54
Chapter 18: Molecular Biology and Medicine CHAPTER 18 Molecular Biology and Medicine

CHAPTER 18 Molecular Biology and Medicine

  • Upload
    aisha

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

CHAPTER 18 Molecular Biology and Medicine. Chapter 18: Molecular Biology and Medicine. Protein as Phenotype Mutations and Human Diseases Detecting Human Genetic Variations Cancer: A Disease of Genetic Changes Treating Genetic Diseases Sequencing the Human Genome. Protein as Phenotype. - PowerPoint PPT Presentation

Citation preview

Page 1: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

CHAPTER 18Molecular Biology and

Medicine

Page 2: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Chapter 18: Molecular Biology and MedicineProtein as PhenotypeProtein as Phenotype

Mutations and Human DiseasesMutations and Human Diseases

Detecting Human Genetic VariationsDetecting Human Genetic Variations

Cancer: A Disease of Genetic ChangesCancer: A Disease of Genetic Changes

Treating Genetic DiseasesTreating Genetic Diseases

Sequencing the Human GenomeSequencing the Human Genome

Page 3: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• In many human genetic diseases, a In many human genetic diseases, a

single protein is missing or single protein is missing or nonfunctional.nonfunctional.

• Therefore, the one-gene, one-Therefore, the one-gene, one-polypeptide relationship applies to polypeptide relationship applies to human genetic diseases.human genetic diseases.

Review Figure 18.1Review Figure 18.133

Page 4: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.1

Figure 18.1Figure 18.1

figure 18-01.jpgfigure 18-01.jpg

Page 5: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• A mutation in a single gene causes A mutation in a single gene causes

alterations in its protein product that alterations in its protein product that may lead to clinical abnormalities or may lead to clinical abnormalities or have no effect. have no effect.

Review Figure 18.2Review Figure 18.255

Page 6: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.2

Figure 18.2Figure 18.2

figure 18-02.jpgfigure 18-02.jpg

Page 7: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• Some diseases are caused by Some diseases are caused by

mutations that affect structural mutations that affect structural proteins.proteins.

77

Page 8: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• Genes that code for receptors and Genes that code for receptors and

membrane transport proteins can also membrane transport proteins can also be mutated and cause other diseases. be mutated and cause other diseases.

Review Figure 18.3Review Figure 18.388

Page 9: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.3

Figure 18.3 – Part 1Figure 18.3 – Part 1

figure 18-03a.jpgfigure 18-03a.jpg

Page 10: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.3

Figure 18.3 – Part 2Figure 18.3 – Part 2

figure 18-03b.jpgfigure 18-03b.jpg

Page 11: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• Prion diseases are caused by a protein Prion diseases are caused by a protein

with an altered shape transmitted from with an altered shape transmitted from one person to another and altering the one person to another and altering the same protein in the second person.same protein in the second person.

1111

Page 12: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• Few human diseases are caused by a Few human diseases are caused by a

single-gene mutation. single-gene mutation.

• Most are caused by interactions of Most are caused by interactions of many genes and proteins with the many genes and proteins with the environment.environment.

1212

Page 13: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Protein as Phenotype• Human genetic diseases show Human genetic diseases show

different inheritance patterns. different inheritance patterns.

• Mutant alleles may be inherited as Mutant alleles may be inherited as autosomal recessives, autosomal autosomal recessives, autosomal dominants, X-linked conditions, or dominants, X-linked conditions, or chromosomal abnormalities.chromosomal abnormalities.

1313

Page 14: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• Molecular biology techniques have Molecular biology techniques have

made possible the isolation of many made possible the isolation of many genes responsible for human diseases.genes responsible for human diseases.

1414

Page 15: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• One method of identifying the gene One method of identifying the gene

responsible for a disease is to isolate responsible for a disease is to isolate the mRNA for the protein in question the mRNA for the protein in question and use the mRNA to isolate the gene and use the mRNA to isolate the gene from a gene library. from a gene library.

• DNA from a patient lacking a piece of a DNA from a patient lacking a piece of a chromosome can be compared to that chromosome can be compared to that of a person not showing this deletion of a person not showing this deletion to isolate a missing gene. to isolate a missing gene.

• Review Figure 18.6Review Figure 18.61515

Page 16: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.6

Figure 18.6Figure 18.6

figure 18-06.jpgfigure 18-06.jpg

Page 17: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• In positional cloning, DNA markers are In positional cloning, DNA markers are

used to point the way to a gene. used to point the way to a gene.

