 527.01 73 0.71

PAB-414 2-CH3 C6H4 C30H25ClN2O2 480.98 75 0.62

PAB-415 4-OH C6H4 C29H23ClN2O3 482.96 68 0.55PAB-416 3-CH3 C6H4 C30H25ClN2O2 480.98 70 0.58

PAB-417 2-OH C6H4 C29H23ClN2O3 482.96 65 0.60

PAB-418 2-Cl C7H6 C30H24Cl2N2O2 515.43 59 0.56

PAB-419 2-Cl C7H6O C30H24Cl2N2O3 531.43 54 0.59

PAB-420 4-Cl C7H6O C30H24Cl2N2O3 531.43 66 0.67

SPECTRAL DATA

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(4-methoxyphenyl)-1,3,4-

oxadiazole (PAB-401) mp 182-184°C; IR (KBr): 3055(Ar, C-H str), 2959(C-H str),

2838(C-H str), 1611(Ar, C=C str), 1553(Ar, C=C str), 1528(Ar, C=C str), 1452(C-H ben),

1237(C-C str), 1080(C-O-C str), 1034(C-O-C str), 748(C-Cl str) cm-1; MS: m/z = 496[M

]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(4-bromophenyl)-1,3,4-

oxadiazole (PAB-402) mp 160-162°C; IR (KBr): 3045(Ar, C-H str), 2955(C-H str),

Page 53: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 54

2818(C-H str), 1616(Ar, C=C str), 1553(Ar, C=C str), 1528(Ar, C=C str), 1462(C-H ben),

1230(C-Cstr), 1078(C-O-C str), 1044(C-O-C str), 768(C-Cl str), 728(C-Br str) cm-1; MS:

m/z = 545 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(4-chlorophenyl)-1,3,4

oxadiazole (PAB-403). mp 158-160°C; IR (KBr): 3040(Ar, C-H str), 2953(C-H str),

2813(C-H str), 1614(Ar, C=C str), 1548(Ar, C=C str), 1534(Ar, C=C str), 1461(C-H ben),

1222(C-Cstr), 1071(C-O-C str), 1033(C-O-C str), 745(C-Cl str) cm-1; MS: m/z =501 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(p-tolyl)-1,3,4-oxadiazole

(PAB-404). mp 172-174°C; IR (KBr): 3035(Ar, C-H str), 2949(C-H str), 2858(C-H str),

1543(Ar, C=C str), 1521(Ar, C=C str), 1462(C-H ben), 1247(C-C str), 1063(C-O-C str),

1032(C-O-C str), 745(C-Cl str) cm-1; MS: m/z = 480 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-phenyl-1,3,4-oxadiazole

(PAB-405). mp 138-140°C; IR (KBr): 3043(Ar, C-H str), 2941(C-H str), 2848(C-H str),

1553(Ar, C=C str), 1527(Ar, C=C str), 1474(C-H ben), 1246(C-C str), 1073(C-O-C str),

1029(C-O-C str), 748(C-Cl str), cm-1; MS: m/z = 466 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(2,4-dichlorophenyl)-1,3,4-

oxadiazole (PAB-406). mp 147-149°C; IR (KBr): 3065(Ar, C-H str), 2951(C-H str),

2835(C-H str), 1631(Ar, C=C str), 1551(Ar, C=C str), 1523(Ar, C=C str), 1452(C-H ben),

1237(C-C str), 1070(C-O-C str), 1064(C-O-C str), 749(C-Cl str) cm-1; MS: m/z =535[M ]+

2-benzyl-5-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-1,3,4-oxadiazole (PAB-

407). mp 122-124°C; IR (KBr): 3032(Ar, C-H str), 2937(C-H str), 2839(C-H str),

1546(Ar, C=C str), 1522(Ar, C=C str), 1476(C-H ben), 1073(C-O-C str), 1031(C-O-C

str), 735(C-Cl str) cm-1; MS: m/z = 480 [M ]+

2-(5-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)phenyl

acetate (PAB-408). mp 176-178°C; IR (KBr): 3042(Ar, C-H str), 2932(C-H str), 2831(C-

H str), 1687(C=O str), 1556(Ar, C=C str), 1532(Ar, C=C str), 1465(C-H ben), 1063(C-O-

C str), 1032(C-O-C str), 737(C-Cl str) cm-1; MS: m/z = 524 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(2-chloro-5-nitrophenyl)-1,3,4-

oxadiazole (PAB-409). mp 184-186°C; IR (KBr): 3054(Ar, C-H str), 2934(C-H str),

Page 54: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 55

2857(C-H str), 1542(N=O str), 1521 (Ar, C=C str), 1469(C-H ben), 1053(C-O-C str),

747(C-Cl str) cm-1; MS: m/z = 546 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(2-chlorophenyl)-1,3,4

oxadiazole (PAB-410). mp 145-147°C; IR (KBr): 3039(Ar, C-H str), 2945(C-H str),

2863(C-H str), 1535(Ar, C=C str), 1521(Ar, C=C str), 1467(C-H ben), 1062(C-O-C str),

1042(C-O-C str), 744(C-Cl str) cm-1; MS: m/z =501 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(3-chlorophenyl)-1,3,4-

oxadiazole (PAB-411). mp 152-154°C; IR (KBr): 3037(Ar, C-H str), 2949(C-H str),

2860(C-H str), 1532(Ar, C=C str), 1530(Ar, C=C str), 1464(C-H ben), 1060(C-O-C str),

1038(C-O-C str), 738(C-Cl str) cm-1; MS: m/z =501 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(3-nitrophenyl)-1,3,4-

oxadiazole (PAB-412) mp 133-135°C; IR (KBr): 3043(Ar, C-H str), 2954(C-H str),

2856(C-H str), 1540(N=O str), 1533(Ar, C=C str), 1514(Ar, C=C str), 1469(C-H ben),

1053(C-O-C str), 1042(C-O-C str), 743(C-Cl str) cm-1; MS: m/z = 511 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(3,4-dimethoxyphenyl)-1,3,4-

oxadiazole (PAB-413). mp 130-132°C; IR (KBr): 3034(Ar, C-H str), 2966(C-H str),

2854(C-H str), 1565(Ar, C=C str), 1531(Ar, C=C str), 1453(C-H ben), 1079(C-O-C str),

1054(C-O-C str), 737(C-Cl str) cm-1; MS: m/z = 527 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(o-tolyl)-1,3,4-oxadiazole

(PAB-414). mp 166-168°C; IR (KBr): 3001(Ar, C-H str), 2933(C-H str), 2850(C-H str),

1632(Ar, C=C str), 1585(Ar, C=C str), 1533(Ar, C=C str), 1457(C-H ben), 1093(C-O-C

str), 1010(C-O-C str), 748(C-Cl str) cm-1; 1H NMR (400 MHz, DMSO): δ ppm 2.51 (s,

3H, -CH3), 2.89-3.03 (dd, 2H, -CH2), 4.41 (t, 1H,-CH), 4.75 (s, 2H,-CH2), 8.15-8.17 (d,

2H, ArH) 6.96-7.00 (t, 3H, ArH), 7.14-6.7.25 (m, 4H, ArH), 7.44-7.46 (d, 2H, ArH),

7.57-7.59 (d, 3H, ArH), 8.04 (m, 3H, ArH), 8.15-8.17 (d, 2H, ArH). 13C NMR (100

MHz, DMSO): δ ppm 21.92, 37.86, 38.01, 69.12, 117.65, 118.98, 123.22, 129.91, 133.22,

