48
213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear 1 key FiNDiNGS • Harvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels. • Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of uncertainty given the interplay between public policies and the supply and investment decisions of forest landowners. • It is unlikely that the biomass requirement for energy would be met through harvest residues and urban wood waste alone. As consumption increases, harvested timber (especially pine pulpwood) would quickly become the preferred feedstock. • The emergence of a new woody biomass-based energy market would potentially lead to price increases for merchantable timber, resulting in increased returns for forest landowners. • While woody biomass harvest is expected to increase with higher prices, forest inventories would not necessarily decline because of increased plantations of fast growing species, afforestation of agricultural or pasturelands, and intensive management of forest land. • Because it would allow more output per acre of forest land and dampen potential price increases, forest productivity is a key variable in market futures. • The impacts that increased use of woody biomass for energy would have on the forest products industry could be mitigated by improved productivity through forest management and/or by increased output from currently unmanaged forests. 1 Janaki R.R. Alavalapati is a Professor and Department Head of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061. Pankaj Lal is an Assistant Professor, Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043. Andres Susaeta is a Postdoctoral Scholar, Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061. Robert C. Abt is a Professor, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695. David N. Wear is the Project Leader, Center for Integrated Forest Science, Southern Research Station, U.S. Department of Agriculture Forest Service, Raleigh, NC 27695. • Price volatility associated with increased use of woody biomass for energy is expected to be higher for pulpwood than for sawtimber. • The impacts of wood-based energy markets tend to be lower for sawtimber industries, although markets for all products would be affected at the highest levels of projected demand. • Different types of wood-based energy conversion technologies occupy different places on the cost feasibility spectrum. Combined heat and power, co-firing for electricity, and pellet technologies are commercially viable and are already established in the South. Biochemical and thermochemical technologies used to produce liquid fuels from woody biomass are not yet commercially viable. • Current research does not suggest which woody species and what traits would likely be most successful for energy production. The future of conversion technologies is uncertain. • In the absence of government support, research, pilot projects, and incentives for production, woody bioenergy markets are unlikely to grow substantially. • Under a high demand scenario for bioenergy, the resulting intensity of woody biomass harvests could have deleterious effects on stand productivity, biodiversity, soil fertility, and water quality. • Although research provides some guidelines for the design of management to protect various forest ecosystem services, forest sustainability benchmarks are not well defined for a high bioenergy demand future and existing certification systems may need modifications to address multiple resource values. iNTRoDucTioN The United States is the largest consumer of petroleum products, consuming about 19.5 million barrels per day in 2008 (Energy Information Administration 2009), with a significant portion imported from politically unstable regions of the world. This reliance on imported fossil fuels, coupled with their associated greenhouse gas emissions, has led to economic, social and environmental concerns. Bioenergy may offset fossil fuel use, diversify energy sources, reduce emissions, and provide socioeconomic benefits in the form Chapter 10. Forest Biomass-Based energy

Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

213chAPTeR 10. Forest Biomass-Based Energy

JanakiR.R.Alavalapati,PankajLal, AndresSusaeta,RobertC.Abt,andDavidN.Wear1

key FiNDiNGS

•Harvestingwoodybiomassforuseasbioenergyisprojectedtorangefrom170millionto336milliongreentonsby2050,anincreaseof54to113percentovercurrentlevels.

•Consumptionprojectionsforforestbiomass-basedenergy,whicharebasedonEnergyInformationAdministrationprojections,haveahighlevelofuncertaintygiventheinterplaybetweenpublicpoliciesandthesupplyandinvestmentdecisionsofforestlandowners.

• Itisunlikelythatthebiomassrequirementforenergywouldbemetthroughharvestresiduesandurbanwoodwastealone.Asconsumptionincreases,harvestedtimber(especiallypinepulpwood)wouldquicklybecomethepreferredfeedstock.

•Theemergenceofanewwoodybiomass-basedenergymarketwouldpotentiallyleadtopriceincreasesformerchantabletimber,resultinginincreasedreturnsforforestlandowners.

•Whilewoodybiomassharvestisexpectedtoincreasewithhigherprices,forestinventorieswouldnotnecessarilydeclinebecauseofincreasedplantationsoffastgrowingspecies,afforestationofagriculturalorpasturelands,andintensivemanagementofforestland.

•Becauseitwouldallowmoreoutputperacreofforestlandanddampenpotentialpriceincreases,forestproductivityisakeyvariableinmarketfutures.

•Theimpactsthatincreaseduseofwoodybiomassforenergywouldhaveontheforestproductsindustrycouldbemitigatedbyimprovedproductivitythroughforestmanagementand/orbyincreasedoutputfromcurrentlyunmanagedforests.

1JanakiR.R.AlavalapatiisaProfessorandDepartmentHeadofForestResourcesandEnvironmentalConservation,VirginiaTech,Blacksburg,VA24061.PankajLalisanAssistantProfessor,DepartmentofEarthandEnvironmentalStudies,MontclairStateUniversity,Montclair,NJ07043.AndresSusaetaisaPostdoctoralScholar,DepartmentofForestResourcesandEnvironmentalConservation,VirginiaTech,Blacksburg,VA24061.RobertC.AbtisaProfessor,DepartmentofForestryandEnvironmentalResources,NorthCarolinaStateUniversity,Raleigh,NC27695.DavidN.WearistheProjectLeader,CenterforIntegratedForestScience,SouthernResearchStation,U.S.DepartmentofAgricultureForestService,Raleigh,NC27695.

• Pricevolatilityassociatedwithincreaseduseofwoodybiomassforenergyisexpectedtobehigherforpulpwoodthanforsawtimber.

•Theimpactsofwood-basedenergymarketstendtobelowerforsawtimberindustries,althoughmarketsforallproductswouldbeaffectedatthehighestlevelsofprojecteddemand.

•Differenttypesofwood-basedenergyconversiontechnologiesoccupydifferentplacesonthecostfeasibilityspectrum.Combinedheatandpower,co-firingforelectricity,andpellettechnologiesarecommerciallyviableandarealreadyestablishedintheSouth.Biochemicalandthermochemicaltechnologiesusedtoproduceliquidfuelsfromwoodybiomassarenotyetcommerciallyviable.

•Currentresearchdoesnotsuggestwhichwoodyspeciesandwhattraitswouldlikelybemostsuccessfulforenergyproduction.Thefutureofconversiontechnologiesisuncertain.

• Intheabsenceofgovernmentsupport,research,pilotprojects,andincentivesforproduction,woodybioenergymarketsareunlikelytogrowsubstantially.

•Underahighdemandscenarioforbioenergy,theresultingintensityofwoodybiomassharvestscouldhavedeleteriouseffectsonstandproductivity,biodiversity,soilfertility,andwaterquality.

