12
Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 The A is isosceles soLB = LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2 issupp toLl so mL2 = 50 L5 and L 7 are vert Ls so mL5 =70 L2 +L3 +L5 =ISOso mL3 =60 L4 is supp to L3 so mL4 = 120 L6 is supp to L5 so mL6 = 110 8 LF+LK+LH ISO 90+70+LH = ISO 160+LH = ISO mLH = 20 OJ II FK by Midline Theorem So mLHGJ = 90 (II lines ~ corr Ls ••) and mLHJG = 70 (II lines ~ corr Ls -). 9 aA bA eN dA eN 10 Let the m vertex L =2L x+x+2x = ISO 4:1:= 180 x = 45 m vertexL = 2(45) = 90 ()) 3 The sum ofintLs ofaA are ISO". LCAD=LCBA+LC = ISO SO+60+ LC = ISO mLC = 40 AE and BD are alta so mLADB and mLAEB = 90 LAEB+LCBA+LEAD = ISO 90 + 60 +LEAD = ISO mLEAD = 30 LADB +LCAD +LADD = ISO 90+S0+LADD = ISO mLABD = 10 LEAD +LADD +LAFB = ISO 30 + 10 +LAFB = ISO mLAFB = 140 E D~F 2x+21+50 = ISO 2x+21 = 130 x+y=65 65 + mLM = ISO mLM = 115 1 11 mLORP =2mLR. LR = ISO- 90 - 10 = SO 1 mLORP =2(SO)=40 mLMOR= lS0-90-40=50 12 LD +LE +LF = ISO 110+LF = ISO LF = 70 LD+ 150 = ISO LD=30 :. LD + LF = 30 + 70 = 100 13 Given: AABC is a rt A- LB isrtL. Prove: LA and LC are compo AABC is a rt A, LB a rt L and the sum of the measures of the 3 Ls = 180. Then LB+LA+LC = ISO 90+LA+LC = ISO LA + LC = 90 soLA andLC are compo ()) 14 Given: AABC isos 5 Let the m ofthe Ls be 4:1:,5x, 6x. 4:I:+5x+6x = ISO 4:1: 4(12)= 4S 15x = ISO 5x = 5(12)= 60 x = 12 6x = 6(12) = 72 8 LORS=LP+LD 4x+6 = (x+24)+(2x+4) 4x+6 = 3x+2S x = 22 mLO =(2x+4)=2(22)+4=48 7 From diagram, A and Y are midpoints. By Midline 1 Theorem, AY=2WXor9. 88 Section 7.1 A~ LB a rtL. Prove: LA = LC =45 0 B C An isos A has 2 - Ls. If LB = 90 and LA+LB+LC= ISO, LA+LC=90. Since LA = LC, 2LA = 90, mLA = 45 so mLC =45. 15 mLI =2x, mL2 =3x, mL3 =3x+4 2x+3x+3x+4 = ISO Sx = 176 x = 22 mLl =44, mL2 = 66, mL3 =70 m extL atL3 = lS0-70 = 110

Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

Chapter '1POLYGONS

Pages 298-301 (Section '1.1)

1 The A is isosceles so LB = LC.

40+2x = ISO

2x = 140

x = 70

mLB = 70

2 L2 issupp toLl so mL2 = 50

L5 and L7 are vert Ls so mL5 = 70

L2 +L3 +L5 = ISO so mL3 = 60

L4 is supp to L3 so mL4 = 120

L6 is supp to L5 so mL6 = 110

8 LF+LK+LH ISO

90+70+LH = ISO

160+LH = ISO

mLH = 20

OJ II FK by Midline Theorem

So mLHGJ = 90 (II lines ~ corr Ls ••) and mLHJG = 70

(II lines ~ corr Ls -).

9 aA bA eN dA eN

10 Let the m vertex L = 2L

x+x+2x = ISO

4:1:= 180

x = 45 m vertexL = 2(45) = 90

()) •

3 The sum ofintLs ofaA are ISO".

LCAD=LCBA+LC = ISO

SO+ 60 + LC = ISO

mLC = 40

AE and BD are alta so mLADB and mLAEB = 90

LAEB+LCBA+LEAD = ISO

90 + 60 + LEAD = ISO

mLEAD = 30

LADB + LCAD +LADD = ISO

90+S0+LADD = ISO

mLABD = 10

LEAD + LADD +LAFB = ISO

30 + 10 +LAFB = ISO

mLAFB = 140

E

D~F

2x+21+50 = ISO

2x+21 = 130

x+y=65

65 + mLM = ISO

mLM = 115

111 mLORP = 2mLR. LR = ISO- 90 - 10 = SO

1mLORP =2(SO)= 40

mLMOR= lS0-90-40=50

12 LD +LE +LF = ISO

110+LF = ISO

LF = 70

LD+ 150 = ISO

LD=30

:. LD + LF = 30 + 70 = 100

13 Given: AABC is a rt A-

LB isrtL.

Prove: LA and LC are compo

AABC is a rt A, LB a rt L and the sum of the measures of

the 3 Ls = 180. Then

LB+LA+LC = ISO

90+LA+LC = ISO

LA + LC = 90 soLA andLC are compo

()) •14 Given: AABC isos

5 Let the m of the Ls be 4:1:,5x, 6x.

4:I:+5x+6x = ISO 4:1: 4(12)= 4S

15x = ISO 5x = 5(12)= 60

x = 12 6x = 6(12) = 72

8 LORS=LP+LD

4x+6 = (x+24)+(2x+4)

4x+6 = 3x+2S

x = 22

mLO = (2x + 4) = 2(22) + 4 = 48

7 From diagram, A and Y are midpoints. By Midline1Theorem, AY = 2WX or 9.

88 Section 7.1

A~LB a rtL.