140.17, 141.14, 148.84, 163.91, 164.21. MS: m/z =480 [M ]+

4-(5-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)phenol

(PAB-415). mp 128-130°C; IR (KBr): 3635(O-H str), 3043(Ar, C-H str), 2941(C-H str),

Page 55: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 56

2853(C-H str), 1543(Ar, C=C str), 1521(Ar, C=C str), 1475(C-H ben), 1063(C-O-C str),

1032(C-O-C str), 737(C-Cl str) cm-1; MS: m/z =482 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(m-tolyl)-1,3,4-oxadiazole

(PAB-416). mp 174-176°C; IR (KBr): 3043(Ar, C-H str), 2963(C-H str), 2843(C-H str),

1626(Ar, C=C str), 1533(Ar, C=C str), 1510(Ar, C=C str), 1459(C-H ben), 1073(C-O-C

str), 1054(C-O-C str), 750(C-Cl str) cm-1; MS: m/z =480 [M ]+

2-(5-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)phenol

(PAB-417). mp 148-150°C; IR (KBr): 3623(O-H str), 3012(Ar, C-H str), 2941(C-H str),

2843(C-H str), 1540(Ar, C=C str), 1497(Ar, C=C str), 1479(C-H ben), 1065(C-O-C str),

1035(C-O-C str), 739(C-Cl str) cm-1; MS: m/z = 482 [M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-(2-chlorobenzyl)-1,3,4-

oxadiazole (PAB-418). mp 133-135°C; IR (KBr): 3032(Ar, C-H str), 2936(C-H str),

2852(C-H str), 1536(Ar, C=C str), 1510(Ar, C=C str), 1465(C-H ben), 1053(C-O-C str),

1042(C-O-C str), 743(C-Cl str) cm-1; MS: m/z = 515 [M ]+

2-(5-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-1,3,4-oxadiazol-2-yl)-5-((2-

chlorophenoxy)methyl)phenol (PAB-419). mp 118-120°C; IR (KBr): 3636(O-H str),

3032(Ar, C-H str), 2921(C-H str), 2876(C-H str), 1556(Ar, C=C str), 1532(Ar, C=C str),

1465(C-H ben), 1067(C-O-C str), 1039(C-O-C str), 749(C-Cl str) cm-1; MS: m/z = 531

[M ]+

2-(2-(2-(benzyloxy)-5-chlorophenyl)-2-phenylethyl)-5-((4-chlorophenoxy)methyl)-

1,3,4-oxadiazole (PAB-420). mp 126-128°C; IR (KBr): 3043(Ar, C-H str), 2941(C-H

str), 2853(C-H str), 1543(Ar, C=C str), 1521(Ar, C=C str), 1475(C-H ben), 1063(C-O-C

str), 1032(C-O-C str), 737(C-Cl str) cm-1; MS: m/z = 531 [M ]+

Page 56: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 57

Figure 2.4.1: IR spectrum of compound PAB-414

Figure 2.4.2: Mass spectrum of compound PAB-414

5007501000125015001750200025003000350040001/cm

30

45

60

75

90

105

%T

30

01

.34

29

33

.83

29

08

.75

28

50

.88 16

87

.77

16

26

.05

15

85

.54

15

33

.46

14

65

.95

13

44

.43

12

92

.35

11

97

.83

11

72

.76

11

22

.61 10

93

.67

10

49

.31

10

10

.73

98

7.5

99

02

.72

82

9.4

27

48

.41 70

9.8

36

51

.96

56

9.0

25

05

.37

46

4.8

6

JP- 504

Page 57: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 58

Figure 2.4.3: 1H NMR Spectrum of compound PAB-414

Expanded 1H NMR spectrum of compound PAB-414

Page 58: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 59

Figure 2.4.4: 13C NMR spectrum of compound PAB-414

Page 59: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 60

REFERENCES

1. J. Hill, Comp. Heterocycl. Chem., 1984, 1st edition, 6427.

2. Marta, G.; Lolli, M. L.; Barbara, R.; Angela, R.; Paolo, T.; Chaurasia S.;

Marabello D.; Fruttero, R. and Gasco, A.; “1,2,5-Oxadiazole analogues of

leflunomide and related compounds” Eur. j. med. chem. 2011, 46(1), 383-392.

3. Malhotra, V.; Pathak, S, R..; Nath, R.; Mukherjee, D. and Shanker, K.;

“Substituted imidazole derivatives as novel cardiovascular agents” Bioorg. Med.

Chem. Lett. 2011, 21(3), 936-939.

4. Rungta, P.; volodymyr, T.; Hubner, C. F.; Bandera, Y. P. and foulger, S. H.;

“Thermal aging of single-layer polymer light emitting diodes composed of

acarbazole and oxadiazole containing copolymer doped with singlet or triplet

emitters” Synthetic metals 2010, 160(23-24), 2486-2493.

5. Mansoori, Y.; Sarvari, R.; Zamanloo, M. R.; Imanzadeh, G. H.; “Thermally stable

polymers based on 1,3,4- Oxadiazole rings” Chin. J. Polym. Sci. 2010, 28(1), 21-

28.

6. Han, j.; Miao, Z.; Fuli, W. and Geng, Q.; “Non-symetric liquid crystal dimmers

based on 1,3,4-oxadiazole derivatives: synthesis, photoluminescence and liquid

crystal behavior” Liq. Cryst. 2010, 37(12), 1471-1478.

7. Yang, C.; Tao, Y.; Qin, J. and faming, Z.; “Preparation of triphenyl amine and

oxadiazole containing compound as electrophosphorescent material”Shenqing

Gongkai Shoumingshu 2010, CN 1017477289 A 20100623.

8. Nomura, H.; Kawakami, S.; Oshawa, N. and Seo, S.; “Oxadizole derivatve, light-

emitting element,display device, lighting device, and electronic device” U.S. Pat.

Appl. Publ. 2010,20100244669 A1 20100930

9. Mohamed, N. A. “Novel wholly aromatic polyamide-hydrazides. Part V:

Structure-molecular-weight-thermal-stability relationships” Polym. Degrad. 1994,

44, 33-42.

10. Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Biailly, T. R.; Long, M. A.; Vesico, N.;

Aldous, A.; Pevear, D. C. and Dukto, F. J., “Oxadiazoles as Ester Bioisosteric

Replacements in Compounds Related to Disoxaril. Antirhinovirus Activity” J.

Med. Chem. 1994, 37, 2421-2436.

11. Tandon, V. K. and Chhor, R. B. “An efficient one pot synthesis of 1,3,4-

Oxadiazoles” Syn. Commu. 2001, 31, 1727-1732.

Page 60: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 61

12. Liras, S.; Allen, M. P. and Segelstein, B. E. “A Mild Method for the Preparation

of 1,3,4-Oxadiazoles: Triflic Anhydride Promoted Cyclization of

Diacylhydrazines” Syn. Commu. 2000, 30, 437-443.

13. Carlsen, H. J. and Jorgensen, K. B. “Synthesis of unsymmetrically substituted 4H-

1,2,4-triazoles” J. Heterocy. Chem. 1994, 31, 805-807.

14. Al-Talib, M.; Tashtoush, H. and Odeh, N.; “A convenient synthesis of alkyl and

aryl substituted bis-1,3,4-oxadiazoles” Syn. Commu.1990, 20, 1811-1817.

