51
Chapter 11: Implementing File Systems

Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Chapter 11: Implementing File

SystemsSystems

Page 2: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Chapter 11: File System Implementation

• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management • Free-Space Management

• Efficiency and Performance

• Recovery

• NFS

• Example: WAFL File System

2009/12/28 2

Page 3: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.1 File-System Structure

• File structure

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks)• File system resides on secondary storage (disks)

• File system organized into layers

• File control block – storage structure consisting of

information about a file

2009/12/28 3

Page 4: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Layered File System

Logical File System

Application Programs

File-Organization Module

Given a symbolic file name,

use directory to provide

values needed by FOM

Transform logical address to

write(data_file, item)

file name

information

of data_file

File-Organization Module

Basic File System

I/O Control

Devices

physical block address

Numeric disk address

Driver: hardware instructions

2144th block

driver 1, cylinder 73,

surface 2, sector 10

2009/12/28 4

Page 5: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.2 File-System Implementation

• On-disk:

– boot control block (per volume), volume control block (per

volume), directory structure (per file system), A per file FCB

(inode)

– Volume control block (superblocks in UFS, Master File Table

in NTFS): # of blocks, size of the blocks, free-block count and in NTFS): # of blocks, size of the blocks, free-block count and

pointers, and free FCB count and pointers.

• In-memory: in-memory mount table (mounted), in-

memory directory structure (recently accessed),

system-wide open-file table (FCB for each open file),

per-process open-file table

2009/12/28 5

Page 6: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

A Typical File Control Block

2009/12/28 6

Page 7: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

In-Memory File System Structures

2009/12/28 7

Page 8: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Virtual File Systems

• Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

• VFS allows the same system call interface (the

API) to be used for different types of file API) to be used for different types of file

systems.

• The API is to the VFS interface, rather than any

specific type of file system.

2009/12/28 8

Page 9: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Schematic View of Virtual File System

2009/12/28 9

Page 10: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.3 Directory Implementation

• Linear list of file names with pointer to the data

blocks– simple to program

� time-consuming to execute

• Hash Table – linear list with hash data structure• Hash Table – linear list with hash data structure– f(file name) = pointer of the list

– decreases directory search time

��collisionscollisions – situations where two file names hash to the

same location

� fixed size

• Advanced structures: B-tree, …

2009/12/28 10

Page 11: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.4 Allocation Methods

• An allocation method refers to how disk blocks are

allocated for files:

• Contiguous allocation• Contiguous allocation

• Linked allocation

• Indexed allocation

2009/12/28 11

Page 12: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Contiguous Allocation

☺: 1. Reduce seek time for contiguous access

2. Access is easy

3. Support both sequential and direct access

�: 1. dynamic allocation problem

–first-fit, best-fit, worst-fit–first-fit, best-fit, worst-fit

2. external fragmentation

–compaction (expensive)

3. file cannot grow

4. size estimation (for extension later)

–declaration and pre-allocation (inefficient usage of space)

2009/12/28 12

Page 13: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Contiguous Allocation of Disk Space

2009/12/28 13

Page 14: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Extent-Based Systems

• Many newer file systems (I.e. Veritas File System)

use a modified contiguous allocation scheme

• Extent-based file systems allocate disk blocks in

extents

• An extent is a contiguous block of disks

– Extents are allocated for file allocation

– A file consists of one or more extents.

2009/12/28 14

Page 15: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk.

pointerblock = pointerblock =

2009/12/28 15

Page 16: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

☺: 1. Simple – need only starting address

2. Free-space management system – no waste of space

3. No external fragmentation

4. Easy to create a file (no allocation problem)

�: 1. only better for sequentially access

2. pointers require space

3. reliability (damaged pointers)

2009/12/28 16

Page 17: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Linked Allocation

2009/12/28 17

Page 18: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

File-Allocation Table

• The simple but efficient method– an variation used by DOS and OS/2

– one entry for each disk block, indexed by block

number

– the table is used as a linked list

2009/12/28 18

Page 19: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

File Allocation Table

0 (3)1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 14 12 1 -1

9 121 7 14

0 (3)1 2 3

4 5 6 (4)7

8 (1)9 10 11

(2)12 13 (5)14 15

directory

file start

jeep 9

2009/12/28 19

Page 20: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Indexed Allocation

• Bring all the pointers together into one location: the index block (one for each file)

☺: 1. Direct access

2. No external fragmentation

2. Easy to create a file (no allocation problem)

3. Support both sequential and direct access3. Support both sequential and direct access

�: 1. Space for index blocks

2. How large the index block should be ?

– linked scheme

– multilevel index

– combined scheme (BSD UNIX)