Prove: LA = LC = 450 B C

An isos A has 2 - Ls. If LB = 90 and

LA+LB+LC= ISO, LA+LC=90.

Since LA = LC, 2LA = 90, mLA = 45 so mLC = 45.

15 mLI = 2x, mL2 = 3x, mL3 = 3x +4

2x+3x+3x+4 = ISO

Sx = 176

x = 22mLl = 44, mL2 = 66, mL3 = 70

m extL atL3 = lS0-70 = 110

Page 2: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

18 The measure of an ext L of aLI. = sum of the measures of

the remote intLs so

17 By Midline Theorem MO =~FH = 10

Ll.KFM iiI!i Ll.OGMby SAS (K, 0 are midpoints so KF •• OG,

Ls F and G are rtLS, FM '" MG because M is a midpoint)

so KM •• MO and KM = 10. JK and JO can be proved

iiI!i MO in the same way.

a P of JKMO is 4(10) = 40 b Rhombus

B

4 Midline Theorem

2 Two pta determine a seg.3 Midline Theorem

5 Transitive prop of IIlines

6 Division prop

7 If a quad has opp sides '"

and II,then itis aO.7 EFGH is aO. )

20 Given: ABCD is a quad.

FmdptAB

GmdptBC

Hmdpt,CD

EmdptDA 0

Prove: EFGH is a parallelogram.

1 ABCD is a quad. 1 Given

F mdpt AB, G mdpt BC,

H mdpt CD, E mdpt DA

2 DrawDB- 13 EF IIto andithe

length of DB- 14 HG IIto and ithe

length of DB

5 EFIIHG

6 EF-HG

22 Let mLEJF = x, mLEFJ = 180 - x -70180-x-70 110-x

a mLJFH = 2 --2-

180-x x+ 70LHJF = -2-' LJFH = -2- (ExtL Theorem)

mLH = 180_C8~-X+X~70)

x xmLH = 180 - (90 -2 +2 + 35)

mLH = 180-125 = 55

b mLH = 180-C8~-X + X+2LE)

mLH = 180 - (90 - ~ + ~ + L2l

mLH = 180-(90+ L2l

= 90- L2E

mLH = (90 - ~LE)

23 By Ext L Theorem, ~ = a + el and Cl = d + e2.

a + el +Cl = ~+ d + ~ ora + el + Cl = d + ~ +~.

21 LetmLA=x.IfA then AA-SOLEDA= x.

By Ext L Theorem, LBED == 2x. If A then AA

so LDBE = 2x. Then LBDE = 180 - (2x + 2x) or

LBDE = 180 - 4x. LBDC = 180 - (180 - 4x) - x.

LBDC = 180 - 180 + 4x - x = 3x. If A then AA so

LBCD = 3x. But AB - AC soLABC = 3x OfA then AA).By subtraction LCBD = x. In Ll.BCD,x + 3x + 3x = 180,

6 67x = 180, x = 257, mLA = 257,

180

180

92.5mLD =

A ---------7IZ/" I

M,." I" I

IIIB

mLD = 117.5 or

Mis mdpt of AB. C

Prove: M =dist from A, C, and B

Extend CM to Z so that CM •• MZ. Then ACBZ is a

parallelogram (the diagonals bis each other). ACBZ is a

rectangle because it has a rt L. The diagonals of a

rectangle are •• so AM •• CM - MB.

x+3y = 45+2y

x = 45-yand

45+2y+5x = 180

5x + 2y = 135 Substituting x = 45 - y,

5(45-y)+2y = 135

225-5y+2y = 135

-3y = -90 x = 45-y

y = 30 x=45-30= 15

mLPST = x + 3y = 15 + 3(30)

mLPST = 15 + 90 = 105

16 LABC "'LACB(IfA thenAA)

LA + LABC + LACB = 180

30 + x +x = 180

2x = 150

x = 75lID is one of the trisectors ofLABC soLDBC can belof

LABC(75)or~LABC(75)

LDBC = 25 or LDBC = 50CD bis LACB so LBCD =~LACB(75) = 37.5.

The sum oftheLs ofaLl. are 180.

LBCD + LOCB + LD = 180

37.5+25+LD = 1800r 37.5+50+LD =62.5 +LD = 180 or 87.5 +LD =

19 Given: .lI.ABCis a rt LI..

LC is rtL.

"

,

t.

Section 7.1 89

Page 3: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

oillK

G~

2 In a rhombus all sidea are -.

3 Given

1 Given

1/ i![V B X

4 1. linea form rt La.

5 Given

6 Sameas4

7 RtLaare-.

8 Reflexive prop

9 AAS

10 CPCTC

4 LJOGia a rtL.

5MH1.GJ-

6 LGHM ia a rtL.

7 LJOG-LGHM

8 LG-LG

9 AGOJ-AGHM

10 MH-JO

7 Given: LA - LX,LAVZ-LXYB,

LZVB-LYBX

Prove: VBYZ ia aD.