15. Theocharis, A. B. and Alexandrou, N. E.; “Synthesis and spectral data of 4,5-

bis[5-aryl-1,3,4-oxadiazol-2-yl]-1-benzyl-1,2,3-triazoles” J. Heterocy. Chem.

1990, 27, 1685-1688.

16. Short, F. W. and Long, L. M.; “Synthesis of 5-aryl-2-oxazolepropionic acids and

analogs. Antiinflammatory agents” J. Heteterocy. Chem. 1969, 6, 707-712.

17. Bentiss, F. and Lagrenee, M.; “A new synthesis of symmetrical 2,5-disubstituted

1,3,4-oxadiazoles” J. Heterocy. Chem. 1999, 36, 1029-1032.

18. Polshettiwar, V. and Varma, R. S.; “Greener and rapid access to bio-active

heterocycles: one-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-

thiadiazoles” Tetrahedron. Lett. 2008, 49(5), 879-883.

19. Ali, R. and Arman, R.; “Novel one pot , four- component condensation reaction :

an efficient approach for the synthesis of 2,5-disubstituted 1,3,4 –oxadiazole

derivatives by Ugi-4CR/aza-wittig Sequence” Org. Lett. 2010, 12(12), 2852-2855.

20. Jha, K. K.; Kumar, Y.; Shaharyar, M. and Singhal, S.; “Microwave assisted

synthesis, characterization & biological evaluation of benzimidazole substituent

1,3,4-oxadiazole” Int. J. Chemtech. Res. 2010, 2(1), 716-727.

21. Kumar, S.; Srivastava, D. P.; “Efficient electrochemical synthesis, antimicrobial

and antiinflammatory activity of20amino-5-substituted 1,3,4-oxadiazole

derivatives” Ind. J. Pharma. Sci. 2010, 72(4),458-464.

22. Osipova, T. F.; Koldobskii, G. I. and Ostrovskii, V. A.; Zh.Org. Khim. 1984, 20,

1119.

23. Balachandran, K. S. and George, M. V.; “Oxidation with metal oxides—VI :

Oxidation of benzoylhydrazones of aldehydes, ketones and 1,2-diketones with

nickel peroxide” Tetrahedron 1973, 29(14), 2119–2128.

Page 61: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 62

24. Chiba, T. and Okimoto, M.; “Electrooxidative cyclization of N-acylhydrazones of

aldehydes and ketones to DELTA.3-1,3,4-oxadiazolines and 1,3,4-oxadiazoles” J.

Org. Chem. 1992, 57, 1375-1379.

25. Yang, R. and Dai, L.; “Hypervalent iodine oxidation of N-acylhydrazones and N-

phenylsemicarbazone: an efficient method for the synthesis of derivatives of

1,3,4-oxadiazoles and .DELTA.3-1,3,4-oxadiazolines” J. Org. Chem. 1993, 58,

3381-3383.

26. Rostamizadeh, S. and Housanini, G.; “Microwave assisted syntheses of 2,5-

disubstituted 1,3,4-oxadiazoles” Tetrahedron Lett. 2004, 45, 8753-8756.

27. Shafiee, A.; Naimi, E.; Mansobi, P.; Foroumadi, A. and Shekari, M. “Syntheses of

substituted-oxazolo-1,3,4-thiadiazoles, 1,3,4-oxadiazoles, and 1,2,4-triazoles” J.

Heterocy. Chem. 1995, 32, 1235-1239.

28. Coppo, F. T.; Evans, K. A.; Graybill, T. L. and Burton, G.; “Efficient one-pot

preparation of 5-substituted-2-amino-1,3,4-oxadiazoles using resin-bound

reagents” Tetrahedron Lett. 2004, 45, 3257-3260.

29. Chiba, T. and Okimoto, O. M.; “Electrooxidative cyclization of N-acylhydrazones

of aldehydes and ketones to .DELTA.3-1,3,4-oxadiazolines and 1,3,4-

oxadiazoles”J. Org. Chem. 1992, 57(5), 1375-1379.

30. Paolo, S.; Alessandro, L.; Arianna, R.; Damiano, C.; Giuseppe, G. and Ornella,

C.; “Mild and convenient one-pot synthesis of 1,3,4-oxadiazoles” Tetrahedron

Lett. 2010, 51(37), 4801-4805.

31. P. Reddy., Ind. J. Chem. Sect-B, 1987, 26, 890.

32. Rekkas S. A.; Rodies, N. A. and Alexandrou, N. E.; “An Improved Synthesis of

1,3- and 1,4-Bis[5-aryl-1,3,4-oxadiazol-2-,y1]benzenes via Oxidation of Bis-

aroylhydrazones of Iso- and with Tetraphthaladehyde with Lead(IV) Acetate”

Synthesis 1986, 5, 411-413.

33. Hiremath, S.; Goudar, N. and Purohit, M.; Ind. J. Chem. Sect-B, 1982, 21,321.

34. Srimanta, G.; Tuhin, G.; Saroj Kumar, R.; Arghya, B. and Bhisma, P.; “Cu(II)

Catalyzed Imine C-H Functionalization Leading to Synthesis of 2,5-Substituted

1,3,4-Oxadiazoles” Org. Lett. 2011, 13(22), 5976-5979.

35. Prakash, O.; Kumar, M.; Kumar, R.; Sharma, C.; Aneja, K.; “Hypervalent

iodine(III) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4-

Page 62: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 63

oxadiazoles as antibacterial and antifungal agents” Eur. J. Med. Chem. 2010,

45(9), 4252-4257.

36. Qing-Zhong, Z.; Xiao-Min, Z.; Ying, X.; Kui, C.; Qing-Cai, J. and Hai-Liang, Z.;

“Synthesis, biological evaluation, and molecular docking studies of 2-

chloropyridine derivatives possessing 1,3,4-oxadiazole moiety as potential

antitumor agent” Bioorg. Med. Chem. 2010, 18(22), 7836-7841.

37. Tully, W. R.; Cardner, C. R.; Gillespie, R. J. and Westwood, R.; “2-

(Oxadiazolyl)- and 2-(thiazolyl)imidazo[1,2-a]pyrimidines as agonists and inverse

agonists at benzodiazepine receptors” J. Med. Chem. 1991, 34(7), 2060-2067.

38. Datoussaida, Y.; Othmana, A. A. and Kirsch, G.; “Synthesis and antibacterial

activity of some 5,5'-(1,4-phenylene)-bis-1,3,4-oxadiazole and bis-1,2,4-triazole

derivatives as precursors of new S-nucleosides” S. A. J. Chem. 2012, 65, 30-35.

39. Gilani, S. J.; Khan, S. A. and Siddiqui, N.; “Synthesis and pharmacological

evaluation of condensed heterocyclic 6-substituted 1,2,4-triazolo-[3,4-b]-1,3,4-

thiadiazole and 1,3,4-oxadiazole derivatives of isoniazid” Bioorg. Med. Chem.

Lett. 2010, 20(16), 4762-4765.

40. Bhandari, S.; Parikh, J.; Bothara, K.; Chitre, T.; Lokwani, D.; Devale, T.;

Modhave, N.; Pawar, V. and Panda. S.; J. Enz. Med. Chem. 2010, 25(4), 520-530.