•Althoughresearchprovidessomeguidelinesforthedesignofmanagementtoprotectvariousforestecosystemservices,forestsustainabilitybenchmarksarenotwelldefinedforahighbioenergydemandfutureandexistingcertificationsystemsmayneedmodificationstoaddressmultipleresourcevalues.

iNTRoDucTioN

TheUnitedStatesisthelargestconsumerofpetroleumproducts,consumingabout19.5millionbarrelsperdayin2008(EnergyInformationAdministration2009),withasignificantportionimportedfrompoliticallyunstableregionsoftheworld.Thisrelianceonimportedfossilfuels,coupledwiththeirassociatedgreenhousegasemissions,hasledtoeconomic,socialandenvironmentalconcerns.Bioenergymayoffsetfossilfueluse,diversifyenergysources,reduceemissions,andprovidesocioeconomicbenefitsintheform

Chapter 10. Forest Biomass-Based energy

Page 2: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

214The Southern Forest Futures Project

ofadditionalincomeandnewjobs.BioenergyfromwoodybiomasscouldcontributebyincreasingU.S.renewableenergyresources,reducingcompetitionbetweenagriculturalcropsdestinedforfoodandthoseforfuelproduction(Hillandothers2006),andperhapsimprovingtheconditionofsomeforests.Someanalysts,forexampletheManometCenterofConservationSciences(2010)intheiranalysisofwood-basedbioenergyinMassachusettsraisedoubtsaboutthegreenhousegasmitigationpotentialofforestbioenergy.Others,e.g.,Lucier(2010)andO’Laughlin(2010),challengethesefindings.IntheSouth,somestudies,e.g.,Dwivediandothers(2011),indicatethatsouthernpinebasedenergycouldreducegreenhousegasemissionsascomparedtousingfossilfuels.

Althoughhistoricallylimitedtoresiduesfromtheproductionofwoodproducts,biomasscouldbesourcedfromloggingresidues,standsdamagedbynaturaldisturbances(suchaswildfire,pestoutbreaks,andhurricanes),small-diametertreesthinnedfromplantationsandotherforests,andenergycropssuchaseucalyptusandpoplar;thesesourceswouldlikelybetappedaswoodybioenergymarketsbecomecompetitive.Athighenoughprices,evenmerchantabletimbercouldbedivertedtobioenergyuses.Hughes(2000)suggeststhatthecombinationofforestbioenergyplantationsandcontinueduseofwoodresiduesfromforestproductindustriescouldsupply7to20percentoftheU.S.electricitygenerationinthefuture.

Manypineplantationsestablishedtosupplypulpwoodforpaperandengineeredwoodproductsareoverstockedandthereforesusceptibletowildfiresandpestattacks(GanandMayfield2007a).Forexample,nearlyhalfofover1.1millionacresofnearlypurepinestandsareatriskfromsouthernpinebeetleinOklahoma(OklahomaDepartmentofAgricultureFoodAndForestry2008).Wood-basedbioenergymarketscouldincreasethinningandremovals,therebyreducingtheserisks(Belangerandothers1993,GanandMayfield2007a,NearyandZieroth2007,Speight1997).Schmidtandothers(2002)estimatedthat2.7billiondrytonsofforestbiomassneedstoberemovedthroughforestfuelreductiontreatmentsintheSouth,about20milliondrytonsannually.Furthermore,wood-basedbioenergymarketswouldimproveprofitabilityforlandownersintheSouth(Nesbitandothers2011,Susaetaandothers2009).Furthermore,southernersappearwillingtopaymoreforcleanersourcesofenergysuchaswoodbasedbiofuels(Susaetaandothers2010).

Federalpoliciessuchasthe2002FarmBill,2005EnergyPolicyAct,2007EnergyIndependenceSecurityAct,and2008FarmBillhavespecificallyencouragedtheproductionofcellulosicbiofuelssuchasthoseproducedfromwood,rangingfromgrantsandloanstotheestablishmentofrenewablefuelstandards(15.5billiongallonsin2012,and

36billiongallonsby2022ofwhich21billiongallonsmustbecellulosic).Federallawprovidesdifferingdefinitionsofacceptableforestbiomassforbioenergy.Forexample,underthe2007EnergyIndependenceSecurityActbiomassfrompubliclands,municipalsolidwaste,plantationsestablishedaftertheenactmentoftheAct,‘oldgrowth’or‘mature’forests,andmostotherwoodybiomass(exceptforslashandpre-commercialthinning)isexcludedfromprivateandnon-industrialforests(NIPFs)landowners.The2008FarmBillontheotherhandislessrestrictive,asitallowsforbiomassderivedfromFederallandsandotherforests(i.e.,nottreeplantations)asbiofuels.TheAmericanCleanEnergyandSecurityActof2009(H.R.2454),aspassedbytheHouseofRepresentatives,soughttocreateabroadeneduniversaldefinitionofrenewablebiomassthatappliestotheRenewableFuelStandard,andanationalRenewableElectricityStandard.Wefollowedanon-restrictivedefinitionofbiomasswhilesimulatingsupplyvariationsandsouthernforestsandconsideredthatabovegroundbiomassonprivateforestlandsintheSouthcouldbeusedforenergyproduction.Thisisbasedontheassumptionthatpolicywouldnotrestricttheallocationofforestbiomasstobioenergyuses.

Thischapteranalyzesthepotentialeffectsoftheemergenceofabioenergymarketonsouthernforests,forestowners,traditionalforestproductindustries,andecosystemintegrityandservices;withemphasisonthefollowingkeyissues:

•Howmarketsforwoodforenergyproductionmightevolveandpotentialimplicationsfortraditionalforestproductindustriesandlandowners

•Thestatusofcurrentandpotentialtechnologiesthatcanhelprealizelarge-scaleproductionofwoodybioenergy

•Howbioenergypoliciescouldimpactforestlandownersandforestindustry

•Effectsofwoodybioenergymarketsonforestecosystemshealth;benchmarksforsustainability

meThoDS

Wesurveyedtheliteraturetoaddressquestionsabouttechnologydevelopment,bioenergypolicies,andsustainability,andwedevelopeddetailedmodelingtoprojectmarketchangesandincorporateananalyticalcomponentintotheresultsoftheliteraturesurvey.

Toassesstradeoffsbetweenthetraditionalforestproductindustryandthewoodybioenergyindustry,weevaluatedwoodybiomasssupplyvariationthroughtimeandassociatedprice,inventory,andremovalresponsesfollowingRossiandothers(2010).Inthefaceoffuturecompetitionforrawmaterialsandthepotentialcompetitiveadvantagethatpolicyincentiveswouldprovidetowoodybioenergysector,thistradeoffanalysiswasconsidered

Page 3: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

215chAPTeR 10. Forest Biomass-Based Energy

criticalforthefutureofsouthernforests(Wearandothers2009).Manyauthorshaveexploredthisissue;whathasbeenlackingisasystematicanalysisofregionaltrendsthatassesseswoodybiomasssupplyinresponsetovariationinfutureconsumptionforenergy.