8 Given: GJKM ia a rhombus.

OJ 1.GM,

MH1.GJ

Conclusion: MH - JO

1 GJKM ia a rhombus.

2 MG-GJ

3 OJ 1. GM

B

G~l

M K

1 Given 1 LA-LX,LAVZ-LXYB 1 Given

2 Given 2 LZVB-LYBX 2 Given

3 1. linea form rt La. 3 LAZV-LXBY 3 No Choice Theorem

4 RtLaare-. 4 LAZV-LZVB 4 Subatitution

5 Given 5 VBIIZY 5 Alt intLs -:=) IIlines

6 No Choice Theorem 6 VZ IIBY 6 Corr Ls iI :=) IIlinea ( .1p 7 VBYZiaaD. 7 Ifboth pairs of opp sides

M ofa quad are II,itia aD.

S Let the m of the La = 3x, 4x, axK M 3x+4x+ax = lao

1 Given 15x = 180

2 Given x = 12

r 3 1. linea form rt La. ax = 8(12) = 96

4 RtLaare-. The m of the aupp = 180 - 96 = 84.

5 Reflexive prop

6 AAS 9 By Ext L Theorem,

W V 4x - 10 = (2x + 10) + 50

x(f!3v 4x - 10 = 2x + 60

2x = 70

x = 35L1 ia aupp to (4x -10)

1 Given thenLI + (4x-10) = laO

2 Given L1 + 4(35) - 10 = 180

3 Given L1 + 140-10 = 180

4 Reflexive prop L1 = 180-130 = 50

5 Subtraction prop

6 Radii of 0 are iI. f

7 AAS 'I8 CPCTC

1 JM 1. GM, GK 1. KJ 1 Given

2 LGMJ, LJKG rt La 2 1. linea form rt La.

3 LGMJ - LJKG 3 Rt La are -.4 LGHM, LJHK vert La 4 Assumed from diagram

5 LGHM _ LJHK 5 Vert La are -.

6 LG _ LJ 6 No Choice Theorem\

2 LCBA ia 90" (l. lines form rt La) and

LCED ia 90" (by PAC). LC = 50"

(40" + 90° + x = 180"). So LA = 40"

(90" + 50° + x = 180").

mLA = 40, mLC = 50, mLCED = 90

3 Given: PD and PC lie

in plane m.

BP 1. m,LC -LD

Prove: LPBC - LPBD

1 PD and PC lie in plane m.

2 BP 1. m

3 LBPD, LBPC rt La

4 LBPD-LBPC

5 LC-LD

6 LPBC -LPBD

5 Given: 00LSOY-LTOW,

LWSO-LVTO

Prove: SO - TO

100

2 LSOY-LTOW

3 LWSO -LVTO

4 LWOY-LWOY

5 LWOS-LYOT

6 WO-OY

7 AOWS-AOVT

8 SO-TO

4 Given: MR 1. KP,

KO 1. PM,LRKM-LOMK

Prove: tJtKM - AOMK1 MR 1. KP, IW .1 PM

2 LRKM-LOMK

3 LKRM, LMOK rt La

4 LKRM-LMOK

5 KM-KM

6 tJtKM - AOMK

Pages 304-308 (Section 7.2)1 Given: JM 1. GM,

GK1. KJ

Conclusion: LG - LJ

90 Section 7.2

Page 4: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

H

z

~X B Y

2 Given

3 In an isos trap base Ls are ••.

4 Reflexive prop

5 AAS

6 CPCTC

7 If a Ii. has 2 •• Ls, it is isos.

a If 11then l!s.9 CPCTC

10 An isos trap has 2 •••legs.

11 Subtraction prop

12 SAS

13 CPCTC

14 If2 pta are the same dist

from a 3rd, they are =dist

from that pt.

1 Given

2 Given

3 II lines => alt int Ls ••

4 Sameas3

5 Substitution

6 No Choice TheoremW

:~;':~o'J>",p

b HP"JK

c R is =dist from 0 and M.

1 OHJM is an isos trap, 1 Given

with bases HJ

and OM.

2 LHPJ •• LJKH

3 LPHJ"LKJH

4 HJ •• HJ

5 APHJ •• AKJH

6 LKHJ"LPJH

a 7.AHRJ is isos.

aHR •• RJ

b 9 HP••JK

10 OH •• MJ

11 LOHR •• LMJR

.12 AORH •• .AMRJ

13 RO •• RM

c 14 R is =mst from

OandM.

Conclusion: AWET •• li.RAG

1 TW" GR, WE •• AR 1 Given

2 LE, LA are rt Ls. 2 Given

3 Extend GA to P 3 Two pta determine a line.

soAP •• ET

15 Given:

14 Given: A<! nXV,AiJnlW,LZAC •• LXAB

Prove: LX •• LZ

1 A<! nXV, AiJ nlW2 LZAC"LXAB

3 LXBA •• LBAC

4 LBAC •• LACZ

5 LXBA"LACZ

6 LX"LZ

Prove: a AHRJ is isos.

13 Given: OHJM is an isos trap,

with bases HJ and OM.

LHPJ"LJKH

c

1 Given

2 Given

3 1. lines form rt Ls.

4 Same as3

5 RtLsare".

6 Sides of an isos A are ••.

7 If l!s. then 11a Given

9 A mdpt divides a seg into

2 •• segs.

