Chapter 10 Infinite Series

  • Upload
    anirudh

  • View
    231

  • Download
    1

Embed Size (px)

Citation preview

  • 7/25/2019 Chapter 10 Infinite Series

    1/33

    CHAPTER10 INFINITESEQUENCESANDSERIES

    10.1 Sequences

    10.2 InfiniteSeries

    10.3

    TheIntegral

    Tests

    10.4 ComparisonTests

    10.5 TheRatioandRootTests

    10.6 AlternatingSeries:AbsoluteandConditionalConvergence

    10.7 PowerSeries

    10.8 TaylorandMacLaurinSeries

    Calculus

    &

    Analytic

    Geometry

    II

    (MATF

    144) 2

    10.1 Sequences

    Definition

    Aninfinitesequenceormoresimplyasequenceisanunendingsuccessionof

    numbers,calledterms.

    Itisunderstoodthatthetermshaveadefiniteorder,thatis,thereisafirstterm

    a1,

    a

    second

    term

    a2,

    a

    third

    term

    a3,

    and

    so

    forth.

    Suchasequencewouldtypicallybewrittenas

    a1,a2,a3,a4,.an

    wherethedotsareusedtoindicatethatthesequencecontinuesindefinitely.

    Somespecificexampleare

    1,2,3,4,..

    1 1 11, , , ,....

    2 3 4

    2,4,

    6,

    8,

    ..

    1,

    1,

    1,

    1,.

    Thenumberaniscalledthenthtermorgeneralterm,ofthesequence.

  • 7/25/2019 Chapter 10 Infinite Series

    2/33

    Calculus&AnalyticGeometryII(MATF144) 3

    Example10.1:

    Ineachpart,findthegeneraltermofthesequence.

    (a)

    1 2 3 4, , , ....

    2 3 4 5 (b)1 1 1 1

    , , , ....2 4 8 1 6

    (c)

    1 2 3 4, , , ....

    2 3 4 5

    (d) 1,3,5,7,..

    Calculus&AnalyticGeometryII(MATF144) 4

    Whenthegeneraltermofsequenceisknown,thereisnoneedtowriteouttheinitial

    terms,anditiscommontowritethegeneraltermenclosedinbraces.

    Sequence BraceNotation

    1 2 3 4, , , .... ....

    2 3 4 5 1

    n

    n 11

    n

    n

    n

    n

    1 1 1 1 1, , , .... ...

    2 4 8 1 6 2n

    1

    1

    2

    n

    nn

    11 2 3 4, , , ....,( 1) ,....2 3 4 5 1

    n n

    n

    1

    1

    ( 1)1

    nn

    n

    n

    n

    1,3,5,7,..,2n1, 1

    2 1 n

    nn

  • 7/25/2019 Chapter 10 Infinite Series

    3/33

    Calculus&AnalyticGeometryII(MATF144) 5

    ConvergenceandDivergence

    Sometimesthenumbersinasequenceapproachasinglevalueastheindexnincreases.

    Thishappensinthesequence

    1,

    1

    2 ,

    1

    3 ,

    1

    4 , ,

    1

    ,

    whosetermsapproach0asngetslarger,andinthesequence

    0, 12 ,23 ,

    34 ,

    45 , ,1

    1 ,

    whosetermsapproach1.

    Ontheotherhand,sequenceslike

    1, 2, 3 , . . , , .

    havetermsthatgetlargerthananynumberasnincreases,andsequenceslike

    1,1,1,1.,1, . bouncebackandforthbetween1and1,neverconvergingtoasinglevalue.

    Calculus&AnalyticGeometryII(MATF144) 6

    Example

    10.2:

    Findthelimitofeachofthesesequences.

    (a)

    1

    n

    (b) ( 1)

    n (c) 8 2n

  • 7/25/2019 Chapter 10 Infinite Series

    4/33

    Calculus&AnalyticGeometryII(MATF144) 7

    CalculatingLimitsofSequences

    Calculus&AnalyticGeometryII(MATF144) 8

    Example10.3:

    Determinewhetherthesequenceconvergesordiverges.Ifitconverges,findthelimit.