WemodifiedtheSubregionalTimberSupply(SRTS)model(Abtandothers2000),toassessthepotentialeffectsofbioenergyconsumptiononwoodproductsmarkets.Themodelprovidedprice,inventory,andremovalresponsesfordifferentwood-for-energyconsumptionandsupplyscenarios;andallowedustoestimateimpactsontraditionalforestindustriesandlandowners.

Ofthelarge-scalemacromodelsavailableforconductingouranalysis(Adamsandothers1996;DeLaTorreUgarteandRay2000;DeLaTorreUgarteandothers1998,2006),theSRTSmodelistheonlyonethattreatsstandingtimberasapotentialsupplyofbioenergyanddefinesregionsinawaythatiscongruentwithForestInventoryAnalysis(FIA)surveyunits.Becauseitincorporatesaninventoryprojectionmodelintoatimbermarketmodelframework,itsprojectionsarebasedonsupplyanddemandinteractions.Itallowsoflargerdiametersawtimbertobedowngradedfornonsawtimber(largelypulpwooduses)inresponsetopricesignalsandisfamiliartomanyforestindustryanalystsandStateforestryagencies,havingbeenusedtomodeltimbersupplyandpricesintheNortheast(Sendekandothers2003)aswellastheSouth(Binghamandothers2003,PrestemonandAbt2002).Ithasalsobeenusedtoassesstheinfluenceofnonmarketvaluesontimbermarketdecisionsbynonindustrialprivateforestlandowners(Pattanayakandothers2005),theeffectsofwoodchipmillsontimbersupplyinNorthCarolina(Schabergandothers2005),theimpactsofRenewableEnergyStandardspolicyimplementedinNorthCarolina(Galikandothers2009),andbioenergydemandsinSouth(AbtandAbt,inpress).

TheSRTSmodelestimatestwoforestproducts,sawtimberandpulpwoodproductallocationsforsoftwoodsandhardwoods.Itsequations—definedthroughsupply,demand,andinventoryelasticityvalues—areusedtoprojectthemarket-clearingpriceandquantitylevels,whichinturnareusedtoallocatesubregionalharvestingandtoprojectthenextperiod’sinventoryvalues.AGoalProgramthencategorizesthetotalwoodrequirementbymanagementtypeandageclassandmakesallocationstosubregions,owners,andproducts.

Theseparationofproductsandinventoryintermsofsawtimberandpulpwoodisbasedonuser-specifieddefinitionsthatallocatemostofthelargestdiameterwoodtosawmills,apercentofthelargestdiameterandallofthemediumdiameterwoodtopulpwood,andthesmallestdiameterwoodtotheforestfloor.Withtheseallocations,a

productmixiscalculatedforharvestinanymanagementtypeandageclasswiththeobjectiveofdefiningtheprojectedremovalmixfortheregion/ownerinawaythatfollowshistoricalharvestpatternsofexistingremoval-to-inventoryintensities.Forpartialharvests,themodeldefinesastockingtarget(volumeperacre)foreachmanagementtypeandageclass;ifthecurrentstockingisgreaterthanthetarget,theharvestisconsideredathinning.Afterthevolume-per-acretargetisreached,theharvestconsideredfinalandacresarereturnedtoageclasszero.Undermostcircumstances,thisapproachensuresthataveragestockingisclosetotarget(historical)levelsthroughouttheprojection(AbtandAbt2010;Abtandothers2000;Abtandothers2009,2010;PrestemonandAbt2002;Rossiandothers2010).

WemadeanumberofmodificationstotheSRTSmodel(fig.10.1)toassesstheeffectsofwoodybioenergyindustryonfutureprices,harvests,andinventoriesoffourwoodproductcategories—softwoodsawtimber,othersoftwoods,hardwoodsawtimber,andotherhardwoods—derivedfromprivateownersofforestland(publicforestlandshavebeenexcludedfromthestudy,becausepubliclandharvestdecisionsarenotnecessarilyprice-responsive).AppendixBcontainsdescriptionsoftheseproductsandtheallocationofconsumptionofeachforwoodybioenergyproduction.Themodelallocateswoodybiomassconsumptionamongproductgroupsbasedonthepricevariations.Pineplantationscanbeharvestedforpulpwoodasearlyas10yearsofage.Todeterminetheavailabilityofharvestresiduals,weappliedutilizationpercentagesthatareconsistentwithtimberproductoutputdatafortheSouth(Johnsonandothers2009).

Alternativerunsofthemodelallowedustoexaminehowmanagementorgeneticimprovementswouldaffectproductivity.Ratherthanapplyingidenticalresponsesacrossthefiveforestmanagementtypes(pineplantation,naturalpine,oak-pine,uplandhardwood,andlowlandhardwood),wemodifiedthemodelsothatresponsescanbedisaggregatedacrossthem.

WithintheSRTSmodel,theareaoftimberlandwillchangeinresponsetotherelativerentsofcropandforestuses.Wedefinedtimberrentsasweightedaveragesofsawtimberandnonsawtimberprices,withweightingspecifiedbythepresentvaluedifferenceinincomebetweenthetwoproductswhileagriculturalrentsareheldconstant.Becausewoodybioenergymarketsareexpectedtoimpactthenonsawtimbersectormorethanthehighvaluedsawtimbersector(Aulisiandothers2007),themodelallocateslessweighttosawtimberprices.

Weusedtheaggregatedemandinformationgatheredfromeachsouthernwood-basedindustry—forestproducts,woodybiomass-basedelectricity,woodybiomass-basedliquidfuels,andwoodpellets—toprojecttheallocationofharvested

Page 4: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

216The Southern Forest Futures Project

timber.ThemodifiedSRTSmodeldefinesamarketsimulationmodelbasedonempiricalrelationships—demandandsupply,price,landuse,reforestationandinventory—forwoodybiomassandtraditionalforestproducts.Akeyassumptionisthatforestownersarepriceresponsiveanddecisionstoinvestorharvestaremadeaccordingly.

consumption/Demand Scenarios

Ourconsumptionscenarioswerebasedonthethreeprincipalusesofwoodybiomassforenergy:aspowerforelectricitygenerationthroughcombustionorgasificationprocesses,co-firingwithcoal,orincombinedheatandpowersystemsinindustrialfacilities(EnergyInformationAdministration2010b);asliquidfuel(cellulosicethanol)thatcanbeblendedwithconventionaltransportationfuels(EnergyInformationAdministration2010b);andasbioproductssuchashighly

compactwoodpelletsusedforheatingpurposes(SpelterandToth2009,appendixB).