10 AAS

11 CPCTC

1 6ABC isos, base BC

2 DE 1. BA, DF 1. AC

3 LBEDrtL

4 LDFCrtL

5 LBED "LDFC6 AB •• AC

7 LB "LCa DmdptofBC

9 BD •• DC

10 ADEB •• ADFC

11 DE •• DF

~

H 6MJK •• OP,

HK~MP

Prove: LH ~LM K 0 P

Either LH ••LM or it isn't. Assume that it is.

Since LJ •• LO and JK •• OP are given, and LH ••LM is

assumed, AHJK •• AMOP by AAS. By CPCTC, HK •• MP,

which contradicts given information that HK ;. MP.

Therefore, LH ;. LM.

10 Given: LJ •• LO,

11 Given: 6ABC is isos.

ABbase

CD alt A BProve: CD median AB

1 6ABC is isos. 1 Given

2 AB base 2 Given

3 CD alt 3 Given

4 LADC, LBDC rt Ls 4 The aIt to the base of an

isos A forms rt Ls.5 CD •• CD 5 Reflexive prop

(i AC •• BC 6 Legs of an isos A are 55.

7 AADC •• ABDC 7 HL

a AD •• DB a CPCTC

9 CD median AB 9 If a seg divides a seg into

,t 2 •• segs, then it is the

median.

A12 Given: 6ABC is isos.

BaseBC

DmdptofBC

DE 1. BA

DF LAC B C

Prove: DE •• DF

t

4 LRAP supp to LRAG 4 If 2 Ls form a st L, they are

supp.

Section 7.2

Page 5: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

18 Given: EF median to AC.

LCBD-LADB;

CD base Ofi80St:.FDC.

17 a Rectangle b Rectangle c Square d Rhombus

e Parallelogram f Parallelogram IfRhombus

I

N

1 Given

2 Given

3 Given

4 IfA then A5 IfA then A6 Reflexive prop

7 SSS

20 mLHGK=x

mLGKH=x

mLGHK= 180-2x

a + (180 - 2x) + KHT = 180

:. mLKHT=2x-a

mLSGH = 180 - x - b

LS, LR, and LT = 60°

In t:.GSH a + 60 + 180 - x - b = 180

x+b-a = 60

2x + 2b - 2a = 120

Int:.KHTc+60+2x-a = 180

c+2x-a = 120

2x+2b-2a = c+2x-a

2b-c = a

a = 2b-c

19 Given: P, T and R lie

in planef.

LTNR-LTSR,

NS J. f,

LTNP-LTSP

Conel: t:.NPR - t:.SPR

1 LTNR-LTSR

2 NS J. f3 LTNP-LTSP

4 NR-SR

5 SP.NP

6 PR-PR

7 t:.NPR - t:.SPR

5 Subtraction prop

6 RtLsare-.

7 SAS

8 CPCTC

9 Transitive prop

10 Ifat:. has 2 sides-,

it is i80B.

11 IfA then A12 RtLs are-.

13 AAS

14 Transitive prop

11 LG-LP

12 LRAG - LRAP

13 £:.RAG- t:.RAP

14 t:.WE:r - £:.RAG

5 LRAP is a rtL.

6 LWET -LRAP

7 t:.WET - t:.RAP

8 TW-RP

9 GR-RP

10 t:.RGP is i80S.

Prove: ABCD is rectangle.

1 LCBD - LADB 1 Given

2 AD n Be 2 Alt intLs - =>II lines

18 a G, H, J are the midpoints of FD , FE , and DE. 1-- 1- - 1-

respectively. :. GH = 2DE; HJ = 2FD and GJ =2 FE

since a line that joins the midpoints of 2 sides of a t:. isII to and = to ~ the third side. :. Perimeter t:.GHJ = ~

Perimeter t:.DEF = ~(145)= 7~

b The triangle determined by the midpoints of the sides

of a triangle has a perimeter that is half the perimeter

of the original triangle.

d S = (10)180

S = 1800

b S = (5)180S=9oo

Pages 309-313 (Section 7.3)

1 Sj = (n - 2)180

a S = (4-2)180

S = (2)180

S=360

c S = (6)180

S= 1080

e S = (91)180

S= 16,380

2 Sj = (n - 2)180

Sj = (5 - 2)180

Sj=3.180=540

mLE = 540-(LA+LB +LC +LD)

mLE = 540 - (160 + 50 + 140 + 150)

mLE = 540 - 500 = 40

3 II lines =>alt int Ls ••

4 Given

5 A median divides a seg

into'2 '" segs.

6 Given

7 Legs ofi80~ are "".8 Transitive prop

9 IfA then l:i.10 Transitive prop (steps 1, 3, 9)

11 If l:i. then A12 Substitution

13 If the diagonals of a quad

are'" and bis each other,

the quad is aD.