2009/12/28 20

Page 21: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Example of Indexed Allocation

2009/12/28 21

Page 22: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Linked Scheme

φφφφ

directory

file first index block

jeep 19

next

data block

data block

next

data block

next

data block

data block

data block

data block

data block

data block

data block

data block

data block

data block

19 24 8

2009/12/28 22

Page 23: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Multilevel Scheme

(two-level)

directory

file first index block

jeep 16

19

24

16

19

data block

data block

data block

24

data block

data block 24

8

-1

-1

-1

data block

data block

8

data block

data block

data block

2009/12/28 23

Page 24: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Combined Scheme: UNIX (4K bytes per block)

2009/12/28 24

Page 25: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.5 Free-Space Management

• Bit vector (n blocks)

0 1 2 n-1

bit[i] =

67

8 0 ⇒ block[i] occupied

⇒67

8

1 ⇒ block[i] free

The first free block number calculation:

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

2009/12/28 25

Page 26: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Free-Space Management (Cont.)

• Bit map requires extra space

– Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

• Easy to get contiguous free blocks • Easy to get contiguous free blocks

• Linked list (free list)

– Cannot get contiguous space easily

– No waste of space

• Grouping

• Counting

2009/12/28 26

Page 27: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Free-Space Management (1)

• Free-space list: used to keep track of free disk space

– bit vector (bit map)

one bit for a block (1: free, 0: allocated)

☺: easy to get contiguous files

– linked list: each free block points to the next

�: not easy to traverse the list (infrequent action)

☺: No waste of space☺: No waste of space

– grouping:

– first: store n free blocks;

– n -th free block: store another n free blocks

☺: find a large number of free blocks quickly

– counting: several contiguous blocks may be allocated or free simultaneously

– a list of (first + no. of free blocks)

2009/12/28 27

Page 28: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

0 1 2 3

4 5 6 7

8 9 10 11

free-list head

Bit Map/Linked List/Grouping/Counting

grouping (n=3)

1 2,3,7

7 8,9,1212 13 14 15

16 17 18 19

20 21 22 23

bit map: 011100011100101111100000

counting: (1,3), (7, 3), (12, 1), (14, 5)counting: (1,3), (7, 3), (12, 1), (14, 5)

7 8,9,12

12 14,15,16

16 17,18,-1

2009/12/28 28

Page 29: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.6 Efficiency and Performance

• Efficiency dependent on:

– disk allocation and directory algorithms

– types of data kept in file’s directory entry

• Last write (access) date

• Performance

– disk cache – separate section of main memory for – disk cache – separate section of main memory for frequently used blocks

– free-behind and read-ahead – techniques to optimize sequential access

– improve PC performance by dedicating section of memory as virtual disk, or RAM disk

2009/12/28 29

Page 30: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Page Cache

• A page cache caches pages rather than disk

blocks using virtual memory techniques

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses the

buffer (disk) cachebuffer (disk) cache

• This leads to the following figure

2009/12/28 30

Page 31: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Various Disk-Caching Locations

totally user controlled

Page Cache

2009/12/28 31

Page 32: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

I/O Without a Unified Buffer Cache

Drawbacks:

inconsistencies

Virtual memory controlled

inconsistencies

waste MM

waste CPU&I/O

Double caching

I/O controlled

2009/12/28 32

Page 33: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Unified Buffer Cache

• A unified buffer cache uses the same page cache to

cache both memory-mapped pages and ordinary file

system I/O

2009/12/28 33

Page 34: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

I/O Using a Unified Buffer Cache

2009/12/28 34

Page 35: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.7 Recovery

• Consistency checking – compares data in directory

structure with data blocks on disk, and tries to fix

inconsistencies

• Use system programs to back up data from disk to

another storage device (floppy disk, magnetic tape,

other magnetic disk, optical)

• Recover lost file or disk by restoring data from

backup

2009/12/28 35

Page 36: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Log Structured File Systems

• Log structured (or journaling) file systems record each update

to the file system as a transaction

• All transactions are written to a log

– A transaction is considered committed once it is written to

the log

– However, the file system may not yet be updated– However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the

file system

– When the file system is modified, the transaction is

removed from the log

• If the file system crashes, all remaining transactions in the log

must still be performed

2009/12/28 36

Page 37: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.8 The Sun Network File System (NFS)

• An implementation and a specification of a

software system for accessing remote files across

LANs (or WANs)

• The implementation is part of the Solaris and • The implementation is part of the Solaris and

SunOS operating systems running on Sun

workstations using an unreliable datagram protocol

(UDP/IP protocol and Ethernet

2009/12/28 37

Page 38: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS (Cont.)