Theamountofwoodconsumedforelectricity,liquidfuels,andpelletsdefinesthetotalrequirementformeetingbioenergyconsumptionprojections.Thiscanbemetwithwoodfromadditionalharvestingorwithresidualsandotherwoodwaste.Althoughharvestingunutilizedresidues(discardedtreetopsandlimbsgeneratedduringtheharvestingprocess)mightprovideaportionofwoodybiomass-basedenergyconsumption,recentanalysis(Galikandothers2009,Rossiandothers2010)indicatesthatmerchantabletimberisalsolikelytoberequired.Inaddition,woodybiomass-basedenergydemandfiguresneedtoaccountforurbanwoodwastesthatcouldbeusedforenergyproduction(Rossiandothers2010).BecausetheSRTSmodeldealsonlyinharvestedwood,webackedurban

Figure10.1—MethodologydiagramforthemodifiedSubregionalTimberSupplymodelusedtoprojectlevelsandeffectsofwoodybiomassconsumedforenergyfortheSouth.

Forest inventory plot data

Growth regressions Inventory and harvest data for plots

Timberland acreage change Price sensitive land use model

inventory proportion in term of d.b.h.Species, product, percentage degrade from sawtimber to nonsawtimber

Productivity increaseSubregion, product, owner, age class

Goal programEquilibrium harvest by region, owner and product are allocated to forest type, age class

harvest Subregion, product, owner

Starting acres, growth and harvest species, subregion, owner, age class, management type

inventory accounting Growth and removals

inventory available for harvest Subregion, product, owner

Product price Determined by interaction of aggregate demand and supply

Woody biomass for energy consumption scenarios Net of urban wood waste

Demand scenariosDownward sloping forest industry demand plus vertical demand curve for bioenergy

elasticity ValuesSupply elasticities based on Uinited States Forest Product model runs and demand elasticities (Abt and Abt 2010, Abt and others 2010)

2013,

Page 5: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

217chAPTeR 10. Forest Biomass-Based Energy

wasteandothersourcesofnonharvestedwoodybiomassoutoftheconsumptionestimates,anddefinedtheremainderasharvested-woodconsumption(includingharvestingresidues)forwoodybiomass-basedenergy;appendixBshowsthemethodusedtoestimatetheharvestingresiduesandurbanwoodwastethatcanbedivertedforenergyproduction.Demandpriceelasticity,whichlikeinventorysupplyelasticitycanvarybyproduct(LiaoandZhang2008,Pattanayakandothers2002),wasassumedtobe-0.5forallfourSRTSproducts(softwood/hardwoodsawtimberandnonsawtimber),thesameassumptionusedbyAbtandAbt(2010)fortheirSouthwidetimbersupplyanalysis.

Demandforwoodybiomassforenergycanalsobemetwithfast-growingshortrotationwoodycropspecies,amongthemyellow-poplar(Populusspp.),willow(Salixspp.),cottonwood(PopulusfremontiiL.),sweetgum(Liquidambarstyraciflua),sycamore(Platanusoccidentalis),blacklocust(Robiniapseudoacacia),silvermaple(AcersaccharinumL.),andeucalyptus(Eucalyptuscinerea);thesespecieshavebeenidentifiedbytheU.S.DepartmentofEnergyaspotentiallyviableforenergyproduction.WefollowedtheapproachoutlinedbytheEnergyInformationAdministration(2010a)andassumedthatshortrotationwoodycropswouldgrowlargelyonnonforestedlands(agriculturalorpasturelands)andpartiallyoffsetincreasedfuturewoodrequirements.Weassumedoftheoffsettobe10percentby2050andremovedthismaterialfromwoodybiomassdemandsforbioenergy(ineffect,treatingshortrotationwoodycropsasapartoftheagriculturalsector).

Althoughwedescribeourassumptionsasconsumptionscenarios,itisimportanttounderstandthattheyarenotdemandprojections,aswehavenotspecifiedprice-responsivedemandrelationshipsforwoodybiomass.Theconsumptionprojectionisessentiallyaverticaldemandcurveaddedtothedownwardslopingdemandcurvesfor

traditionalforestproductsforeachperiodusingmodifiedEnergyInformationAdministration(2010b)projections.Asacounterfactual,wealsointroducedaconstantconsumptionscenariowithnoforestbiomass-basedenergymarketandrantheSRTSmodeltodefinetheamountofwoodybiomassthatwouldberequiredbytraditionalforestindustryabsentabioenergymarket.Subsequentyearsareheldconstantattheoriginal2010levelontheassumptionthatthetraditionalforestproductindustrywillnotincreasewoodconsumptionbeyondwhatwouldbeexpectedattheconstantpricelevelestimatedbySRTS.

Toaccountforuncertaintyinbioenergytechnologies,demands,andpolicies,weconsideredthreeconsumptionscenariosthatwelabelhigh,medium,andlow.Thelow-consumptionscenarioassumesthat7.74percentoftotalelectricitywillderivefromrenewablesourcesbasedonEnergyInformationAdministration(2010b)referencecaseprojections.Themedium-andhigh-consumptionscenariosassumethat20percentoftotalelectricityconsumptionderivesfromrenewablesources;inthehigh-consumptionscenario,woodybiomassisassignedahigherpercentageofthetotalelectricitygenerationfromrenewablesources(table10.1).

Biomass Supply

TheSRTSmodelaccountsforforestinventorychangesandtimberremovalsbasedonhistoricalforestinventory(FIA)data.However,southernforestproductivityhasseenathree-foldoverthelast50yearsfromadvancementsinmanagementandgeneticimprovements(Foxandothers2007).Siryandothers(2001)projectedthatproductivitygainsforpineplantationscouldbeashighas100percentofempiricalFIAdata(usingdatafromthelate1990s)overthenext50years.PrestemonandAbt(2002)assumeda75-percentproductivitygaininsouthernpineplantationsfrom2000to2040.Withstrongmarkets,otherforest

Table 10.1—Allocation of woody biomass for energy production under woody biomass consumption scenarios by 2050

Woody biomass consumption scenario electricity liquid fuels Wood pelletsLow Based on Energy Information

Administration (2010b) projectionsProvides 30 percent of renewable energy sources

Based on Spelter and Toth (2009)

Medium Increases to 20 percent of renewable energy sources by 2050, with share of total electricity sources remaining the same as in the low-consumption scenario

Increases to 50 percent of renewable energy sources by 2050, with 30 percent of total liquid energy coming from woody sources

Increases by 25 percent, 2015–50

High Increases to 40 percent of renewable energy sources by 2050, with 20 percent of total electricity coming from woody sources

Increases to 50 percent of renewable energy sources by 2050, with 40 percent of total liquid fuel coming from woody sources

Increases by 50 percent, 2015–50

Page 6: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

218The Southern Forest Futures Project

managementtypesmightexperienceproductivitygainsduetosilviculturalimprovementsorimprovementsinmanagement,althoughnotashighaspineplantations.