    (a)

    100

    n

    (b)

    1n

    n

    (c)

    4

    4 2

    3 1

    5 2 1

    n n

    n n

    (e)

    2

    3

    2 5 7n n

    n

    (b)

    5 3

    4 2

    2

    7 3

    n n

    n n

    (b)1( 1)

    2 1

    n n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    5/33

    Calculus&AnalyticGeometryII(MATF144) 9

    TheSandwichTheorem

    Example10.4:

    Findthelimitofthesequence:

    (a)

    2

    sinn

    n

    (b)

    2cos

    3n

    n

    (c)

    1( 1)

    n

    n

    Calculus&AnalyticGeometryII(MATF144) 10

    UsingLHpitalsrule.

    ThenexttheoremenablesustouseLHpitalsruletofindthelimitsofsomesequences.It

    formalizestheconnectionbetween lim nn

    a

    and lim ( )x

    f x .

    Example10.5:(EvaluatingalimitusingLHpitalsrule).

    (a)

    lnlimn

    n

    n

    (b)

    2

    lim2nn

    n

    (c)n

    n

    n/1

    lim

    (d)

    1lim

    1

    n

    n

    n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    6/33

    Calculus&AnalyticGeometryII(MATF144) 11

    CommonlyOccuringLimits

    Thenexttheoremgivessomelimitsthatarisefrequently.

    Calculus&AnalyticGeometryII(MATF144) 12

    Example10.6:

    Findthelimitofeachconvergentsequence.

    (a)

    lnn

    na

    n

    (b)

    3n

    na n

    (c)

    25n

    na n

    (d)

    1

    3

    n

    na

    (e)

    3 n

    n

    na

    n

    (f)

    55

    !

    n

    na

    n

  • 7/25/2019 Chapter 10 Infinite Series

    7/33

    Calculus&AnalyticGeometryII(MATF144) 13

    10.2 InfiniteSeries

    Calculus&AnalyticGeometryII(MATF144) 14

    i) ThenthpartialsumSnoftheseries na is1 2 ...n kS a a a

    ii) Thesequenceofpartialsumsoftheseries na

    is

    1 2 3, , ,..... ,...nS S S S

    Example10.7:

    Giventheseries

    1 1 1 1... ...

    1 2 2 3 3 4 ( 1)n n

    (a)

    FindS1,S2,S3,S4,S5andS6.

    (b)

    FindSn.

    (c) Showthattheseriesconvergesandfinditssum.

  • 7/25/2019 Chapter 10 Infinite Series

    8/33

    Calculus&AnalyticGeometryII(MATF144) 15

    Example10.8:

    Giventheseries,

    1 1

    1

    ( 1) 1 ( 1) 1 ( 1) ... ( 1) ...n n

    n

    (a)

    Find

    S1,

    S2,S3,

    S4,

    S5

    and

    S6.

    (b)FindSn.

    (c) Showthattheseriesdiverges.

    Calculus&AnalyticGeometryII(MATF144) 16

    GeometricSeries

    Example10.9:

    Determinewhethereachofthefollowinggeometricseriesconvergesordiverges.If

    theseriesconverges,finditssum.

    (a) 01 37 2

    n

    n

    (b) 0135

    n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    9/33

    Calculus&AnalyticGeometryII(MATF144) 17

    TelescopingSeries

    Atelescopingseriesdoesnothaveasetform,likethegeometricseriesdo.Atelescoping

    seriesisanyserieswherenearlyeverytermcancelswithaprecedingorfollowingterm.For

    instance,theseries

    21

    1

    k k k

    Usingpartialfractions,wefindthat

    2

    1 1 1 1

    ( 1) 1k k k k k k

    Thus,thenthpartialsumofthegivenseriescanberepresentedasfollows:

    Calculus&AnalyticGeometryII(MATF144) 18

    21 1

    1 1 1

    1

    1 1 1 1 1 1 11 ..

    2 2 3 3 4 1

    1 1 1 1 1 1 11 ..

    2 2 3 4 1

    11

    1

    n n

    nk k

    Sk kk k

    n n

    n n n

    n

    Thelimitofthesequenceofpartialsumsis

    1 1lim lim 1

    1n

    n nS

    n n

    sotheseriesconverges,withsumS=1.