• Markers may be restriction fragment Markers may be restriction fragment length polymorphisms linked to a mutant length polymorphisms linked to a mutant gene. gene.

Review Figure 18.7Review Figure 18.71717

Page 18: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.7

Figure 18.7Figure 18.7

figure 18-07.jpgfigure 18-07.jpg

Page 19: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• Human mutations range from single Human mutations range from single

point mutations to large deletions.point mutations to large deletions.

• Some common mutations occur where Some common mutations occur where the modified base 5-methylcytosine is the modified base 5-methylcytosine is converted to thymine. converted to thymine.

Review Figure 18.8, Table 1Review Figure 18.8, Table 11919

Page 20: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.8

Figure 18.8Figure 18.8

figure 18-08.jpgfigure 18-08.jpg

Page 21: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• Effects of the fragile-X chromosome Effects of the fragile-X chromosome

worsen with each generation. worsen with each generation.

• This pattern is caused by a triplet repeat This pattern is caused by a triplet repeat that tends to expand with each that tends to expand with each generation. generation.

Review Figure 18.9Review Figure 18.92121

Page 22: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.9

Figure 18.9Figure 18.9

figure 18-09figure 18-09

Page 23: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Mutations and Human Diseases• Genomic imprinting results in a gene Genomic imprinting results in a gene

being differentially expressed being differentially expressed depending on which parent it comes depending on which parent it comes from.from.

2323

Page 24: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Detecting Human Genetic Variations• Genetic screening detects human gene Genetic screening detects human gene

mutations.mutations.• Some protein abnormalities can be Some protein abnormalities can be

detected by tests for the presence of detected by tests for the presence of excess substrate or lack of product. excess substrate or lack of product.

Review Figure 18.10Review Figure 18.102424

Page 25: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.10

Figure 18.10Figure 18.10

figure 18-10.jpgfigure 18-10.jpg

Page 26: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Detecting Human Genetic Variations• The advantage of testing DNA for The advantage of testing DNA for

mutations directly is that any cell can mutations directly is that any cell can be tested at any time in the life cycle.be tested at any time in the life cycle.

2626

Page 27: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Detecting Human Genetic Variations• There are two methods of DNA testing: There are two methods of DNA testing:

allele-specific cleavage and allele-allele-specific cleavage and allele-specific oligonucleotide hybridization. specific oligonucleotide hybridization.

Review Figures 18.11, 18.12Review Figures 18.11, 18.122727

Page 28: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.11

Figure 18.11Figure 18.11

figure 18-11.jpgfigure 18-11.jpg

Page 29: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.12

Figure 18.12Figure 18.12

figure 18-12.jpgfigure 18-12.jpg

Page 30: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• Tumors may be benign, growing to a Tumors may be benign, growing to a

certain extent and stopping, or certain extent and stopping, or malignant, spreading through organs malignant, spreading through organs and to other parts of the body.and to other parts of the body.

3030

Page 31: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• At least five types of human cancers At least five types of human cancers

are caused by viruses, accounting for are caused by viruses, accounting for about 15 percent of all cancers. about 15 percent of all cancers.

Review Table 18.2Review Table 18.23131

Page 32: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.2

Table 18.2Table 18.2

table 18-02.jpgtable 18-02.jpg

Page 33: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• Eighty-five percent of human cancers Eighty-five percent of human cancers

are caused by genetic mutations of are caused by genetic mutations of somatic cells. somatic cells.

• These occur most commonly in These occur most commonly in dividing cells. dividing cells.

Review Figure 18.14Review Figure 18.143333

Page 34: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.14

Figure 18.14Figure 18.14

figure 18-14.jpgfigure 18-14.jpg

Page 35: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• Normal cells contain proto-oncogenes, Normal cells contain proto-oncogenes,

which, when mutated, can become which, when mutated, can become activated and cause cancer by activated and cause cancer by stimulating cell division or preventing stimulating cell division or preventing cell death.cell death.

Review Figure 18.15Review Figure 18.153535

Page 36: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.15

Figure 18.15Figure 18.15

figure 18-15.jpgfigure 18-15.jpg

Page 37: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• About 10 percent of all cancer is About 10 percent of all cancer is

inherited as a result of mutation of inherited as a result of mutation of tumor suppressor genes, which tumor suppressor genes, which normally slow down the cell cycle.normally slow down the cell cycle.