Wedevelopedsupplyprojectionstoexaminealternativetrajectoriesofproductivityincreasesthrough2050.Intheseprojections,productivitygrowthisappliedtoeveryacreeveryyear,sothatovertimetheimprovedsilviculturalpracticesonexistingornewforeststandsorgeneticimprovementsofnewplantationsresultinanaggregategrowthresponse.Forthe“pineproductivity”strategy,weassumedthatpineplantationproductivityincreasessteadilyuntilitreaches100percent,whiletheproductivityofotherforestmanagementtypesisheldconstant.Forthe“allproductivity”strategy,weassumeda100-percentpineplantationproductivityincreaseanda25-percentincreaseforothertypes.Forthe“lowproductivity”strategy,pineplantationproductivityincreasesby50percentandtheproductivityofothertypesincreasesto25percent(tables10.2and10.3).Theseassumptionsareinlinewithhardwoodfieldtrialsthatreportgrowthresponsesbetween17and33percentafterstemdensityreduction,herbaceouscompetitioncontrol,andfertilization(Siryandothers2004).

WithinSRTS,removalsaretreatedasafunctionthatrespondstochangesintheproductpriceandthetotalbiomassinventory.Thetimbersupplyelasticitywithrespecttoinventoryhasbeenassumedtobe1.0forallproductsandowners.Forown-priceelasticitiesoftimbersupplies(elasticityofproductdemandwithrespecttotheirownprice),weusedtheaveragebootstrappedvaluesforA1BandB2cornerstonefuturesdescribedinchapter9,whichvaryacrossproductsandyearsandrangefrom0.18to0.32.

ReSulTS

market Analysis

By2050,woodybiomassconsumptionisprojectedtorangefrom150.16milliongreentonsforthelow-consumptionscenarioto235.88millionforthemedium-consumptionscenarioand316.12millionforthehigh-consumptionscenario(fig.10.2).Theamountofurbanwoodwasteamountstoabout12.72millionin2010andtrendsslightlyupwardthroughouttheprojectionperiodtoreach20.08millionby2050.Incontrast,theprojectionofbiomassrequirementfortheforestproductsindustry(heldconstantthroughtheprojectionperiod)isabout278.46million.By2050,thebiomassrequirementforenergyreachesabout54percentoftheforestproductsrequirementforthelow-consumptionscenarioand85percentforthemediumscenario.Forthehigh-consumptionscenario,thebioenergyrequirementexceedstheforestproductsrequirementby2045

andis13percentgreaterthantheforestproductrequirementin2050.

Addingurbanwoodwasteandtheforestbiomassconsumptionrequirementin2050wouldbringdemandto170milliontonsforthelow-consumptionscenario,256millionforthemediumscenario,and336millionforthehighscenario.TheseestimatesarecomparabletootherestimatesintheliteratureifweassumethatthatsupplyofwoodfromtheSouthmirrorsthenationalharvestshare—i.e.,approximately57percentofnationalharvestasperHansonandothers(2010).

Withoutaccountingformillingresidues,Milbrandt(2005)estimatedthatjust86milliontonsofwoodybiomassisreadilyavailableforenergyproduction(roughlyhalfoftheprojectionforthelow-consumptionscenario).Walsh(2008)estimatedthatapproximately121milliontonsofforestandmillresiduescouldbesuppliedatapriceof$100perdryshortton,comparedtoestimatesof154milliontonsbyKumarappanandothers(2009).TheEnergyInformationAdministration(2007)estimatedthatapproximately414milliontonsofwoodfromSouthmightberequiredtomeettheFederalgoalof25percentofrenewablefuelandelectricitystandards.Sample(2009)suggestedthatthisdemandfigurecouldbemuchhigher,estimatingtheyearlyrequirementat992milliongreentons.Perlackandothers(2005)estimatedthat420milliongreentonsofwoodresourcescouldbeannuallymadeavailableforenergyproductionfromsouthernforests.

Consumptionincreasesofthismagnitude(ataminimum,a54percentincreaseintimberharvesting)couldimplyastructuralchangeinforestproductsmarkets.Analysisoftraditionalwoodproductsmarkets(chapter9)indicatesthatthesupplyofbiomasscouldgrowbyabout43percentundercurrentlevelsofproductivitywithoutincreasedscarcity,largelybecauseofdecliningdemandsforwoodproducts.Withplantationproductivitygrowthatabout50percentby2060,forestbiomassoutputcouldexpandbyasmuchas70percentwithoutsubstantialimpactsonmarketscarcity.

Toidentifythemarketimplicationsofthethreeconsumptionscenarios,werantheSRTSmodel,whichprovidesprojectionsoftheremovalsfromgrowingstockresultingfromtimberharvestingbutdoesnotdistinguishamongfinalproducts.Todeducetheimplicationsofincreasedwoodybiomassrequirementforthetraditionalwoodproductsindustry,wedisaggregatedtheremovalsprojectionsintoharvestingresidues,additionalremovalsthatcouldnothaveoccurredwithoutwoodybioenergymarkets,and/ordisplacementfromtraditionalwoodproductindustry.

Toensurethatsomeslashisleftontheground,weconstrainedtheSRTSmodelsothatnomorethan

Page 7: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

219chAPTeR 10. Forest Biomass-Based Energy

Table 10.2—Simulations of supply responses when woody biofuels at three consumption levels are matched with four productivity strategies, 2050

Woody biomassconsumption scenario Productivity strategy Details

Medium Only improve pine plantation productivity Productivity of pine plantations doubles; no change in other forest management types

Medium Improve productivity on all management types

Productivity of pine plantations doubles by 2050 and productivity of other forest management types increases by 50 percent

High Only improve pine plantation productivity Productivity of pine plantations doubles; no change in other forest management types

High Improve productivity on all management types

Productivity of pine plantations doubles and productivity of other forest management types increases by 50 percent

Short rotation woody crops Improve productivity on all management types and expand short rotation woody crops

Short rotation woody crops growing on agricultural or pasture land offset 10 percent of wood energy demand; productivity of pine plantations doubles and productivity of other forest management types increases by 25 percent

High Low productivity Productivity of pine plantations increases by 50 percent and productivity of other forest management types increases by 25 percent

Table 10.3—Modified subregional timber supply model assumptions

Assumption Scenario/Strategies DetailsWoody biomass consumption for electricity and biofuels