  • 7/25/2019 Chapter 10 Infinite Series

    10/33

    Calculus&AnalyticGeometryII(MATF144) 19

    Example10.10:

    Ineachcase,expressthenthpartialsumsSnintermsofnanddeterminewhether

    theseriesconvergesordiverges.

    (a)

    0

    1

    ( 1)( 2)n n n

    (b)

    0

    1 1

    2 1 2 3n n n

    Calculus&AnalyticGeometryII(MATF144) 20

    DivergentSeries

    Onereasonthataseriesmayfailtoconvergeisthatitstermsdontbecomesmall.For

    example,theseries

    2 2

    1

    1 4 9 .... ...n

    n n

    ThisseriesisdivergesbecausethepartialsumsgrowbeyondeverynumberL.Aftern=1,

    thepartialsums21 4 9 ....ns n isgreaterthan

    2n .

    Theoremabovestatesthatifaseriesconverges,thenthelimitsofitsnthtermanas n

    is0.Sometimes,itispossibleforaseriestobecomediverges.

  • 7/25/2019 Chapter 10 Infinite Series

    11/33

    Calculus&AnalyticGeometryII(MATF144) 21

    lim 0nn

    a

    Sothistheoremleadstoatestfordetectingthekindofdivergencethatoccurredinsomeof

    theseries.

    ThenthTermTest

    If, thenfurtherinvestigationisnecessarytodeterminewhethertheseries1

    nn

    a

    isconvergeordiverge.

    Calculus&AnalyticGeometryII(MATF144) 22

    Example10.11:

    ApplyingthenthTermTest

    (a)1 2 1n

    n

    n

    (b)

    2

    1n

    n

    (c)1

    1( 1)n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    12/33

    Calculus&AnalyticGeometryII(MATF144) 23

    CombiningSeries

    Calculus&AnalyticGeometryII(MATF144) 24

    Example10.12:

    (a) 11

    7 2

    ( 1) 3n

    n n n

    (b)

    1 11

    1 1

    2 6n nn

    (c)

    2

    1

    1 1

    2 3n nn

  • 7/25/2019 Chapter 10 Infinite Series

    13/33

    Calculus&AnalyticGeometryII(MATF144) 25

    10.3 TheIntegralTests

    Calculus&AnalyticGeometryII(MATF144) 26

    Example10.13:

    Determinewhetherthefollowingseriesconverge.

    (a) 21 1n

    n

    n

    (b) 1

    1

    2 5n n

    (c)0

    ln

    n

    n

    n

    ThepSeries

    TheIntegralTestisusedtoanalyzetheconvergenceofanentirefamilyofinfiniteseries

    knownasthepseries.Forwhatvaluesoftherealnumberspdoesthepseries

    converge?

    1

    1p

    n n

  • 7/25/2019 Chapter 10 Infinite Series

    14/33

    Calculus&AnalyticGeometryII(MATF144) 27

    Calculus&AnalyticGeometryII(MATF144) 28

  • 7/25/2019 Chapter 10 Infinite Series

    15/33

    Calculus&AnalyticGeometryII(MATF144) 29

    Example10.14:

    Testeachofthefollowingseriesforconvergence.

    (a) 101

    1

    n n

    (b) 31

    1

    n n

    (c) 24

    1

    ( 1)n n

    Calculus&AnalyticGeometryII(MATF144) 30

    10.4 ComparisonTests

    Wehaveseenhowtodeterminetheconvergenceofgeometricseries,pseriesandafew

    others.Wecantesttheconvergenceofmanymoreseriesbycomparingtheirtermsto

    thoseofaserieswhoseconvergenceisknown.

    Note:Let na , nc and nd beserieswithpositiveterms.Theseries na convergesifitissmallerthan(dominatedby)a

    knownconvergentseries nc anddivergesifitislargerthan(dominates)aknowndivergentseries nd .Thatis,smallerthanconvergentisconvergent,andbiggerthandivergentisdivergent.

  • 7/25/2019 Chapter 10 Infinite Series

    16/33

    Calculus&AnalyticGeometryII(MATF144) 31

    Example10.15:

    Testthefollowingseriesforconvergence.

    (a)1

    1

    3 1nn

    (b)2

    11n n

    (c) 32

    ln

    n

    n

    n

    Calculus&AnalyticGeometryII(MATF144) 32

    Example10.16:

    Testthefollowingseriesforconvergencebyusingthelimitcomparisontest.