41. Xiao-Min, Z.; Min, Q.; Juan, S.; Yan-Bin, Z.; Yu-Shun, Y.; Xiao-Liang, W.; Jian-

Feng, T. and Hai-Liang, Z.; “Synthesis, biological evaluation, and molecular

docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan

moiety as potential anticancer agents” Bioorg. Med. Chem., 2011, 19(21), 6518-

6524.

42. Bankar, G.; Nampurath, G.; Nayak, P. and Bhattacharya. S.; “A possible

correlation between the correction of endothelial dysfunction and normalization of

high blood pressure levels by 1,3,4-oxadiazole derivative, an L-type Ca2+ channel

blocker in deoxycorticosterone acetate and NG-nitro-l-arginine hypertensive rats”

Chem. Bio. Int. 2010, 183(2), 327-331.

43. Zarghi, A.; Tabatabai, S. A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V. and

Shafiee, A.; “Synthesis and anticonvulsant activity of new 2-substituted-5-(2-

benzyloxyphenyl)-1,3,4-oxadiazoles” Bioorg. Med. Chem. Lett. 2005, 15(7),

1863–1865.

Page 63: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 64

44. Jain S.; Kashaw, K.; Agrawal, R. and Soni, A.; “Synthesis, anticonvulsant and

neurotoxic activity of some new 2,5-disubstituted-1,3,4-oxadiazoles” Med. Chem.

Res. 2011, 20, 1696–1703.

45. Rauf, A.; Sharma, S. and Gangal, S.; “One-pot synthesis, antibacterial and

antifungal activities of novel 2,5-disubstituted-1,3,4-oxadiazoles” Chin. Chem.

Lett. 2008, 19(1), 5–8.

46. Bankar, G. R. Nandakumar, K.; Nayak, P. G.; Thakur, A.; Chamallamudi, M. R.

and Nampurath, G. K.; “Vasorelaxant effect in rat aortic rings through calcium

channel blockage: A preliminary in vitro assessment of a 1,3,4-oxadiazole

derivative” Chem. Bio. Int. 2009, 181(3), 377–382.

47. Girges, M. M.; “Synthesis and pharmacological evaluation of novel series of

sulfonate ester-containing 1,3,4-oxadiazole derivatives with anticipated

hypoglycemic activity” Arzneimittel-Forschung 1994, 44, 490-495.

48. Pérez, S.; Lasheras, B.; Oset, C. and Monge, A.; “Synthesis of new indoyl-1,3,4-

oxadiazole and oxadiazine derivatives. Potential monoamine oxidase inhibitor

activity” J. Heterocy. Chem. 1997, 34(5), 1527-1533.

49. Maccioni, E.; Alcaro,S.; Cirilli, R.; Vigo, S.; Cardia, M.; Sanna, L.; Meleddu, R.;

Yanez, M.; Costa, G.; Casu, L.; Matyus, P. and Distinto, S.; “3-Acetyl-2,5-diaryl-

2,3-dihydro-1,3,4-oxadiazoles: A New Scaffold for the Selective Inhibition of

Monoamine Oxidase B” J. Med. Chem. 2011, 54, 6394–6398.

50. Ahsan, M.; Samy, J.; Khalilullah, H.; Nomani, S.; Saraswat, P.; Gaur, R. and

Singh, A.; “Molecular properties prediction and synthesis of novel 1,3,4-

oxadiazoleanalogues as potent antimicrobial and antitubercular agents” Bioorg.

Med. Chem. Lett. 2011, 21, 7246-7250.

51. Abu-Zaied, M.; El-Telbani, E.; Elgemeie, G. and Nawwar, G.; “Synthesis and in

vitro antitumor activity of new oxadiazole thioglycosides” Eur. J. Med. Chem.

2010, 46(1), 229-235.

52. Bharathi, D.; Hemalatha, S.; Devadass, G.; Kumar, P. R.; Shanmugasundaram, P.

and Vijey Aanandhi, M.; “Synthesis, characterisation and invitro anti

inflammatory and anthelmintic activities of 1,3,4-oxadiazole derivatives” Int. J.

Chem. Res. 2010, 2(4), 1867-1870.

53. Musad, E. braheem A.; Mohamed, R.; Saeed, B.; Vishwanath, B. S. and

Lokanatha Rai, K. M.; “Synthesis and evaluation of antioxidant and antibacterial

Page 64: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-IV Synthesis of oxadiazole derivatives

Department of Chemistry, Saurashtra University, Rajkot-360005 65

activities of new substituted bis(1,3,4-oxadiazoles), 3,5-bis(substituted) pyrazoles

and isoxazoles” Bioorg. Med. Chem. Lett. 2011, 21(12), 3536-3540.

54. Veerasamy, R.; Sivadasan, S.; Karupiah, S. and Dhanaraj S.; “QSAR study of

substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors” Eur. J.

Med. Chem. 2010, 45(7), 2791-2797.

55. Rajput, A. P.; Gore, R. P.; “Synthesis and antimicrobial evaluation of some novel

azole 1,3,4-oxadiazoles” J. Pharm. Res. 2012, 5(2) ,990-992.

56. Zheng, X.; Li, Z.; Wang, Y.; Chen,W.; Huang, Q.; Liu, C. and Song, G.;

“Syntheses and insecticidal activities of novel 2,5-disubstituted 1,3,4-oxadiazoles”

J. Fluor. Chem. 2003, 123(2), 163–169.

Page 65: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V

Synthesis of thiazolidinones

Page 66: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 66

INTRODUCTION

4-Thiazolidinones are the derivatives of thiazolidine, which belong to an

important group of heterocyclic compounds containing sulfur and nitrogen in a five

member ring. Some of the thiazolidinones are found to possess interesting biological

activities, such as anticancer2, anti-HIV3, antimalarial4, tuberculostatic5, antihistaminic6,

anticonvulsunt7-8, antibacterial9, antiarrythmic10, antiproliferative11-12, antiinflamatory13,

cox I inhibition14, anti tumor15, analgesic16 and antidiabatic17-18 etc. In view of the

biological/pharmacological significance of 4-thiazolidinones, considerable synthetic

efforts have been made to construct this class of heterocycles19.

Several synthetic protocols for 4-thiazolidinones have been reported in the

literature20-26. Recently, one-pot multicomponent reactions have emerged as a powerful

tool in synthetic organic chemistry because of their significant advantages27-30 Some

copper complexes of 4-thiazolidinone have been synthesized by Vries et al.31.Various

workers have applied the Green chemistry approach to the synthesis of 4-thiazolidinone

derivatives by using microwave assisted and multi component reaction method32-33.

Lohary et al.34 have synthesized some 4-thiazolidinone derivatives and studied their

hypolipidemic activity. Bioactive venlafaxine analogs such as 2,3-disubstituted-1, 3-

thiazolidinones have also been synthesized and their anti microbial activity have been

reprted35. One-pot three component cyclocondensation of carbonyl compounds, amines,

and mercaptoacetic acid or its derivatives has been widely used as a synthetic route for

the 4-thiazolidinones. The above mentioned cyclo condensation can be either run in one-

pot or in two steps with prolonged heating in toluene or benzene36. Pratap et al.37 have

reported one pot three component synthesis of thiazolidinones. There are reports for

accelerating the above cyclo condensation using catalysts like N,N’-

dicyclohexylcarbodiimide38, O-(benzotriazol-yl)-N,N,N’,N’-tetramethyluroniumhexa

fluoro phosphate39, iodine40, ferrite41, ZnCl242, [bmim][PF6]43 and activated fly ash44. The

use of microwave heating45,46, solid phase47, and polymer supported 48 systems for the

cyclo condensation leading to 2,3-disubstitiuted 4-thiazolidinones have also been

reported.