Low,Medium. High Demand values in million green tons (Energy Information Administration 2010b)

Urban wood waste Low,Medium. High Per capita availability (Carter and others 2007)Harvest residues Low,Medium. High SRTS model run based on Johnson and others (2009) data Forest industry demand Low,Medium. High Auxiliary SRTS run for constant pricesDemand elasticity Low,Medium. High -0.5 for all products (Abt and others 2010)Supply elasticity Low,Medium. High Different annual values for products based on RPA storylinesa Pine productivity Pine productivity strategy Pine productivity increases by 100 percent by 2050

All productivity values All productivity strategy Pine productivity increases by 100 percent and other forest type increases by 50 percent by 2050

Low productivity values Low productivity strategy Pine productivity increases by 50 percent and other forest type increases by 25 percent by 2050

Short rotation woody crops Short rotation woody crops

Short rotation woody crops take care of 10 percent of total woody biomass for energy demand by 2050

Forest management type acreage

All scenarios and strategies

Forest land change as compared to agriculture and pasture land, in turn impacting acreage of pine plantations, natural pines, oak-pines, upland hardwoods, and lowland hardwoods (Abt and Abt 2013, Hardie and others 2001)

Timber rent All scenarios and strategies

Weighted average of pulp and sawtimber prices. Model allocates weights, with pulpwood gaining more weight in total rent calculations

Degradation of sawtimber for pulp use

All scenarios and strategies

Percentage allocation of sawtimber that can be used as pulp (Abt and others 2010)

Pulp diameter range All scenarios and strategies

<9 inch softwood<13 inch hardwood

Sawtimber diameter range All scenarios and strategies

>9 inch softwood>13 inch hardwood

Forest products All scenarios and strategies

Sawtimber softwoods, other softwoods, sawtimber hardwoods, and other hardwoods

aPersonal communication. 2010. David N. Wear, Project Leader, Center for Integrated Forest Science, Southern Research Station, U.S. Department of Agriculture Forest Service, Raleigh, NC 27695.

Page 8: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 9: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 10: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 11: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 12: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 13: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 14: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

226The Southern Forest Futures Project

reachingfivetimesthe2007levelforsoftwoods,andeighttimesthe2007levelforhardwoods.Inventoryandharvestlevelsforsoftwoodsarehighercomparedtolow-orno-consumptionscenarios,butlowerthanthemediumscenario;forhardwoods,inventorylevelsaremuchhigherthantheno-orlow-consumptionscenariosandremovalsarehigherthanallotherscenarios.Thepulpindustryisadverselyimpactedassignificantsuppliesaredivertedtoenergyproduction(fig.10.12).Thebioenergyrequirementisnotmetbynewremovals,pulpwood,orharvestingresidues,resultinginacompleteeliminationofforestindustrydemandforhardwoodsby2037followedbysoftwoodsin2043.

Theprices,inventory,andremovallevelsofsawtimberaresimilartotheotherconsumptionscenarios.Theindustrywouldexperienceasignificantimpactas91milliongreentonsofsawtimberisdivertedtoenergyproduction.Theincreasedacreageofpineplantationsmightresultinsomeofthesoftwoodtimbermovingtosawtimberdiameters.Significantamountsofhardwoodsawtimberarealsodivertedtoenergyproduction.

Privateforestacreageincreasesby9percentfrom175.39millionacresin2010to191.6millionacresin2050(fig.10.13),21percenthigherthantheno-consumptionscenario.Allforestmanagementtypesexceptnaturalpinesincreaseinareaby2050,ledbya33percentincreaseinpineplantationacreage.Initialacreagedeclinesforuplandandlowlandhardwoodsandoak-pinesarereversedafter2027,resultingina2-percentnetincreaseby2050.

Supply Adjustment Strategies

Increasedconsumptionforwoodbyanewwoodybioenergyindustrycanbeexpectedtoresultinthesupplysideadjustmentssuchastheuseofshortrotationwoodycropsandtheincreasedproductivitystrategiesdescribedbelow.

Productivity increases limited to pine plantations—Anincreaseinpineplantationproductivitywoulddomoretodampennonsawtimbersoftwoodpriceincreasesinthemedium-andhigh-consumptionscenarios(fig.10.14)thanintheno-andlow-consumptionscenarios(whichdonotstimulateproductivitygains),withpricesfallinguntilthelate2020sbeforebeginningtoincreaseagain.Inventoryandremovalslevelsarealsohigher.Theincreaseinproductivityofpinesalsolowerspriceresponsesforhardwoods,largelybecauseincreasedsoftwoodinventoriesfulfillthedemandsforbioenergy.

Figure10.15showsprice,inventory,andremovalprojectionsforsawtimberundermedium-andhigh-consumptionscenarios.Forsoftwoodsawtimber,productivityincreasesinpineplantationsalsoresultinlowerpricesandhigherinventoryandremovalsunderbothincreasedproductivity

strategies,withthemedium-consumptionscenarioprovidingagreaterpricedampeningeffectthanthehigh-consumptionscenario.Pricetrendsarethesameforhardwoodsawtimberbutthedecreasesarelessextreme.Higherinventorylevelsresultfromtheincreaseinproductivity,whichreducesprices.Theimpactonthesawtimber-usingindustryisalsoreduced.Forexample,inthehigh-consumptionscenario54.5milliongreentonsofsawtimberfrombothhardwoodsandsoftwoodsisdivertedtoenergyuseinthepineproductivitystrategyascomparedto91milliongreentonsassociatedwithnoproductivityincreases.Thedecreasedimpactontheforestindustryisduetoexpandedremovalssupportedbyincreasedproductivity.

Productivityincreasesresultinhigherremovalsandlessdisplacementfromforestindustry(fig.10.16).Thesoftwoodsbeingusedbyforestindustryarestillcompletelydivertedforenergyproductioninthehigh-consumptionscenario,butthisoccurslater.

Forestmanagementtypetrendsaresimilarforthemedium-andhigh-consumptionscenarios,withincreasesinpineproductivityresultinginlowerlevelsofprivateforestacreageforbothscenarios(fig.10.17)—9.6percentforthemedium-and10.2percentforthehigh-consumptionscenario—albeitmuchhigherthanfortheno-consumptionscenario.Becauseproductivitygainsarelimitedtosoftwoods,ahighershareofthewoodrequirementsforwoodybioenergymarketsismetbysoftwoodsthanhardwoods.Acreagedeclinesacrossallfivemanagementtypes,withthehighestrateofdeclineinpineplantations.

