6
Chapter 13 Chemical Equilibrium.notebook 1 May 16, 2016 May 52:04 PM Chapter 13: Chemical Equilibrium Apr 239:55 AM 13.1 The Equilibrium Condition When you finish this section you will be able to list some characteristics of reactions at equilibrium. Chemical equilibriumis the state where the concentrations of all reactants and products remain constant with time. A double arrow ( ) is used to show that a reaction can occur in either direction. H2O(g) + CO(g) H 2(g) + CO2(g) The Changes with time in the rates of forward and reverse reactions for The Changes in concentrations with time for the reaction H2O(g) + CO(g) H 2(g) + CO2(g) Equilibrium is not static but a highlydynamic situation A concentration profile for the reaction N2(g) + 3H2(g) 2NH 3(g)

Chapter 13: Chemical Equilibrium - Lower Moreland …. Chem... · Chapter 13 Chemical Equilibrium.notebook 3 May 16, 2016 Apr 2711:57 PM 13.4 Heterogeneous Equilibria Equilibrium

Embed Size (px)

Citation preview

Chapter 13 Chemical Equilibrium.notebook

1

May 16, 2016

May 5­2:04 PM

Chapter 13: Chemical Equilibrium

Apr 23­9:55 AM

13.1  The Equilibrium ConditionWhen you finish this section you will be able to list some characteristics of reactions at equilibrium.Chemical equilibrium is the state where the concentrations of all reactants and products remain constant with time.

A double arrow (      ) is used to show that a reaction can occur in either direction.

H2O(g) + CO(g)       H 2(g) + CO 2(g)

The Changes with time in the rates of forward and reverse reactions for

The Changes in concentrations with time for the reaction

H2O(g) + CO(g)       H 2(g) + CO 2(g)

Equilibrium is not static but a highly dynamic  situation

A concentration profile for the reaction  N2(g) + 3H 2(g)        2NH 3(g)

Chapter 13 Chemical Equilibrium.notebook

2

May 16, 2016

Apr 24­1:01 PM

Example 13.1 Background Questions

1. What is dynamic equilibrium?2. What is true about the initial rate of forward and reverse reactions in a system where only reactants are present?3. What is true about the rates forward and reverse reactions at equilibrium?4. Why does equilibrium occur?

13.2 The Equilibrium ConstantWhen you finish this section you will be able to write a mass action expression for a given balanced chemical equation.

Law of Mass Action ­ for a reaction 

nA + mB ↔ pC + qD

the equilibrium constant K is given by K = [C]p[D]q        [A]n[B]m

One way to determine the significance of K is to assume that the forward reaction involves nA and mB in its rate­determining step, and the reverse reaction involves pC and qD in its rate­determining step.

Apr 24­1:13 PM

ratefoward = kf [A]n[B]m

ratereverse  = kr [C]p[D]q

At equilibrium, rateforward  = ratereverse , or 

kf [A]n[B]m = kr [C]p[D]q.  

kf = K =  [C]p[D]q  kr            [A]n[B]m

K is thus the ratio of the forward to reverse rate constants (not the rate)!  As with the kinetic rate­determining step, reactant or product coefficients become exponents when put in the mass action expression, or “equilibrium expression”

Example 13.2 A Equilibrium Expressions

Write the equilibrium expression for each of the following reactions:

a. PCl5(g) ↔ PCl3(g) + Cl2(g)b. S8(g) ↔ 8S(g)c. Cl2O7(g) + 8H2(g) ↔ 2HCl(g) + 7H2O(g)

Rearranging:

Chapter 13 Chemical Equilibrium.notebook

3

May 16, 2016

Apr 27­11:57 PM

13.4 Heterogeneous EquilibriaEquilibrium expressions involve concentrations (or pressures) of substances that change  from initial to equilibrium conditions.  A pure substance such as water changes amount, but not concentration.  The concentrations of pure solids and liquids remain constant, their concentrations are NOT included in the equilibrium expression for the reaction.

CaCO3(s)        CaO(s) + CO 2(g)

K = [CO2]        The position of the equilibrium does not depend on the 

amounts of CaCO3 and CaO present.

Apr 28­12:13 AM

13.5 Application of the Equilibrium ConstantWhen you finish this section you will be able to:• Use the reaction quotient (Q) to predict the direction of chemical reactions toward equilibrium.