    (a)1

    1

    2 5nn

    (b) 1

    3 2

    (3 5)n

    n

    n n

    (c)1

    100

    70nn

    n

    ne

  • 7/25/2019 Chapter 10 Infinite Series

    17/33

    Calculus&AnalyticGeometryII(MATF144) 33

    10.5 TheRatioandRootTests

    Intuitively,aseriesofpositiveterms na convergesifandonlyifthesequence na

    decreaserapidlytoward0.Onewaytomeasuretherateatwhichthesequence na is

    decreasing

    is

    to

    examine

    the

    ratio nn

    aa /1 as

    n

    grows

    large.

    This

    approach

    leads

    to

    the

    followingtheorem:

    Calculus&AnalyticGeometryII(MATF144) 34

    Note:Youwillfindtheratiotestmostusefulwithseriesinvolvingfactorialsor

    exponentials.

    Example10.17:

    Usetheratiotesttodeterminewhetherthefollowingseriesconvergeordiverge.

    (a)

    1 !2

    n

    n

    n

    (b)

    1 !n

    n

    nn

    (c)1

    n

    n

    ne

    (d)1

    ( 1)( 2)

    !n

    n n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    18/33

    Calculus&AnalyticGeometryII(MATF144) 35

    Thefollowingtestisoftenusefulifancontainspowersofn.

    Calculus&AnalyticGeometryII(MATF144) 36

    Example10.18:

    Determinewhethertheseriesisconvergentordivergent.

    (a)

    1 )(ln

    1

    n

    nn

    (b) 21

    2n

    k n

    (c) 1 2 1

    n

    n

    n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    19/33

    Calculus&AnalyticGeometryII(MATF144) 37

    GuidelinestoUsetheConvergenceTest.

    Hereisareasonablecourseofactionwhentestingaseriesofapositiveterms

    1nn

    afor

    convergence.

    1.BeginwiththeDivergenceTest.Ifyoushowthat lim 0nna

    ,thentheseriesdiverges

    andyourworkisfinished.

    2.Istheseriesaspecialseries?Recalltheconvergencepropertiesforthefollowing

    series.

    GeometricSeries: convergesif 1anddivergesfor 1.n

    ar r r

    pseries:1

    convergesfor 1anddivergesfor 1.p

    p pn

    Checkalsoforatelescopingseries.

    Calculus&AnalyticGeometryII(MATF144) 38

    3.

    Ifthegeneralnthtermoftheserieslookslikeafunctionyoucanintegrate,thentry

    theIntegralTest.

    4.

    Ifthegeneralnthtermoftheseriesinvolves,whereaisaconstant,theRatioTestis

    advisable.SerieswithninanexponentmayyieldtotheRootTest.

    5.

    Ifthegeneralnthtermoftheseriesisarationalfunctionof n(orarootorarational

    function),use

    the

    Direct

    Comparison

    or

    the

    Limit

    Comparison

    Test.

    Use

    the

    families

    of

    seriesgiveninStep2asacomparisonseries.

  • 7/25/2019 Chapter 10 Infinite Series

    20/33

    Calculus&AnalyticGeometryII(MATF144) 39

    10.6 AlternatingSeries,AbsoluteandConditional

    Convergence

    AlternatingSeries

    Weconsider

    alternating

    series

    in

    which

    signs

    strictly

    alternate,

    as

    in

    the

    series,

    1

    1

    1 1 1 1 1 1 1 11 ...

    2 3 4 5 6 7 8

    n

    n n

    Thefactor 1

    1 n

    hasthepattern{,1,1,1,1,}andprovidesthealternatingsigns.

    WeprovetheconvergenceofthealternatingseriesbyapplyingtheAlternatingSeriesTest.

    Calculus&AnalyticGeometryII(MATF144) 40

    Example10.19:

    (a)

    1

    21

    ( 1)n

    n n

    (b)1

    21

    2( 1)

    4 3

    n

    n

    n

    n

    (c)

    1

    1

    2( 1)

    4 3

    n

    n

    n

    n

  • 7/25/2019 Chapter 10 Infinite Series

    21/33

    Calculus&AnalyticGeometryII(MATF144) 41

    AbsoluteandConditionalConvergence

    Theconvergencetestwehavedevelopedcannotbeappliedtoaseriesthathasmixed

    termsordoesnotstrictlyalternate.Insuchcases,itisoftenusefultoapplythefollowing

    theorem.