Productivity increase extended to all management types—Aproductivityincreaseforallforesttypesresultsinprice,inventory,andremovalresponsesthataresimilartothoseobservedforincreasesinpineplantationsalone,theonlydifferencebeinginthemagnitudeofchange.Softwoodpriceislowerandinventoryandremovallevelsarehigher(fig.10.18).Hardwoodtrendsformedium-andhigh-consumptionscenariosaresimilartothesoftwoods,withlowerpricesandhigherinventoriesandremovalsthanwasprojectedforplantedforesttypesalone(fig.10.19).

Nonsawtimbersoftwoodsusedbyforestindustryarestillcompletelydivertedtoenergyproductioninthehigh-consumptionscenario,buttheimpactonthesawtimber-usingindustryisreduced.Forexample,inthehigh-consumptionscenario,36.38milliongreentonsofsawtimberfromisdivertedtoenergyuseascomparedto53.5milliongreentonswithpineproductivityaloneand91milliongreentonswithnoproductivity(fig.10.20).Higherremovalsofsawtimberareattributedtounharvestedpulpwoodtimbermovingintothehigherdiametersawtimberclass.Theproductivityincreasesthereforeresultinhigheracreageandhigherinventoryattheaggregatelevel.

Page 15: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 16: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 17: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 18: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 19: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 20: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 21: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 22: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 23: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

235chAPTeR 10. Forest Biomass-Based Energy

Comparedtoplanted-pine-aloneproductivitystrategy,thisapproachincreasestotalforestareaforbothmedium-consumptionscenario(165.52millionacres)andthehigh-consumptionscenario(175.01millionacres),withacreageincreasesforallforestmanagementtypesexceptpineplantations(fig.10.21).

Low productivity increase—Lowerproductivityincreasescombinedwithmedium-andhigh-consumptionscenariosresultinprice,inventory,andremovalresponsessimilartotheallproductivityincreasestrategies(figs.10.22and10.23).

Thesupplyresponseofthelowproductivitystrategyfailstooffsetthewoodybiomassrequirements,withallnonsawtimbersoftwoodbeingdivertedfromforestindustrytoenergyproductionunderthehigh-consumptionscenarioandasignificantamountdivertedunderthemedium-consumptionscenario(fig.10.24).Theimpactonthesawtimber-usingindustryishigherthanfortheallproductivityorpineproductivitystrategies,butlowerthanifnoproductivitymeasuresweretaken.Forexample,inthehigh-consumptionscenario,57.18milliongreentonsofsawtimberisdivertedtoenergyuseascomparedto36.38milliongreentonsfortheallproductivitystrategy,53.5milliongreentonsforthepineproductivitystrategyand91milliontonsifnoproductivitymeasuresweretaken.

Privateforestacreageishigherthanfortheothertwoproductivitystrategies.Forestlanddecreasesfrom175.39millionacresin2010to172.47millionacresforthemedium-consumptionscenario,butincreasesto181.85millionacresforthehigh-consumptionscenario(fig.10.25).Plantedpineacreageincreasesmoreandotherforesttypeacreagedeclineslessascomparedtothepineproductivityorallproductivitystrategies.

Productivity increases on short rotation woody crops—WeranthemodeltosimulatetheresultsofahighproductivitystrategycoupledwiththeemergenceofshortrotationwoodycropsintheSouth.Inventoriesandremovals(fig.10.26)arehigherthanfortheallproductivitystrategycoupledwithhighconsumption(similartoresultsfromasubsequentruncombiningalowproductivitystrategywithshortrotationwoodycrops).Softwoodandhardwoodinventoriesarehighercomparedtotheno-consumptionscenario.Priceincreasesforallproductsaredampened.

Theseresultsalsosuggestthatthepulpindustrywouldstillfaceadverseimpacts,asmerchantablewoodfromforestindustrywouldbedivertedtoenergyproduction(fig.10.27).However,thecombinationofincreasedsuppliesfromshortrotationplantationsandfromproductivitygainsonexistingforestswouldprovidemostofthe‘additional’sawtimberneededforenergyproduction,resultinginjust26.7milliontonsdivertedfromforestindustry.Thehigherlevelsof

aggregateinventoryandremovalscounterthenotionthatdivertingwoodforenergywouldnecessarilyleadtoinventorydeclines.Forestacreageislowerthanfortheotherproductivitystrategies,buthigherthantheno-consumptionscenarios(fig.10.28).

Technologies

Consideringthepotentialavailabilityofwoodthatcouldbeusedinthetraditionalforestproductindustriesandwoodybioenergyindustries,itisimportanttodeterminehowcurrentandlikelysuitablewood-to-energyconversiontechnologiescanpotentiallyimpactthefutureofsouthernforests(forexample,howtechnologicalpreferencestowardsaparticularspeciesmightincreaseitsprice,producingchangesininventoryandremoval).DwivediandAlavalapati(2009)foundthatabroadspectrumofstakeholdersviewconversiontechnologiesasoneofthemainweaknessesforthedevelopmentofforestbiomass-basedenergyintheSouth.Inaddition,Nesbitandothers(2011)foundthatundercurrentlevelsoftechnology,slashpineethanolisnotafinanciallyviablecompetitorforfossilfuels.Theyfoundthatunitcostofproducingethanolfromslashpine(Pinuselliottii)throughatwo-stagedilutesulfuricacidconversionprocess,andasynthesisgasethanolcatalyticconversionprocesswasestimatedtobe$2.39pergallonand$1.16pergallonrespectively.Ifadjustmentsarebasedonthelowerenergycontentofethanolrelativetogasoline(OakRidgeNationalLaboratory2008),thecostofanenergyequivalentgallonofethanolincreasesto$3.55and$1.74pergallonforthetwoconversionprocesses,respectively.

Woodybiomasscanbeconvertedintoenergyusinganumberofdifferentprocesses.Broadlyspeaking,wood-to-energyconversiontechnologiescanbegroupedintotwomaincategories:thermaltechnologies—suchasco-firingandcombinedheatandpower,directcombustionusingwoodpelletsandwoodchips,gasificationandpyrolysis—andbiochemicalprocesses.

Co-firing and combined heat and power—Combustionofwoodybiomasscanbeappliedtoproduceheatandelectricity,particularlyinindustrialandresidentialsectors.Threemajortechnologyoptionsarebeingdevelopedforproducingelectricityandheat.Theseare:settingupdedicatedcellulosicpowerplants,co-firingbiomassinexistingcoalplants,anddevelopingcombinedheatandpowerplants.AlltheseoptionsarebeingexploredintheSouth,rangingfromadedicatedpowerplantthatwilluseurbanwoodwaste,woodprocessingwastes,andloggingresiduesinGainesville,Floridatoplantsthatblendbiomasswithcoalorinjectbiomassseparatelyintoboilers.Currently,27co-firingplantssupplyabiomass/coalco-firingcapacityof2,971megawatts.Virginiaistheleaderinthenumberofco-firingplantsandcapacityintheSouth,followedbyNorth

Page 24: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 25: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 26: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 27: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 28: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 29: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 30: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

242The Southern Forest Futures Project

aremoreexpensiveandhavelowerethanolyields,buttheyalloweachtobecarriedoutatitsoptimaltemperature(Jacksonandothers2010).