Many researchers have been worked on QSAR study of thiazolidinones49-50.

Singh51 have reported the fungicidal activity of 5-methyl-3-aryl-2-arylimino-4-

Page 67: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 67

thiazolidinones and their acetoxy mercuric derivatives. Graciet et al.52 have studied the

antiviral activity of some 4-thiazolidinone derivatives. Kumar et al53. have studied

antiparkinsonian activity of some new adamantly thiazolidinonyl indole derivatives. The

anti cancer54 and antitubercular55 activity of some other derivatives have also been

studied. The anti bacterial activity of various thiazolidinone derivatives has also been

reported56-60.

In present chapter, some new thiazolidinones derivatives have been synthesized

and characterization of these synthesized compounds is done by IR, NMR and mass

spectral data.

Page 68: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 68

EXPERIMENTAL SECTION

Synthesis of azomethines:

A mixture of 4-((1H-1,2,4-triazol-1yl)methyl) aniline (0.01 mol) and different

substituted aromatic aldehydes (0.01 mol) was dissolved in 20 ml of methanol. In this

solution, catalytic amount of glacial acetic acid was added and the reaction mixture was

heated with stirring for 10-12 hrs. After the completion of reaction, the reaction mass was

filtered, washed with chilled methanol and then dried to give substituted azomethines.

The other compounds were prepared similarly by treating with corresponding aldehydes.

Synthesis of 3-(4-((1H-1,2,4-triazole-1-yl)methyl)phenyl)-2-(4-nitrophenyl) thia

zolidin-4-one:

A mixture of 4-((1H-1,2,4-triazole-1-yl)methyl)-N-(4-nitrobenzylidene)aniline

(0.01 mol) and 2-merccapto acetic acid (0.03 mol) in toluene (20 ml) was refluxed for

10-12 hours in a dean-stark assembly with continuous stirring. After completion of the

reaction, the content was cooled to room temperature and then neutralized with sodium

bicarbonate solution. The organic extract was washed with water (2 x 10 ml), dried using

sodium sulphate and distilled completely under vacuum and give yellow colored product.

The formation of the compounds was checked by thin-layer chromatography and

accomplished on 0.2-mm pre coated plates of silica gel G60 F254 (Merck). Visualization

was made with UV light (254 and 365nm) or with an iodine vapor.

The melting point of all the synthesized compounds was determined in open

capillary tubes and was uncorrected. The characterization of all these compounds was

done by IR, NMR and mass spectral data. The IR spectra were recorded on Shimadzu FT-

IR-8400 instrument using KBr pellet method. The Mass spectra were recorded on

Shimadzu GC-MS-QP-2010 model using direct inlet probe technique. 1H NMR and 13C

NMR was determined in DMSO solution on a Bruker Ac 400 MHz spectrometer.

Page 69: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 69

The physical constants of all the synthesized compounds are given in Table 2.5.1

Figures 2.5.1 to 2.5.4 show the IR, mass and NMR spectrum of a compound.

Table 2.5.1: Physical constant of thiazolidinone derivatives

Code R M.F M.W Yield (%) Rf valuePAB-501 4-Cl C18H15ClN4OS 370.86 72 0.43PAB-502 2,5diOCH3 C20H20N4O3S 396.46 68 0.37PAB-503 4-NO2 C18H15N5O3S 381.41 59 0.46PAB-504 4-Br C18H15BrN4OS 415.31 63 0.52PAB-505 4-OCH3 C19H18N4O2S 366.44 70 0.48PAB-506 2-NO2 C18H15N5O3S 381.41 61 0.61PAB-507 4-OH C18H16N4O2S 352.41 57 0.59PAB-508 3-NO2 C18H15N5O3S 381.41 53 0.52PAB-509 4-F C18H15FN4OS 354.40 64 0.47PAB-510 4-CH3 C19H18N4OS 350.44 60 0.58

SPECTRAL DATA

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-chlorophenyl)thiazolidin-4-one

(PAB-501). mp 127-129°C; IR (KBr): 3109(Ar, C-H str), 2995(C-H str), 2914(C-H str),

2877(C-H str), 1685 (C=O str), 1608(Ar, C=C str), 1514(Ar, C=C str), 1502(Ar, C=C str),

1489(C-H ben), 1421(C-H ben), 1371(C-H ben), 1255(Ar, C-H ben), 744(C-Cl str) cm-1;

MS: m/z = 370 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(2,5-dimethoxyphenyl)thiazolidin-4-one

(PAB-502). mp 136-138°C; IR (KBr): 3043(Ar, C-H str), 2964(C-H str), 2911(C-H str),

2838(C-H str), 1676(C=O str), 1613(Ar, C=C str), 1552(Ar, C=C str), 1429(C-H ben),

1384(C-H ben), 1303(C-H ben), 1219(Ar, C-H ben), 1178(Ar, C-H ben), 1139(Ar, C-H

ben), 1107(Ar, C-H ben), 1026(C-O-C str), 1016(Ar, C-H ben), 956(Ar, C-H ben) cm-1;

MS: m/z = 396 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-nitrophenyl)thiazolidin-4-one (PAB-

503). mp 121-123°C; IR (KBr): 3105(Ar, C-H str), 2993(C-H str), 2916(C-H str), 2872(C-

H str), 1689 (C=O str), 1602(Ar, C=C str), 1536(N=O str), 1515(Ar, C=C str), 1487(C-H

ben), 1422(C-H ben), 1376(C-H ben), 1251(Ar, C-H ben) cm-1; MS: m/z = 381 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-bromophenyl)thiazolidin-4-one

(PAB-504). mp 114-116°C; IR (KBr): 3019(Ar, C-H str), 2945(C-Hstr), 2914(C-H str),

Page 70: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 70

2877(C-H str), 1689 (C=O str), 1603(Ar, C=C str), 1514(Ar, C=C str), 1505(Ar, C=C str),

1481(C-H ben), 1422(C-H ben), 1372(C-H ben), 1254(Ar, C-H ben), 575(C-Br str)cm-1;

MS: m/z = 415 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-methoxyphenyl)thiazolidin-4-one

(PAB-505). mp 130-132°C; IR (KBr): 3107 (Ar, C-H str), 2960 (C-H str), 2912 (C-H str),

2837 (C-H str), 1666 (C=O str), 1610(Ar, C=C str), 1512(Ar, C=C str), 1464(Ar, C=C str),

1429 (C-H ben), 1388 (C-H ben), 1342(C-H ben), 1303(C-H ben), 1253(Ar, C-H ben),

1219(Ar, C-H ben), 1178(Ar, C-H ben), 1139(Ar, C-H ben), 1107(Ar, C-H ben), 1026(C-

O-C str), 1016(Ar, C-H ben), 956(Ar, C-H ben) cm-1; 1H NMR (400 MHz, DMSO δ ppm

3.72 (s, 3H, -OCH3), 3.79-3.93 (dd, 2H, -CH2), 5.30 (S, 2H,-CH2), 6.22 (s, 1H,-CH), 6.76-

6.78 (t, 2H, ArH) 7.14-7.24 (m, 6H, ArH), 7.86 (s, 1H, CH), 8.32 (s, 1H, CH). 13C NMR