• Use the reaction quotient to aid in solving simple equilibrium problems.

What K can/cannot indicate:• K does not reflect how fast a reaction goes.• A large  value of K means that mostly products will be present at equilibrium.

• A small value K means that mostly reactants  will be present at equilibrium. 

Reaction quotient, Q,  predicts the direction that the reaction will go to reach equilibrium.  It is calculated by using the law of mass action on the initial, not equilibrium, concentrations (or pressures) of the reaction substances.

• If Q is equal to K,  the system is at equilibrium.• If Q is greater than K, mathematically, there is too much product present.  The system will shift to the left to reach equilibrium.

• If Q is less than K, there is too much reactant present.  The system will shift to the right to reach equilibrium.

Chapter 13 Chemical Equilibrium.notebook

4

May 16, 2016

Apr 28­1:17 PM

Example 13.5A Predicting the Direction of EquilibriumThe reaction between hydrogen gas and iodine gas is:

H2(g)  +  I2(g)       2HI(g) K = 7.1 x 102 at 25oC

Predict the direction that the system will shift in order to reach equilibrium given each of the following initial conditions:

a. Q = 427b. Q = 1522c. [H2] = 0.81 M [I2] = 0.44 M [HI] = 0.58 Md. [H2] = 0.078 M [I2] = 0.033 M [HI] = 1.35 Me. [H2] = 0.034 M [I2] = 0.035 M [HI] = 1.50 M

Apr 23­11:23 PM

Chapter 13 Chemical Equilibrium.notebook

5

May 16, 2016

Apr 29­7:57 PM

Example 13.6 A Equilibrium Calculations – Small Value For K

The reaction between nitrogen and oxygen to form nitric oxide has a value for the equilibrium constant at 2000 K of K= 4.1 x10­4 .  If 0.50 moles of N2 and 0.86 mole of O2 are put into a 2.0 L container at 2000 K, what would be the equilibrium concentrations of all species?

AssumptionBecause K is small, let us assume that x is negligible  compared to 0.25 and 0.43.

Double CheckWe can check our math by solving for K using  our equilibrium concentrations.

Testing our AssumptionWe must test our assumption  and check the answer.  Is x  less than 5% of 0.25 M?  Yes. Is it less than 5% of 0.464? Yes.

Apr 29­8:01 PM

13.7 Le Châtelier’s PrincipleWhen you finish this section you will be able to predict the response of a system to stresses placed on it.

Le Châtelier’s Principle: “If a change is imposed on a system at equilibrium the position of the equilibrium will shift in a direction that tends to reduce that change.”

Haber process: N2(g) + 3H2(g) ↔ 2NH3(g) + 92 kJ 

Consider the following effects on the position of equilibrium:

• Concentration if a component (reactant or product) is added to a reaction system at equilibrium (at constant T and P or constant T and V), the equilibrium position will shift in the direction that lowers the concentration of that component.  If a component is removed, the opposite effect occurs.

• Pressure Add or remove a gaseous reactant or product.  Add an inert gas. It increases the total pressure but has no affect on the concentration or partial   of the reactants or products.

Look over the effects of each on the direction of equilibrium

• Temperature the value of K changes with temperature.

Chapter 13 Chemical Equilibrium.notebook

6

May 16, 2016

Apr 29­8:23 PM

Example 13.7A Le Châtelier’s Principle

Nitrogen gas and oxygen gas combine at 25ºC in a closed container to form nitric oxide as follows:

N2(g) + O2(g) ↔ 2NO(g)   ΔH = +1.81 kJ   Kp = 3.3 x 1030

What would be the effect on the direction of equilibrium (i.e. would it shift to the left, right, or not at all) if the following changes were made to the system?

a. N2 is addedb. He is addedc. The container is made largerd. The system is cooled

Example 13.7B Practice with Le Châtelier’s Principle

The combination of hydrogen gas and oxygen gas to give water vapor can be expressed by

2H2(g) + O2(g) ↔ 2H2O(g) ΔH = ­484 kJ  

Predict the effect of each of the following changes to the system on the direction of equilibrium.

a. H2O is removed as it is being generatedb. H2 is addedc. The system is cooled