• For cancer to develop, both alleles of a For cancer to develop, both alleles of a tumor suppressor gene must be tumor suppressor gene must be mutated.mutated.

3737

Page 38: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• In inherited cancer, an individual In inherited cancer, an individual

inherits one mutant allele and somatic inherits one mutant allele and somatic mutation occurs in the second one. mutation occurs in the second one.

• In sporadic cancer, two normal alleles In sporadic cancer, two normal alleles are inherited, so two mutational events are inherited, so two mutational events must occur in the same somatic cell. must occur in the same somatic cell.

Review Figures 18.16, 18.17Review Figures 18.16, 18.173838

Page 39: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.16

Figure 18.16Figure 18.16

figure 18-16.jpgfigure 18-16.jpg

Page 40: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.17

Figure 18.17Figure 18.17

figure 18-17.jpgfigure 18-17.jpg

Page 41: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Cancer: A Disease of Genetic Changes• Mutations must activate several Mutations must activate several

oncogenes and inactivate several oncogenes and inactivate several tumor suppressor genes for a cell to tumor suppressor genes for a cell to produce a malignant tumor.produce a malignant tumor.

Review Figure 18.18Review Figure 18.184141

Page 42: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.18

Figure 18.18Figure 18.18

figure 18-18.jpgfigure 18-18.jpg

Page 43: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Treating Genetic Diseases• Most genetic diseases are treated Most genetic diseases are treated

symptomatically.symptomatically.• As more knowledge is accumulated, As more knowledge is accumulated,

specific treatments are being devised.specific treatments are being devised.4343

Page 44: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Treating Genetic Diseases• One treatment approach is to modify One treatment approach is to modify

the phenotype, for example, by the phenotype, for example, by manipulating diet, providing specific manipulating diet, providing specific metabolic inhibitors to prevent metabolic inhibitors to prevent accumulation of a harmful substrate, accumulation of a harmful substrate, or supplying a missing protein. or supplying a missing protein.

Review Figure 18.19Review Figure 18.194444

Page 45: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.19

Figure 18.19Figure 18.19

figure 18-19.jpgfigure 18-19.jpg

Page 46: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Treating Genetic Diseases• In gene therapy, a mutant gene is In gene therapy, a mutant gene is

replaced with a normal one. replaced with a normal one.

• Either the affected cells can be Either the affected cells can be removed, the new gene added, and removed, the new gene added, and the cells returned to the body, or the the cells returned to the body, or the new gene can be inserted directly. new gene can be inserted directly.

Review Figure 18.20Review Figure 18.204646

Page 47: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.20

Figure 18.20Figure 18.20

figure 18-20.jpgfigure 18-20.jpg

Page 48: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Sequencing the Human Genome• Human genome sequencing is Human genome sequencing is

determining the entire human DNA determining the entire human DNA sequence, which requires sequencing sequence, which requires sequencing many 500-base-pair fragments and many 500-base-pair fragments and fitting the sequences back together.fitting the sequences back together.

4848

Page 49: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Sequencing the Human Genome• In hierarchical gene sequencing, marker In hierarchical gene sequencing, marker

sequences are identified and mapped, then sequences are identified and mapped, then sought in sequenced fragments and used to sought in sequenced fragments and used to align the fragments. align the fragments.

• In the shotgun approach, the fragments are In the shotgun approach, the fragments are sequenced, and common markers identified sequenced, and common markers identified by computer. by computer.

Review Figure 18.21Review Figure 18.214949

Page 50: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.21

Figure 18.21 – Part 1Figure 18.21 – Part 1

figure 18-21a.jpgfigure 18-21a.jpg

Page 51: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.21

Figure 18.21 – Part 2Figure 18.21 – Part 2

figure 18-21b.jpgfigure 18-21b.jpg

Page 52: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Sequencing the Human Genome• The identification of more than 30,000 The identification of more than 30,000

human genes may lead to a new human genes may lead to a new molecular medicine. molecular medicine.

Review Figure 18.22Review Figure 18.225252

Page 53: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

18.22

Figure 18.22Figure 18.22

figure 18-22.jpgfigure 18-22.jpg

Page 54: CHAPTER 18 Molecular Biology and Medicine

Chapter 18: Molecular Biology and Medicine

Sequencing the Human Genome• As more genes relevant to human As more genes relevant to human

health are described, concerns about health are described, concerns about how such information is used are how such information is used are growing.growing.

5454