3 LDAF-LFCB

4 EF median to AC

5AF-FC

6 CD base of i80St:.FDC

7 DF-FC

8 AF-DF

9 LFAD -LFDA

10 LFCB - LFBC

11 FB-FC

12 AF-FD-FC •••FB

13 ABCD is aD.

92 Section 7.3

Page 6: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

4 ~ = (4 - 2)lS0 = 2(lS0) or 360

LF+LG+LH+LE = 360

110+S0+74+LE = 360

264 +LE = 360

LE = 96

L lis BUppto LE so

96 +L1 = ISO

mLl = 84

3 = n-2

5 = n

10 a 900 = (n-2)lS0900180 = n-2

5 = n-2

7 = n

c 2SS0 = (n - 2)lS02880180 = n-2

b 1440 = (n - 2)lS01440180 = n-2

S = (n -2)

10 = n

d lSOx - 720 = (n - 2)1S0lSO(x - 4) _ _ 2

ISO -n

x-4 = n-2

x-2 = n

16 = n-2

IS = n

436 = (n - 2)lS0436180 = n-2

2.42 = n - 2, Impossible, because 4.42 can't be the

4.42 = n number of sides of a polygon

540 = (n - 2)lS0640180 = n-2

f

e

b d= 6(6;3)

d-!.:.!- 2d=9

d d=3(3;3)

d-!:!- 2d=O

3 Use d = n(n2-3)

a d = &<5;3)

d-!.:!- 2d=5

c d = 4<4;3)

d-!..:..!- 2d=2

8 a Sj = (n - 2)lS0 b Sum of exterior Ls is 360°.

Sj = (12 - 2)lS0

Sj = 10 . ISO = lSoo

5 By Midline Theorem, KP IIMO so LJKP - LM

a mLJKP=70

y + 15 = 70, y = 55 so

b LJPK=55-10=45

In LWKP,LJ = ISO -70 - 45

c mLJ = lS0-115 = 65

Se= 360 so

a triangle = 360 b heptagon = 360

c nonagon =,360 d 1984-gon = 360

360 = (n - 2)1S0360180 = n-2

2 = n-2

a n = 4 quadrilateral

2(360) = (n - 2)1S0

720 = (n - 2)lS0

4 = n-2

b n = 6 hexagon

11

12 Sj = (n - 2)1S0, let x = the number of sides

lSO(n - 2) + 900 = IS0[(n - 2) + xl

lSOn - 360 + 900 = lSOn - 360 + lSOx

900 = lSOx

5 = x, the number of sides

13 d = n(n2-3)

a 14 = n(n2-3)

(2)(14) = n(n2- 3) x 2

2S = n(n-3)

0= n2-3n-2S

o = (n - 7)(n + 4)

n = -4 Or0(-4 cannot be a solution)Heptagon

b 2(35) = n(n2- 3) x 2

70 = n2-3n

n2-3n-70=0

(n + 7)(n - 10)

n = -7 or@ Decagon (-7 cannot be a solution)

7 3

2 CPCTC

3 CPCTC

1 Given

4 Given

5 An alt forms rt Ls with the

opp side of a 6. .

6 Given

7 Same as5

S RtLsare-.

9 AAS

10 CPCTC

6 XV alt of .6XYZ

7 LXVZ is a rt L.

S LADC-LXVZ

9 ~C.AXVZ

10 AD -XV

9 Given: 6ABC -.6XYZ

AD is alt

of6ABC.

XV is alt

of.6XYZ.

Prove: AD - XV

1 6ABC -.6XYZ

2 AC-XZ

3 LC -LZ

4 AD alt of 6ABC

5 LADCisartL.

tSection 7.3 93

Page 7: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

It

c 2(209) = n(n - 3) x 22

418 = n2-3n

n2 -3n -418 = 0

(n - 22)(n + 19)

n = @ or -18 ltll.pn

14 8 A b N 08 d A 115 18 < x < 36

22 a Divide EFGH,J into :16s. The Ls of each 6 will have a

sum of 180 •. This will be 3(180.) = 540 •.

b Use the same procedure, 6 6s will have 6(180.) or

1080 •.

c Yes. The procedure seems the same for convex and non-

convex polygons.

d No, because in a non-convex polygon, the non-convex L

does not have the same exterior L as a convex L.

.)

23 The 3 Ls are x, 90 - x, 180 - x. A decagon has 10 sides so

m of Ls = (10 - 2)180

m of Ls = (8)180

m of Ls = 1440

x + (90 - x) + (180 - x) = 1440 - 1220

-x + 270 = 220

-x = -50

mLx = 50, 90 - 50 = 40, 180 - 50 = 130

n(n - 3)24 2 > (n - 2)180

n2 - 3n > 2(180n - 360)

n2-3n > 360n -720

n2 - 363n + 720 > 0 By quadratic formula,

363:t -.J 131,769 - 2880n> 2

363 :t -.J 128,889n> 2

n > 363 ~ 359 = 0 or 2

A polygon can't have 2 sides so it must have 362 or more.

Pages 316-318 (Section 7.4)360 360

1 a E = '3 = 120 d E = 15 = 24360 360 15

b E =4= 90 e E ="23= 1523360

c E=s=45

x.axis

B (3,2)

C (3, 8)

y-axis

y-axisB (2b, 2c)

)

A (-5, 2)

D(-5,8)

17 A = bh

A = 8.6 = 48

16 .6 < x < 11 b 7 < y < 10

20 Given: LB '" LD,

LA"'LCProve: ABCD is a o.Let mLB and mLD = x,

mLA and mLC = y

The sum oftheLs ofa quad iil 360 so

18 Given: .6.0BA;

MismdptBO.

Nis mdpt BA.

Prove: MN II OA,MN = -210A A (2a, 0)

x-axis

midpt BA =ea; 2b, ¥) = (a + b, c) N(a + b, c)

. - (2b + 0 2c + 0)mldpt BD = -2 -, -2 - = (b, c) M(b, c)

OA= 2a1

MN=a :. MN=zOA- 0-0

slope OA = 2a _ 0 = 0

- c-cslope MN = a + b _ b = 0 :. MN II OA

19 34

2x + 2y 360

x + y 180

LB must be supp to LA so AD II BC

LB must be supp to LC so AB II DC

In a quad if both pairs of opp sides are II, the quad is a

parallelogram.