    Theseries

    1

    21

    ( 1)n

    n n

    isanexampleofanabsolutelyconvergentseriesbecausetheseries

    ofabsolutevalues,

    1

    2 21 1

    ( 1) 1n

    n nn n

    isaconvergentpseries.Inthiscase,removingthealternatingsignsintheseriesdoesnot

    affectitsconvergence.

    Calculus&AnalyticGeometryII(MATF144) 42

    Ontheotherhand,theconvergentalternatingharmonicseries

    1

    1

    ( 1)n

    n n

    hasthe

    propertythatthecorrespondingseriesofabsolutevalues,

    1

    1 1

    ( 1) 1n

    n nn n

    doesnotconverge.Inthiscase,removingthealternatingsignsintheseriesdoeseffect

    convergence.

  • 7/25/2019 Chapter 10 Infinite Series

    22/33

    Calculus&AnalyticGeometryII(MATF144) 43

    Example10.20: Determinewhetherthefollowingseriesdiverge,convergeabsolutely,or

    convergeconditionally.

    a)

    1

    1

    ( 1)n

    n n

    b)

    1

    31

    ( 1)n

    n n

    c)1

    sin

    n

    n

    n

    d)1

    1

    ( 1)2

    n

    n

    n

    n

    Calculus&AnalyticGeometryII(MATF144) 44

  • 7/25/2019 Chapter 10 Infinite Series

    23/33

    Calculus&AnalyticGeometryII(MATF144) 45

    Calculus&AnalyticGeometryII(MATF144) 46

    10.7 PowerSeries

    Themostimportantreasonfordevelopingthetheoryintheprevioussectionsisto

    representfunctionsaspowerseriesthatis,asserieswhosetermscontainpowersofa

    variablex.

    Thegoodwaytobecomefamiliarwithpowerseriesistoreturntogeometricseries.

    Recallthatforafixednumberr,

    2

    0

    11 ... ,provided 1

    1

    n

    n

    r r r r r

    Itsasmallchangetoreplacetherealnumberrbythevariablex.Indoingso,thegeometric

    seriesbecomesanewrepresentationofafamiliarfunction:

    2

    0

    1

    1 ...

    ,provided

    11

    n

    nx x x xx

  • 7/25/2019 Chapter 10 Infinite Series

    24/33

    Calculus&AnalyticGeometryII(MATF144) 47

    ConvergenceofPowerSeries

    Webeginbyestablishingtheterminologyofpowerseries.

    Calculus&AnalyticGeometryII(MATF144) 48

  • 7/25/2019 Chapter 10 Infinite Series

    25/33

    Calculus&AnalyticGeometryII(MATF144) 49

    Example:

    Findtheintervalandradiusofconvergenceforeachpowerseries:

    a)

    0 !

    n

    n

    x

    n

    Solution:

    Thecenterofthepowerseriesis0andthetermsoftheseriesare.Wetesttheseries

    forabsoluteconvergenceusingRatioTest:

    1

    1

    /( 1)!lim (RatioTest)

    / !

    ! lim (Invertandmultiply)

    ( 1)!

    1 lim 0 (Simplifyandtakethelimitwith fixed)

    ( 1)

    n

    nn

    n

    nn

    n

    x n

    x n

    x n

    nx

    x xn

    Calculus&AnalyticGeometryII(MATF144) 50

    Noticethatintakingthelimitas n ,xisheldfixed.Therefore, 0 forallvaluesofx,whichimpliesthattheintervalofconvergenceofthepowerseriesis

    x andtheradiusofconvergenceis R

  • 7/25/2019 Chapter 10 Infinite Series

    26/33

    Calculus&AnalyticGeometryII(MATF144) 51

    b)0

    ( 1) ( 2)

    4

    n n

    nn

    x

    Solution:

    WetestforabsoluteconvergenceusingtheRootTest:

    (1) ( 2)lim (RootTest)

    4

    2 1

    4

    n n

    nnn

    x

    x

    Inthiscase, dependsonthevalueofx.Forabsoluteconvergence,xmustsatisfy

    21

    4

    x

    whichimplies

    that

    2 4x .