(100 MHz, DMSO): δ ppm 32.97, 51.82, 54.76, 64.00, 113.69, 125.54, 128.14, 130.63,

133.55, 137.16, 143.46, 151.41, 159.28, 170.30. MS: m/z = 366 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(2-nitrophenyl)thiazolidin-4-one (PAB-

506). mp 114-116°C; IR (KBr): 3109(Ar, C-H str), 2995(C-H str), 2914(C-H str), 2877(C-

H str), 1685 (C=O str), 1608(Ar, C=C str), 1539(N=O str), 1514(Ar, C=C str), 1489(C-H

ben), 1421(C-H ben), 1371(C-H ben) cm-1; MS: m/z = 381 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-hydroxyphenyl)thiazolidin-4-one

(PAB-507). mp 130-132°C; IR (KBr): 3635(O-H str), 3035(Ar, C-H str), 2953(C-H str),

2917(C-H str), 2878(C-H str), 1669 (C=O str) 1600(Ar, C=C str), 1515(Ar, C=C str),

1487(C-H ben), 1427(C-H ben), 1356(C-H ben), 1251(Ar, C-H ben) cm-1; MS: m/z = 352

[M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(3-nitrophenyl)thiazolidin-4-one (PAB-

508). mp 141-143°C; IR (KBr): 3103(Ar, C-H str), 2991(C-H str), 2914(C-H str), 2872(C-

H str), 1669 (C=O str), 1602(Ar, C=C str), 1536(N=O str), 1515(Ar, C=C str), 1488(C-H

ben), 1432(C-H ben), 1376(C-H ben) cm-1; MS: m/z = 381 [M ]+

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(4-fluorophenyl)thiazolidin-4-one (PAB-

509). mp 148-150°C; IR (KBr): 3029(Ar, C-H str), 2940(C-H str), 2914(C-H str), 2877(C-

H str), 1679 (C=O str), 1607(Ar, C=C str), 1511(Ar, C=C str), 1521(Ar, C=C str), 1471(C-

H ben), 1412(C-H ben), 1372(C-H ben), 1254(Ar, C-H ben), 1024 (C-F str)cm-1; MS: m/z

= 354 [M ]+

Page 71: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 71

3-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-2-(p-tolyl)thiazolidin-4-one (PAB-510).

mp 147-149°C; IR (KBr): 3013(Ar, C-H str), 2951(C-H str), 2913(C-H str), 2872(C-H str),

1669 (C=O str), 1602(Ar, C=C str), 1515(Ar, C=C str), 1454(C-H ben), 1432(C-H ben),

1376(C-H ben) cm-1; MS: m/z = 350 [M ]+

Page 72: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 72

Figure: 2.5.1 IR spectrum of compound PAB-505

45075010501350165019502250255028503150345037501/cm

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105%T

3107

.43

3010

.98

2960

.83

2912

.61

2837

.38

1666

.55

1610

.61

1512

.24

1464

.02

1429

.30

1388

.79

1342

.50

1303

.92

1253

.77

1219

.05

1178

.55

1139

.97

1107

.18

1026

.16

956.

7290

0.79

831.

3580

4.34

781.

20

Figure: 2.5.2 Mass spectrum of compound PAB-505

N

S

N

NN O

H3CO

N

S

N

NN O

H3CO

Page 73: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 73

Figure: 2.5.3 1H NMR Spectrum of compound PAB-505

Expanded 1H NMR spectrum of compound PAB-505

N

S

N

NN O

H3CO

Page 74: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 74

Figure: 2.5.4 13C NMR spectrum of compound PAB-505

N

S

N

NN O

H3CO

Page 75: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 75

REFERENCES

1. Verma, A. and Saraf, S.; “4-Thiazolidinone – A biologically active scaffold” Eur.

J. Med. Chem. 2008, 43, 897–905.

2. Hongyu, Z.; Wu, S.; Zhai, S.; Liu, A.; Sun, Y.; Li, R.; Zhang, Y.; Ekins, S.;

Swaan, P.W.; Fang, B.; Zhangand, B. and Yan, B.; “Design, Synthesis,

Cytoselective Toxicity, Structure–Activity Relationships, and Pharmacophore of

Thiazolidinone Derivatives Targeting Drug-Resistant Lung Cancer Cells”, J. Med.

Chem. 2008, 51, 1242–1251.

3. Barreca, M. L.; Balzsarini, J.; Chimirri, A.; De Clercq, E.; De Luca, L.; Höltje, H. D.;

Höltje, M.; Monforte, A. M.; Monforte, P.; Pannecouque, C.; Rao, A. and Zapalla, M.;

“Design, Synthesis, Structure−Activity Relationships, and Molecular Modeling Studies of

2,3-Diaryl-1,3-thiazolidin-4-ones as Potent Anti-HIV Agents”, J. Med. Chem. 2002, 45,

5410–5413.

4. Solomon, V. R.; Haq, W.; Srivastava, K.; Puri, S. K. and Katti, S. B.; “Synthesis

and Antimalarial Activity of Side Chain Modified 4-Aminoquinoline Derivatives”

J. Med. Chem. 2007, 50, 394–398.

5. Kucukguzel, G. C.; Shchullek, J. R.; Kaocatepe, A.; De Clercq, E.; Sahinv,

F.;Gulluce, M. “Synthesis and biological activity of 4-thiazolidinones,

thiosemicarbazides derived from diflunisal hydrazide”, Eur. J. Med. Chem. 2006,

41, 353–359.

6. Diurno, M. V.; Mazzoni, O.; Calignano, P. E.; Giorodano, F. and Bolognese, A.;

“Synthesis and antihistaminic activity of some thiazolidin-4-ones” J. Med. Chem.

1992, 35, 2910–2912.

7. Srivastava, V. K. and Kumar, A.: “Synthesis of newer thiadiazolyl and

thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents”, Eur. J.

Med. Chem. 2002, 37, 873–882.

8. Singh, T.; Sharma, P.; Mondalc, S. and Kumar, N.; “Synthesis, anticonvulsant

activity & spectral characterization of some novel thiazolidinone derivatives” J.

Chem. Pharm. Res. 2011, 3(5), 609-615.

9. Desai, K. G. and Desai, K. R.; “A facile microwave enhanced synthesis of sulfur-

containing 5-membered heterocycles derived from 2-mercapto benzothiazole over

ZnCl 2/DMF and antimicrobial activity evaluation” J. Sulfur Chem. 2006, 27,

315–328.

Page 76: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 76

10. Jackson, C. M.; Blass, B.; Coburn, K.; Djandjighian, L.; Fadayel, G.; Fluxe, A. J.;

Hodson, S. J.; Janusz, J. M.; Murawsky, M.; Ridgeway, J. M.; White, R. E. and

Wu, S.; “Evolution of thiazolidine-based blockers of human Kv1.5 for the

treatment of atrial arrhythmias” Bioorg. Med. Chem. Lett. 2007, 17, 282–284.

11. Ottana, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.;

Vigorita, M. G. and Mini, E. “In vitro antiproliferative activity against human

colon cancer cell lines of representative 4-thiazolidinones. Part I” Bioorg. Med.

Chem. Lett. 2005, 15, 3930–3933.