• Interconnected workstations viewed as a set of independent machines with independent file systems, which allows sharing among these file systems in a transparent manner

– A remote directory is mounted over a local file system directory

• The mounted directory looks like an integral subtree of the local file system, replacing the subtree descending from the local directory

– Specification of the remote directory for the mount operation is – Specification of the remote directory for the mount operation is nontransparent; the host name of the remote directory has to be provided

• Files in the remote directory can then be accessed in a transparent manner

– Subject to access-rights accreditation, potentially any file system (or directory within a file system), can be mounted remotely on top of any local directory

2009/12/28 38

Page 39: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network

architectures; the NFS specifications independent of these

media

• This independence is achieved through the use of RPC

primitives built on top of an External Data Representation (XDR) primitives built on top of an External Data Representation (XDR)

protocol used between two implementation-independent

interfaces

• The NFS specification distinguishes between the services

provided by a mount mechanism and the actual remote-file-

access services

2009/12/28 39

Page 40: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Three Independent File Systems

2009/12/28 40

Page 41: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Mounting in NFS

Mounts Cascading mountsMount

S1:/usr/shared

over U:/usr/localMount S2:/usr/dir2

over U:/usr/local/dir12009/12/28 41

Page 42: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS Mount Protocol

• Establishes initial logical connection between server and client

• Mount operation includes name of remote directory to be

mounted and name of server machine storing it

– Mount request is mapped to corresponding RPC and forwarded to

mount server running on server machine

– Export list – specifies local file systems that server exports for mounting,

along with names of machines that are permitted to mount them along with names of machines that are permitted to mount them

• Following a mount request that conforms to its export list, the

server returns a file handle—a key for further accesses

• File handle – a file-system identifier, and an inode number to

identify the mounted directory within the exported file system

• The mount operation changes only the user’s view and does

not affect the server side

2009/12/28 42

Page 43: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS Protocol

• Provides a set of remote procedure calls for remote file operations. The procedures support the following operations:

– searching for a file within a directory

– reading a set of directory entries

– manipulating links and directories

– accessing file attributes– accessing file attributes

– reading and writing files

• NFS servers are stateless; each request has to provide a full set of arguments

• Modified data must be committed to the server’s disk before results are returned to the client (lose advantages of caching)

• The NFS protocol does not provide concurrency-control mechanisms

2009/12/28 43

Page 44: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Three Major Layers of NFS Architecture

• UNIX file-system interface (based on the open, read, write, and

close calls, and file descriptors)

• Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished according

to their file-system types

– The VFS activates file-system-specific operations to handle – The VFS activates file-system-specific operations to handle

local requests according to their file-system types

– Calls the NFS protocol procedures for remote requests

• NFS service layer – bottom layer of the architecture

– Implements the NFS protocol

2009/12/28 44

Page 45: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Schematic View of NFS Architecture

2009/12/28 45

Page 46: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS Path-Name Translation

• Performed by breaking the path into component

names and performing a separate NFS lookup call for

every pair of component name and directory vnode

• To make lookup faster, a directory name lookup

cache on the client’s side holds the vnodes for

remote directory names

2009/12/28 46

Page 47: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing files)

• NFS adheres to the remote-service paradigm, but employs buffering

and caching techniques for the sake of performance

• File-blocks cache – when a file is opened, the kernel checks with the

remote server whether to fetch or revalidate the cached attributes

– Cached file blocks are used only if the corresponding cached attributes

are up to date

• File-attribute cache – the attribute cache is updated whenever

new attributes arrive from the server

• Clients do not free delayed-write blocks until the server

confirms that the data have been written to disk

2009/12/28 47

Page 48: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

11.9 Example: WAFL File System

• Used on Network Appliance “Filers” – distributed file system

appliances

• “Write-anywhere file layout”

• Serves up NFS, CIFS, http, ftp

• Random I/O optimized, write optimized• Random I/O optimized, write optimized

– NVRAM for write caching

• Similar to Berkeley Fast File System, with extensive

modifications

2009/12/28 48

Page 49: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

The WAFL File Layout

2009/12/28 49

Page 50: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

Snapshots in WAFL

2009/12/28 50

Page 51: Chapter 11: Implementing File Systemshscc.cs.nthu.edu.tw/~sheujp/lecture_note/09os/CH11OS.pdf · • Free -Space Management • Efficiency and Performance • Recovery • NFS •

End of Chapter 11End of Chapter 11