    Using

    standard

    techniques

    for

    solving

    inequalities,

    the

    solutionsetis 4 2 4, or 2 6x x .Thus,theintervalofconvergence

    includes(2,6).

    Calculus&AnalyticGeometryII(MATF144) 52

    TheRootTestdoesnotgiveinformationaboutconvergenceattheendpoints,x=2

    andx=6,becauseatthesepoints,theRootTestresultsin 1 .Totestfor

    convergenceattheendpoints,wemustsubstituteeachendpointintotheseriesand

    carryoutseparatetests.

    Atx=2,thepowerseriesbecomes

    0 0

    0

    ( 1) ( 2) 4 Substitute 2andsimplify

    4 4

    1 Divergesbynthtermtest/divergencetest

    n n n

    n nn n

    n

    xx

    Theseriesclearlydivergesattheleftendpoint.Atx=6,thepowerseriesis

    0 0

    0

    ( 1) ( 2) 41 Substitute 6andsimplify

    4 4

    1 Divergesbynthtermtest/divergencetest

    n n nn

    n n

    n n

    n

    n

    xx

  • 7/25/2019 Chapter 10 Infinite Series

    27/33

    Calculus&AnalyticGeometryII(MATF144) 53

    Thisseriesalsodivergesattherightendpoint.Therefore,theintervalofconvergence

    is(2,6),excludingtheendpointsandtheradiusofconvergenceisR=4.

    (Whentheconvergencesetistheentirexaxis).

    Showthat

    the

    power

    series

    1 !

    n

    n

    x

    n

    convergesforallx.

    Calculus&AnalyticGeometryII(MATF144) 54

    Example10.21:

    (Convergenceonlyatthepointx=0).

    Showthatthepowerseries 1!

    n

    n

    n x

    convergesonlywhenx=0.

  • 7/25/2019 Chapter 10 Infinite Series

    28/33

    Calculus&AnalyticGeometryII(MATF144) 55

    Example10.22:

    (Convergencesetisaboundedinterval).

    Findtheconvergencesetforthepowerseries 1

    n

    n

    x

    n

    .

    Calculus&AnalyticGeometryII(MATF144) 56

    AccordingtotheTheorem11.23,thesetofnumbersforwhichthepowerseries 0

    nn

    n

    a x

    convergesisanintervalcenteredatx=0.Wecallthistheintervalofconvergenceofthe

    powerseries.Ifthisintervalhaslength2R,thenRiscalledtheradiusofconvergenceofthe

    series.IftheserieshasradiusofconvergenceR=0,andifitconvergesforallx,wesaythat

    R .

  • 7/25/2019 Chapter 10 Infinite Series

    29/33

    Calculus&AnalyticGeometryII(MATF144) 57

    Example10.23:

    Findtheintervalofconvergenceforthepowerseries 0

    2n n

    n

    x

    n

    .

    Whatistheradiusoftheconvergence?

    Example10.24:

    Findtheintervalofconvergenceofthepowerseries 0

    ( 1)

    3

    n

    nn

    x

    .

    Calculus&AnalyticGeometryII(MATF144) 58

    TermbytermDifferentiationandIntegration.

    Supposethatapowerseries 0

    nn

    n

    a x

    hasaradiusofconvergencer>0,andletfbedefined

    by

    2 30 1 2 3

    0

    ( ) ... ...n n

    n n

    n

    f x a x a a x a x a x a x

    foreveryxintheintervalofconvergence.Ifr

  • 7/25/2019 Chapter 10 Infinite Series

    30/33

    Calculus&AnalyticGeometryII(MATF144) 59

    Example10.25:

    Findafunctionfthatisrepresentedbythepowerseries

    2 31 ... ( 1) ...n n

    x x x x

    Example10.26:

    Findapowerseriesrepresentationfor 2

    1

    (1 )x if 1x .

    Calculus&AnalyticGeometryII(MATF144) 60

    Example10.27:

    Findapowerseriesrepresentationfor ln(1 )x if 1x .

    Example10.28:

    Findapowerseriesrepresentationfor 1tan x

    .