12. Ramshid, P. K.; Jagadeeshan, Sankar; Krishnan, Anand; Mathew, Mary; Nair, S.

Asha; Pillai, M. Radhakrishna Synthesis and In Vitro Evaluation of Some Isatin-

Thiazolidinone Hybrid Analogues as Anti-Proliferative Agents Med. Chem. 2010,

6(5), 306-312.

13. Allen, S.; Newhouse, B.; Anderson, A. S.; Fauber, B.; Allen, A.; Chantry, D.;

Eberhardt, C.; Odingo, J. and Burgess, L. E. “Discovery and SAR of trisubstituted

thiazolidinones as CCR4 antagonists” Bioorg. Med. Chem. Lett. 2004, 14, 1619–

1624.

14. Look, G. C.; Schullek, J. R.; Holmes, C. P.; Chinn, J. P.; Gordon, E. M. Gallop,

M. A.; “The identification of cyclooxygenase-1 inhibitors from 4-thiazolidinone

combinatorial libraries”, Bioorg. Med. Chem. Lett. 1996, 6, 707–712.

15. Wang, Shuobing; Zhao, Yanfang; Zhang, Guogang; Lv, Yingxiang; Zhang, Ning.

and Gong, Ping.; “Design, synthesis and biological evaluation of novel 4-

thiazolidinones containing indolin-2-one moiety as potential antitumor agent”

Euro. J. Med. Chem.2011, 46(8), 3509-3518.

16. Vigorita, M. G.; Ottana, R.; Monforte, F., Maccari, R.; Trovato, A.; Monforte, M.

T. and Taviano, M. F.; “Synthesis and Antiinflammatory, Analgesic Activity of

3,3’-(1,2-Ethanediyl)-bis[2-aryl-4-thiazolidinone] Chiral Compounds” Bioorg.

Med. Chem. Lett. 2001, 11, 2791–2794.

17. Mizuno, K.; Sohda, T.; Meguro, K.; Kawamatsu, Y. and Yamamoto, Y.; “Studies

on antidiabetic agents, synthesis of the metabolites of 5-(3-ethoxy-4-

pentyloxyphenyl)-2,4-thiazolidinone (CT-112) and related compounds” Tak.

Kenk.1983, 42, 227-237.

Page 77: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 77

18. Subudhi, B. B.; Jena, T.; Pradhan, D. and Panda, P. K.; “Thiazolidinones and their

optimi zation for development of antidiabetic agents” J. Teach. Res. Chem. 2005,

12, 121-128.

19. Gomes, C. R. B.; Vellasco, J. and Walcimar T.; “Chemistry and Biological

Activities of 1,3-Thiazolidin-4-ones” Mini Rev. Org. Chem. 2008, 5, 336–344.

20. Diurno, M. V.; Mazzoni, O.; Piscopo, E.; Calignano, A.; Giordano, F. and

Bolognesell, A.; “Synthesis and antihistaminic activity of some thiazolidin-4-

ones" J. Med. Chem. 1992, 35, 2910-2912.

21. Munson, M. C.; Cook, A. W.; Josey, J. A. and Rao, C.; “An efficient high-speed

synthetic route to amino-substituted thiazolidinone libraries Tetrahedron Lett.

1998, 39, 7223-7226.

22. Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-

component condensation Srivastava, T.; Haq, W.; Katti, S. B.; Tetrahedron 2002,

58(38), 7619–7624.

23. Saiz, C.; Pizzo C.; Manta, E.; Peter, W. and Mahler, G.; “Microwave-assisted

tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones” Tetrahedron

Lett. 2009, 50, 901–904.

24. Porshamsian, K.; Montazeri, N.; Kurosh, R, M.; Safa, A. A.; “A simple and

efficient synthesis of some novel thiazolidin-4-one derivatives” J. Heterocy.

Chem. 2010, 47(6), 1439-1442.

25. Xiaojun, S.; Jianfeng, Z.; Shifan H.; Xuebao, X.; “Synthesis of 4-thiazolidinone

derivatives catalyzed by iodine under room temperature” Ziran Kexueban 2011,

10(1), 45-48.

26. Ravichandran, V.; Rajak, H.; Kumar, K. S. and Agrawal, R. K.; “Synthesis and

evaluation of antimicrobial activity of thiazolidinone derivatives” Lett. Drug Des.

Disc. 2011, 8(1), 82-86.

27. Alexander, M. and Posner, G.; “Three-component, one-flask synthesis of

rhodanines (thiazolidinones) Jacobine” J. Org. Chem. 2011, 76(19), 8121-8125.

28. Chiara, P.; Cecilia, S.; Alan, T.; Luciana G.; Pablo, P.; Carolina, B.; Luis Bruno,

B.; Diego, B.; Juan, C. J.; Agustina, C.; “Synthesis of 2-hydrazolyl-4-

thiazolidinones based on multicomponent reactions and biological evaluation

against Trypanosoma” Chem. Bio. Drug. 2011, 77(3), 166-172.

Page 78: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 78

29. Patricia, N. D.; Auri, D. R.; Bruna, D. B.; Pauline, R. F.; Claudia, G. R.; Claudio,

P. M.; Wilson C.; “Efficient sono chemical synthesis of thiazolidinones from

piperonylamine” Ultra. Sonochem. 2010, 18(1), 65-67.

30. Wilson, C.; Claudia, G. B.; Lourdes, F. M.; Liliane, C. R.; Marcio, S.; Solange,

W. M.; “One-pot synthesis of 2-isopropyl-3-benzyl-1,3-thiazolidin-4-ones and 2-

phenyl-3-isobutyl-1,3-thiazolidin-4-ones from valine, arenealdehydes and

mercaptoacetic acid” Tetetrahedron Lett. 2007, 48(35), 6217-6220.

31. De Vries, A. H.; Hof, R. P.; Staal, D.; Kellogg, R. M.; Feringa, B.

L.;“Diastereoselective synthesis of pyridyl substituted thiazolidin-4-ones. New

ligands for the Cu(I) catalyzed asymmetric conjugate addition of diethylzinc to

enones” Tetetrahedron Asym. 8(10), 1997, 1539–1543.

32. M. Kidwai, P. Kumar, Y. Goel and K. Kumar; “Microwave assisted synthesis of

5-methyl-134-thiadiazole-2-ylthio/tetrazole-1-yl substituted pyrazoles, 2-

azetitinones, 4-thiazolidinones, benzopyran-2-ones and 1,3,4-oxadiazoles” Ind. J.

Chem. 1997, 36B(2), 175-179.

33. Shiradkar, M. and Shivaprasad, H. N.; “Microwave assisted synthesis of novel

azetidin-2-one and thiazolidin-4-one derivatives of triazoyl thiophene” Asian J.

Chem. 2005, 18(1), 331-336.

34. Lohary, B. B.; Bhushan, V.; Sekar Reddy, A. and Rajagopalan, R.; “Novel

Euglycemic and Hypolipidemic Agents: Pyridine Containing

Unsaturated Thiazolidinediones” Ind. J. Chem. 1999, 38B, 403-406.

35. Kavitha, C. V.; Basappa, M. K.; Doreswamy, S. I.; Prasad J. S. and Rangappa, K.

S.; J. Chem. Res. 2006, 5, 312-314.

36. Belardi, P. G.; Simonoi, D.; Moroder, F.; Manferdini, S.; Muchhi, L. and Vecchia,

F. D. J. Synthesis of 2-(5′-substituted isoxazol-3′-yl)-4-oxo-3-

thiazolidinylalkanoic acids” J. Heterocyl. Chem. 1982, 19, 557–560.