. n(n - 3)21 Theorem 57 d =--2-

2 Using the formula E = 360, and that an Int L = 180-n

IntL = 180-ExtL, 180 - E = I.'JOOa E='s=72 180-72 108

b 360E=6=60 180-60 120

360c E='9=40 180-40 140

d3(;0

E=12=30 180-30 1503(;0 1 1 162~e E=21= 177 180-177 =

7

In this formula the n represents. the number of vertices.

From each vertex you can draw n - 3 diagonals, so there

are n(n - 3) diagonals. Each diagonal will have been

drawn twice, so we divide by 2.

(94 Section 7.4

Page 8: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

3604 From 180- IntL = ExtL and n = T

8 ANTE is isosceles because a stop sign is a reg octagon and

NE-NT.

1 PENTA is reg pentagon. 1 Given

2 PE - PA, EN - AT 2 In a reg polygon the sides

4 In a reg poly the sides are ••.

5 In a reg poly the Ls are -.

6SAS

7 CPCTC

8 A bis divides a seg into

360E=3i)=12

I = 180-E

I = 180 - 12 = 168

3 Given

4 .L lines form rt Ls.

5 RtLsare III.

6 Assumed from diagram

7 VertLsare III.

8 No Choice Theorem

9 Transitive prop

10 If a A has 2 - Ls, it is isos.

4 PE- PA,EN -AT

5 LE-LA

6 APEN-APAT

7 PN- PT

8 NR-TR

3 FC.L DD

4 LECD,LFCD rtLs

5 LECDIIILFCD

6 LAEF,LCED vertLs

7 LAEF-LCED

8 LF-LCED

9 LAEF-LF

10 AAEF is isos.

2 a segs.

9 PR 1.bis NT 9 Two pts =dist from endpts

of seg determine 1. bis.

W RS passes through P. W A seg has only 11.bis.

b The .Lbis ofa side ofa reg poly either bisects the L at

the vertex opposite that side or is the 1.bis of the side

opposite that side.

Conclusion: AAEF is iSfBceles.

1 AB IIIAD 1 Given

2 LD IIILD 2 IfA thenAA

F

9 Given: ABIIIAD,

FC.L DD

10 S=(n-2)1805040 = (n - 2)180

28 = n-2

30 = n

P

'V5:J.AN T

are III.

are-.

3 In a reg polygon the Ls

4 BAS

5 CPCTC

6 If2 sides ofa A are III,the

A is isos.

d 180-162=18

360+18=20

20 sides4 1e 180-1726= 76

. 1360+7&=50

50 sides

a 180 - 1« = 36

360+36= 10

10 sidesb 180-120=60

360+60=6

6 sides

c 180-156=24

360+24= 15

15 sides

3 LE-LA

4 APEN- APAT

5 PN-PT

6 APNT is isos.

5 Given: PENTA is reg pentagon.

Prove: APNT is isos.

360 3603 FromE=o,n=T

a == 6 sides

b ~=9sides

c ~= 10 sides

d s:o = 180 sides

e ~ =48sides

The polygon is a pentagon.n = 5

9(3:0) = (n _ 2)180

540 = (n-2)180

3 = n-2

11

12 mIL = 7x, mEL = 2x

7x + 2x = 180

9x = 180

x = 20

Exterior L = 2(20) = 40Number of sides = ~ = 9

The polygon is an equiangular nonagon.

13 a A b SeA d S e S f N

AE

7 Ifx = m extL, 4I = m intL.

x+4x = 180 E=3:~n=3:0360

5x = 180 n=36

x = 36 n= 10

x=E = 36

The polygon is an equilateral decagon.

8 a Given: PENTA reg pentagon

RS.L bis ofNT.

Prove: RS passes through P.

1 PENTA reg pentagon 1 Given

2 RS.L bis of NT. 2 Given

3 Draw PN, PR, PT 3 Two pts determine a seg.

Section 7.4 95

Page 9: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

14 Gi""", ABCDEF" •••• h........ •@,Prove: ACDF is a rectangle. F - - -- - - - 0

1 ABCDEF reg hexagon 1 Given . ' E2 AB IIIBC IIIDE •• EF 2 A reg hexagon has all

sides III.

)

)

vax yxY

Pages 320-323 Chapter 7 Review Problems

because these are the Ls between 105° and 145° that can

form equiangular polygons. By using the equation above,1

mLV can be (36, 60, 7'F,. 90, 100, 108).

17 A regular semioctagon means ~ a regular octagon soLE a

LD a LC. LA = ~LE. An angle of a regular octagon is

1= 180- 360n360

1= 180-8I = 180 - 45 = 135

1ThenLE= 135,LA=672

3x+3y+9=1351 1

2x+y-42=672Solving: 3x + 3y = 126

-3(2x + y) = 72

3x+3y = 126

-6x-3y = -216

-3x = -90

x = 30Then 3(30) + 3y + 9 = 135

90 + 3y = 126

3y=36

y = 12

16 LT+x+y= 180;

LV + 2x + 2y = 180

-2LT - 2x - 2y = -360

LV -2LT = -180

LV=2LT-180

The set of possibilities for LTis:4(108, 120, 128;;, 135, 140, 144)

3 A reg hexagon has aU Ls III.

4SAS

5 CPCTC

6 Sameas2

7 If opp sides of a quad are

III,it is a £:7.