  • 7/25/2019 Chapter 10 Infinite Series

    31/33

    Calculus&AnalyticGeometryII(MATF144) 61

    10.8 TaylorandMacLaurinSeries

    Inthepreviouslecture,weconsideredpowerseriesrepresentationforseveralspecial

    functions,includingthosewheref(x)hastheform

    1

    (1 )x , ln(1 )x and1tan x

    ,

    providedxissuitablyrestricted.Wenowwishtoconsiderthefollowingquestion.

    Ifafunctionfhasapowerseriesrepresentation

    0

    ( ) n

    nn

    f x a x

    or 0( ) ( )

    nn

    n

    f x a x c

    whatistheformof na ?

    Supposethat,

    2 3 40 1 2 3 4

    0

    ( ) ...n nn

    f x a x a a x a x a x a x

    Calculus&AnalyticGeometryII(MATF144) 62

    andtheradiusofconvergenceoftheseriesisr>0.Apowerseriesrepresentationfor ( )f x

    maybeobtainedbydifferentiatingeachtermoftheseriesforf(x).Wemaythenfinda

    seriesfor ( )f x bydifferentiatingthetermsoftheseriesfor ( )f x .Seriesfor ( )f x ,(4)( )f x

    andsoon,canbefoundinsimilarfashion.Thus,

    2 3 1

    1 2 3 41( ) 2 3 4 ...

    n

    nnf x a a x a x a x na x

    2 22 3 4

    2

    ( ) 2 (3 2) (4 3) ... ( 1) n

    nn

    f x a a x a x n n a x

    33 4

    3

    ( ) (3 2) (4 3 2) ... ( 1)( 2) n

    nn

    f x a a x n n n a x

    andforeverypositiveintegerk,

    ( )( ) ( 1)( 2)...( 1)k n knn k

    f x n n n n k a x

  • 7/25/2019 Chapter 10 Infinite Series

    32/33

    Calculus&AnalyticGeometryII(MATF144) 63

    Eachseriesobtainedbydifferentiationhasthesameradiusofconvergencerastheseries

    forf(x).Substituting0forxineachoftheserepresentations,weobtain

    0 1 2 3(0) , (0) , (0) 2 , (0) (3 2)f a f a f a f a

    andforeverypositiveintegerk,

    ( )( ) ( 1)( 2)...(1)k kf x k k k a

    Ifweletk=n,then

    ( )( ) !

    nnf x n a

    Solvingtheprecedingequationsfor ,....,,, 210 aaa weseethat

    0 1 2 3

    (0) (0)(0), (0), ,

    2 (3 2)

    f fa f a f a a

    And,ingeneral,

    ( )(0)

    !

    n

    n

    fa

    n

    Calculus&AnalyticGeometryII(MATF144) 64

    MacLaurinSeriesforf(x)

    Ifafunctionfhasapowerseriesrepresentation

    0

    ( ) n

    nn

    f x a x

    withradiusofconvergencer>0,then( )(0)k

    f existsforeverypositiveintegerkand

    ( )(0)

    !

    n

    n

    fa

    n

    .Thus,

    ( )2

    ( )

    0

    (0) (0)( ) (0) (0) ... ...

    2! !

    (0)

    !

    nn

    nn

    n

    f ff x f f x x x

    n

    fx

    n

  • 7/25/2019 Chapter 10 Infinite Series

    33/33

    Calculus&AnalyticGeometryII(MATF144) 65

    TaylorSeriesforf(x)

    Ifafunctionfhasapowerseriesrepresentation

    withradiusofconvergencer>0,then( )

    ( )k

    f c existsforeverypositiveintegerkand

    ( )( )

    !

    n

    n

    f ca

    n

    .Thus,

    2

    ( )

    ( )

    0

    ( )( ) ( ) ( )( ) ( ) ...

    2!

    (0) ( ) ...!

    ( )( )

    !

    n

    n

    nn

    n

    f cf x f c f c x c x c

    f x cn

    f cx c

    n

    0

    ( ) ( )n

    nn

    f x a x c

    Example10.29:

    FindtheMacLaurinSeriesforf(x)=cosx.

    Example10.30:

    FindtheTaylorSeriesforf(x)=lnxatc=1.