37. Pratap, U.; Jawale, D.; Bhosle, M.; Mane. R.; “Saccharomyces cerevisiae

catalyzed one-pot three component synthesis of 2,3-diaryl-4-thiazolidinones” Tet.

Lett. 2011, 52, 1689–1691.

38. Srivastava, T.; Haq, W. and Katti, S. B.; “Carbodiimide mediated synthesis of 4-

thiazolidinones by one-pot three-component condensation” Tetrahedron 2002, 58,

7619–7624.

Page 79: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 79

39. Rawal, R. K.; Srivastava, T.; Haq, W. and Katti, S. B.; “An expeditious synthesis

of thiazolidinones and tetathiazanones” J. Chem. Res. 2004, 5, 368–369.

40. Xiaojun, S.; Jianfeng, Z.; “Synthesis of 4-thiazolidinone derivatives catalyzed by

iodine under room temperature” Huaiyin Shifan Xueyuan Xuebao, Ziran

Kexueban 2011, 10(1), 45-48.

41. Sadashivaa, C. T.; Narendra, J. N.; Chandraa, S.; Kavithaa, C. V.;

Thimmegowdab, A.; Subhashc, M. N. and Rangappaa, K. S.; “Synthesis and

pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone

arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia

models” Eur. J. Med. Chem. 2009, 44, 4848–4854.

42. Shah, P.; Patel, M.; “Zinc(II) chloride catalysed one pot synthesis of some new 4-

thiazolidinone derivatives as biologically potent agents” Ind. J. Chem. Sec. B

2011, 50B (3), 310-314.

43. Yadav, A. K.; Kumar, M.; Yadav, T. and Jain, R. “An ionic liquid mediated one-

pot synthesis of substituted thiazolidinones and benzimidazoles” Tetetrahedron

Lett. 2009, 50, 5031–5034.

44. Kanagarajana, V.; Thanusua, J.; Gopalakrishnana, M. Three component one-pot

synthesis of novel pyrimidino thiazolidin-4-ones catalyzed by activated fly ash”

Green Chem. Lett. Rev. 2009, 2, 161–167.

45. Gududuru, V.; Nguyen, V.; Dalton, J. T. and Miller, D. D.; “Efficient Microwave

Enhanced Synthesis of 4-Thiazolidinones” Synlett 2004, 2357–2358.

46. Zhengyue, M. and Xinghua, Z.; “Microwave-assisted synthesis of new 1,3-

thiazolidin-4-ones and evaluation of their anticancer efficacy” Mod. App. Sci.

2011, 5(3), 207-212.

47. Zhou, H.; Liu, A.; Li, X.; Xifeng, M.; Feng, W.; Zhang,W. and Yan, B.;

“Microwave-Assisted Fluorous Synthesis of 2-Aryl-Substituted 4-Thiazolidinone

and 4-Thiazinanone Libraries” J. Comb. Chem. 2008, 10, 303–312

48. Stephanie, E.; Justus, A.; Hodges, J. C.; Wilson, M. W. “Generation of a library of

4-thiazolidinones utilizing polymer supported quench (PSQ) reagent

methodology” Biotech. Bioeng. 1998, 61(1), 17–22.

49. Sharma, M. and Sharma, S.; “Quantitative structural-activity relationship (QSAR)

study for antimycobacterial activities of pyrazine containing thiazoline and

Page 80: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 80

thiazolidinone derivatives” Optoelectronics and Advanced Materials” Rapid

Comm.2010, 4(3), 415-421.

50. Zhou, H.; Wu, S.; Zhai, S.; Liu, A.; Sun, Y.; Li, R.; Zhang, Y.; Ekins, S.; Swaan,

P.; Fang, B.; Bin, Z. and Yan, B.; “Design, Synthesis, Cytoselective Toxicity,

Structure–Activity Relationships, and Pharmacophore of Thiazolidinone

Derivatives Targeting Drug-Resistant Lung Cancer Cells” J. Med. Chem. 2008,

51, 1242–1251.

51. Singh, S. R.; “Synthesis and fungicidal activity of 5-methyl-3-aryl-2-arylimino-4-

thiazolidinones and their acetoxymercuri derivatives, J. Ind. Chem. Soc. 1976, 53,

595-597.

52. Graciet, J. C.; Niddam, V.; Gamberoni, M.; Trabaud, C.; Dessolin, J.; Medou, M.;

Mourier, N.; Zoulim, F.; Borel, C.; Hantz, O.; Camplo, M.; Chermann, J. C. and

Kraus, J. L.; “Modelisation, synthesis and antiviral evaluation of new 2,3-

disubstituted thiazolidinone nucleoside analogues” Bioorg. Med. Chem. Lett.

1996, 15(6), 1775–1780.

53. Zhang,Q.; Zhou, H.; Zhai, S. and Yan, B.; “Natural produt inspired synthesis of

thiazolidine and thiazolidinone compounds and their anticancer activities” Curr.

Pharm. Des. 2010, 16(16), 1826-1842.

54. Basawaraj, R.; Amith, L.; Vijay Kumar, T.; Havangirao, M. and Upendra, C. H.;

“Synthesis and antitubercular activities of azetidinone and thiazolidinone

derivatives from 5- Chloro-3 methylbenzofuran” Int. J. Chem. Res. 2010, 2(3),

1764-1770.

55. Jayachandran, M. and Ramesh, P.; “Synthesis and antibacterial evaluation of N-

(azetidin-2-on-1yl)N-(thiazolidin-3-on-1-yl) carbamoyl Coumarins” Ind. J.

Heter.Chem. 2009, 19(2), 195-196.

56. Merugu, R. C.; Ramesh, D.; Sreenivasulu, B.; “Microwave assisted synthesis and

antibacterial activity of some novel pyrimidines and thiazolidinones” Org. Chem.

An Ind. J. 2010, 6(4), 272-275.

57. Bondock, S.; Khalifa, W. and Fadda, A. A.; “Synthesis and antimicrobial

evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting

form 1-chloro-3,4-dihydronapthalene-2-carboxaldehyde” Eur. J. Med. Chem.

2007, 42(7), 948-954.

Page 81: Chapter 2shodhganga.inflibnet.ac.in/bitstream/10603/33054/7/07... · 2018. 7. 2. · Section-I Synthesis of tetrahydropyrimidine derivatives Department of Chemistry, Saurashtra University,

Section-V Synthesis of thiazolidinones

Department of Chemistry, Saurashtra University, Rajkot-360005 81

58. Veerasamy, R.; Rajak, H.; Kumar, K. S. and Agrawal, R. K.; “Synthesis and

evaluation of antimicrobial activity of thiazolidinone derivatives” Lett. DrugDes.

Disc. 2011, 8(1), 82-86.

59. Dinh, T. T. H.; Nguyen, Q. D.; Ngo, M. A.; “Synthesis and antibacterial and

antifungal effect of 5-(5'-nitro-2'-furfurylidene)-2-thioxo- 4-thiazolidinone and

derivatives thereof” Tap Chi Duoc Hoc, 2001, 11,13-16.

60. Altinas, H.; Ates, O.; Kocabalkanli, A.; Birteksoz, S.; Otuk, G.; “Synthesis,

characterization and evaluation of antimicrobial activity of Mannich bases of

some 2-[( 4-carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones” Ind. J.

Chem. 2005, 44, 2416.