8 Two pta determine a line.

9 Sameas3

10 IfA, then.().11 Subtraction

12 Reflexive prop

13 SAS

14 CPCTC15 Ifthe diagonals of a quad

are III,it is aD.

3 L1111L2

4 AABCIII6DEF

5 ACIIIDF

6 AFIIICD

7 ACDF is a £:7.

8 Draw AD and CF

9 LAFEIIILCDE

10 LDFE IIILDEF

11 LAFD IIILFAC

12 AF=.AF

136DFAIII6CAF

14 AD IIIFC

15 ACDFisaD.

15 Given: RO.l plane GHJ;0, M, and Kare coplanar. R

GHJKMP is a regular hexagon.

ffiSbisectaLGHJ.

RHIIIRJ

Prove: liliOO is regular.

1 RO.l plane GHJ 1 Given2 LROH, LROJ rt Ls 2 .1 lines intersect at rt Ls.

3 GHJKMP is a regular 3 Given

hexagon.4 LGHJ = 120" 4 Ls of a regular hexagon =

120".

5 HObisLGHJ

6 LOHJ = 60"

7 RHIIIRJ

8 ROIllRO

96ROHIII6ROO

10 OH 11100

11 60HJ is isos.

12 LOHJ IIILOJH

13 LOJH = 60°

14 LHOO = 60°

15 6HOO is equiangular.

16 HO IIIHJ aOO

17 6HOO is equilateral.

18 6HOJ is regular.

5 Given

6 Division prop

7 Given

8 Reflexive prop

9 HL

10 CPCTC11 An isos 6 has 2 a sides.

12 If A then.().

13 Substitution prop

14 SumofLsof6= 180°.

15 Ifthe Ls of a 6 are ii, itis

equiangular.

16 If.(). then A17 If the sides of a 6 are "', it

is equilateral.

18 A regular polygon is

equilateral and equiangular.

1 Given: LDBC aLE E~

Concl: LAaLBDC ABC

1 LDBC aLE 1 Given

2 LC +LDBC + 2 The sum of the Ls of a 6

LBDC= 180 is 180°.

3 LC + LA + LE = 180 3 Same as2

4 LC+LDBC+LBDC= 4 Transitive prop

LC+LA+LE

5 LBDC aLA 5 Subtraction prop

96 Chapter 7 Review

Page 10: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

The polygon has 11 Bides.

8 The measure of the Ls of a quadrilateral is 360.

Let4thL=x

40 + 70 + 130 + x = 360

240+ x = 360

x = 120

7 Let the m Ls be J:, 2x, 3L

X + 2x + 3x = ISO

6x = ISO

x = 303x = 90

(~)3X = 45

S mLl = 50 because 90 + 40 + x = ISO

mL2 = 50 because 90 + 40 + x = ISO

9 The ext L of a.to is equaJ to the sum of the remote

intLs 80,

x+50+40 = 2x+50

x+90 = 2x+50

x+40 = 2x

4O=x

2x+50+L'YZA = 180

2(40)+ 50 + L'YZA = ISO

SO+50+L'YZA = 180

130+L'YZA = ISO

mL'YZA = 50

11 Use ifA then IJ. and L3 = 180 -70 - 90 80L3 = 20.

10 CE = 6 by Midline Theorem

mLBCE = mLD = SO

mLBEC = ISO - 60 - SO

mLBEC=40

13 a St=(n-2)lS0

St = (33 - 2)lS0

St = (31)lS0

St= 5580

b 8,,=360

14 St = (n-2) ISO

1620 = (n - 2) ISO1620180 = (n-2)

9 = n-2

n = 11

1 Given

2 Given

3 Given

4 Given

5 If a line is .l to a plane, it

is .l toa line that passes

through its foot.

6 .llines form rt Ls.

7 RtLsare-.

S Reflexive prop

9 AAS

10 CPCTC

6 LTVS, LTVX rtLs

7 LTVS-LTVX

STY-TV

9 .t.STV - .t.rrV

10 TS-TX

I) Given: SV lies in plane m.

VX lies in plane m.

LS-LX,

TV .lplanem

Prove: TS - TX

1 SV lies in plane m.

2 VX lies in plane m.

3 LS-a

4 TV.l planem

5 TV .l SV and VX

2 Given: 00, .@J,LW-LV,

) LORW-LOSV

Prove: PR-"ST W V100 1 Given

2 LW-LV, 2 Given

LORW-LOSV

3 OW-OV 3 Radii of0 are-.

4 .toOWR- .toOVS 4 AAS

5 OR-OS 5 CPCTC6 op-(jif 6 Radii of0 are-.7 PR-"ST 7 SubtractionCr>3 Given: AC-AE, o A

LCBD-LEFD

Prove: LBDC-LFDE E F1 AC-A'E 1 Given

2 LCBD-LEFD 2 Given

3 LC-LE 3 IfA then IJ.4 LBDC-LFDE 4 No Choice Theorem

R

4 Given: LS-LRQP, s<2JLROS-LP

Prove: LSRO-LPRO o P

t 1 LS-LRQP 1 Given

2 LROS-LP 2 Given

3 LSRO-LPRO 3 No Choice Theorem

No sides

given -. T

Chapter7Re~ew 97

Page 11: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

15 A pentadecagon has 15 sides.

d- n(n-3)- 2

d_15(l5-3)- 2

d_ 15(12)- 2

180d=z=90

20 LADC - LACB (IfA then.o.)

LABC + LACB = 180 - 50

LADC + LACB = 130 ( -JLADC = LACB = 65

LDBC - LDCA so LADD - LDCB

LD = 180 - (LDBC + LDCB)

LD = 180 - (LDBC + LABD)

LD = ISO-LADC

LD= 180-65

mLD= 115

21aAbScS dN

22 ~=(n-2)lS0

~ = (6)lS0 = 10S0

1080 - 540 = 540

The octagon must be non convex.

23 A triangle has !l diagonals.

A quadrilateral has 2. diagonals.A pentagon has :idiagonals.A hexagon has IIdiagonals.It is not an arithmetic progression.

24 mIntL=x

mextL=yx = 4(y) +30 ( 'Ix-4y = 30

x+y = 180

Solve (x + y = lS0) mutt by (-1)

-x-y = -ISO

x-4y = 30

-5y = -150

y = 30lID Equiangular dodecagon"3)=12

A

25 Given: BC - FE,

~LC -LE

Prove: 6.ABF is isosceles. C E

IDe-FE 1 Given

2 LC -LE 2 Given

3 LBDC,LFDEvertLs 3 Assumed from diagram

4 LBDC - LFDE 4 VertLs are-.

5 6.BDC - 6,FDE 5 AAS

6 BD - FD, CD - DE 6 CPCTC

7 CFEIIEB 7 Addition

SLA-LA 8 Reflexive prop

9 6.AFC - 6.ABE 9 AAS

10 AB - AF 10 CPCTC( J11 6.ABF is isos. 11 If2legs of 6. are -, then it

is isos.

I

5x = 90

x = 18

mL2 = 72

4 Ls ofa reg poly are-.

5 SAS

6 CPCTC

~E

1 Given U2 Sides of a reg poly are a.

3 Same as2

6x=90

x=15

mL2 = 75

Chapter 7 Review

This is true for regular pentagons and squares.

4 L1-L2

5 6.PAT - 6,PEN

6 PT-PN

n = 3The polygon is an equilateral triangle.

18

17 Given: PENTA is a reg pentagon.

Prove: PT - PN1 PENTA is a reg pentagon.

2 PA-PE

3 AT-EN

19 a 6.ABC is isos so LABC - LACB.

LA + LABC + LACB = ISO

50+x+x = lS0

50+2x = lS0

2x = 130

LABC=x = 6512x = LABF

12(65) = LABF1

mLABF=322

b LACB + LACD = 18065 + LACD = ISO By Substitution

LACD = 1151 1

LACE =2LACD = 572

LBCE = LACB + LACE1 1

mLBCE = 65 + 572= 1222

C LEBC + LBCE + LE = lS03~+ 122~+LE = 180

155+LE = ISO

mLE = 25

18 E = 360, ~ = (n-2)180n n

3:0 = 2[(n-:)18~]

360 = (2n-4)180

360 = 360n - 720

360n = 1080

Page 12: Chapter '1POLYGONS ())€¦ · Chapter '1POLYGONS Pages 298-301 (Section '1.1) 1 TheAisisosceles soLB=LC. 40+2x = ISO 2x = 140 x = 70 mLB = 70 2 L2issupp toLl somL2 =50 L5andL7arevertLssomL5

n

26 h=b+e

LAFG = h by the No Choice Theorem.

LEFD = h by vertical Ls =.d = h + e and e = d - h

Substituting for e:

h = b + (d - h) = b + d - h

2h = b + d1h = "2(b + d)

30 Assume there is a polygon.Then n(n - 3) - 3602 -

n(n -3) = 720

n2-3n-720 = 0

Using the quadratic formula-(-3) 1:../9 + 2880

2- (-3) 1:..J2889

2

Prove:

27 Given: 2889 is not a perfect square, so there is no solution

possible.

1 Given

2 Given

3 Given

4 If8 then 1115 "2C180-4x)

6 ~(LPRS)

7 The m of an extL ofab. is

equal to the sum of the

remote int Ls.

6 LWRS=45-x

7 LPST = 90 + 2x

PR= PS;

RYbisLPRS.

SVbisLPST.1mLV="2mLP

(mLP= 4x)

1 PR= PS

2 RYbisLPRS

3 SVbisLPST

4 LPRS ""LPSR5 LPSR = 90 - 2x

8 LPSV = LVST = 45 + x 8 A bis divides an L into 2 ""

Ls.

9 mLWRS + mLRSV = 9 Addition

180-2x

10 LWRS +LRSV +

LV = 180

11 180 - 2x + LV = 180

12 LV = 2x113 2x = "2(4x)114 mLV =2(LP)

10 Sum ofLs of a b. equals

180°.

11 Substitution prop

12 Algebraic Properties13 Multiplication

14 Substitution prop

28 Possibilities are:

@@@@@@@ 108,108,108,108,

108,@@@@@@

Probability = ~

29 y-axis

B(- 4. 4) f (4.4)C (0.-4)1

II x-axis

A(-4.0) 0(0.0) G (4, 0)

The rotation sends A to C, B to F, and C to G.

Area recto ABFG = bh = 8(4) = 32

Chapter 7 Review 99