Althoughseveralhydrolysistechniqueshavegainedmomentuminthelastdecade,efficiencyandcostissueshavehinderedcommercialviability.Anintegratedenzymaticprocesscouldcontributetocostreductions,butithasnotyetmovedoutofthelaboratorystage.

TheDepartmentofEnergyset2012commercializationtargetsforresearchanddevelopmentwhichincludedreducingthesellingpriceofethanolby2012to$1.07ratherthan$1.61pergallon,increasingethanolyieldperdrytonfrom56gallonsin2005to67gallonsin2012,andreducinginstalled2005capitalandoperationalcostsby35.5percentand65.3percentrespectively.Forfermentationbasedethanolproduction,thetargetistoincreaseyieldfrom65gallonspertonin2005to90gallonspertonin2012.Thetargetalsosetsfeedstockcosttargetfor2012as$35perdryton.Effortsareongoingtoachievethesetargets,butnotechnologicalbreakthroughhasyetachievedtheselarge-scaleproductiontargets.TheRangeFuelplantinSoperton,GeorgiaproducedwastewoodmethanolinAugust2010,andcurrentlyproducingitsfirstbatchofcellulosicethanol.However,theplantisshuttingdownoperationsafterdemonstratingitscellulosicproductiontechnology.Thescaleofbioenergyplantintermsofcapitalandbiomassdemandsfromtheforestlandscapeareissuesthatneedfurtherattention.Ifalargeplantissetup,thenthetransportationcostofprocuringbiomassfromareasfartherfromtheplantsitemightincreaseperunitcostand/orleadtoprocuringlowerqualityfeedstock.Thescaleoftheplantnotonlydependsoncostissues,butalsoonthepurposeforwhichitisbeingbuilt.Forexample,VanLooandKoppejan(2008)suggestthatsmallcombinedheatandpowerplantfacilitieswithlowerconversionefficiency(10percent)canbeusedwhereheatistheprimaryproductwithpowerasthesecondaryproduct,whilefacilities(morethantenmegawatts)generallyhavehigherefficiency(25percent)astheyproduceelectricityastheprimaryproduct.

The Policy environment

Anumberofcurrentandproposedpoliciesandprogramsmayinfluencethefutureofwoodybiomass-basedenergymarketsintheSouth.Someofthesepoliciesaredirectedspecificallyattheexpansionofwoodybiomassuseforenergy,andothersinfluenceindirectlybyfocusingonreductionsofgreenhousegasemissions.

Incentive-basedpoliciesprovidefinancialsupportsuchascost-shares,taxreductions,subsidiesorgrants,andlow-orno-interestloansforprojectfinancing.TheDatabaseofStateIncentivesforRenewablesandEfficiency(2010)reportsthat

policiesforrenewableenergy(includingwoodybiomassforenergy)intheSouthernStatesaregenerallyintheformoftaxrebates,grants,loans,industrysupport,bonds,andperformance-basedincentives.

Regulatoryandsupportmechanismsincludepoliciesthatsetgoals,targets,andlimits;andcompelcertaintypesofbehavior,aswellascreatingsupportiveinfrastructureandfacilitatingpubliceducationaloutreach.Rules,regulations,andpolicies(regulatoryandsupportpolicies)areintheformofpublicbenefitfunds,renewableportfoliostandards,netmetering,interconnectionstandards,contractorlicenses,equipmentcertification,accesslaws,constructionanddesignrules,greenpowerpurchasingguidelines,andgreenpowerpolicies.

Incentive-based policies—Inanefforttosupportmarket-basedsolutions,FederalandStategovernmentshaveintroducedanumberofincentive-basedpolicies.Thisgenerallyresultsinalteringpricesbyassigningamonetaryvaluetosomethingthatwaspreviouslyexternaltomarketforces(Shrum2007).Subsidiesareintendedtoencourageplantingandmanagementactivitiesthatmightpromotefeedstockavailability,andtaxsupportencouragestheuseofrenewables.Supportintheformofgrantsandloansarealsoprovidedtoencouragecleantechnologydevelopmentandadoption.

IncentivesforliquidbiofuelswerefirstinstitutedintheEnergyTaxActof1978,whichprovideda$0.40pergallonexemptionfromthegasolineexcisetaxforblendswithatleast10percentethanol.Thenitwasincreasedto$0.51pergallonbythe1998TransportationEquityActofthe21stCentury.TheAmericanJobsCreationActof2004replacedtheexcisetaxexemptionwithavolumetricethanolexcisetaxcreditof$0.51pergallonuntil2010(reducedto$0.45pergallonbytheFarmBillof2008).TheEnergyIndependenceSecurityAct(2007)providedaproductiontaxcreditof$1.01pergallonforcellulosicbiofuelsthrough2012.ThefollowingsectionsummarizesthecurrentbioenergypoliciesintheSouth.

The2008U.S.FarmBillcreatedanewBiomassCropAssistanceProgram(BCAP)toencouragedevelopmentoflarge-scaleenergycropsthatcansupportcommercial-scalebioenergyproduction.BCAPprovidesincentivestofarmers,ranchers,andforestlandownerstoestablish,cultivateandharvestbiomassforheat,power,bio-basedproducts,andbiofuels.Theprogramsharestheestablishmentcostandmatchescostrelatedtotransportationandlogisticsupto$45pertontoproducerswithuserfacilitiescontracts.Theprogramreducesthefinancialrisktofarmersandforestlandownerstosupplyeligiblebiomassmaterialstoqualifyingfacilities,andcanreducethecostofrawmaterialstothefacility.Thesealsopromoteconservationandstewardshipbyemphasizingthatbiomassiscollectedandharvested

Page 31: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

243chAPTeR 10. Forest Biomass-Based Energy

accordingtoanapprovedconservation,orsimilarplantoprotectsoilandwaterqualityandpreservefuturelandproductivity.

RebatesfollowedbyloansarethemostpopularfinancialincentivesintheSouth(table10.4).Federalfinancialincentivesaremainlycomprisedofcorporatetaxrebates,researchanddevelopmentgrants,andloans.Loansandperformance-basedincentivesarethepoliciesmostfrequentlyusedinthe76StatefinancialincentiveprogramsintheSouth.NorthCarolinahasthelargestnumberofStatefinancialincentives(eight),andTexashasthesmallest(two).

FewStateprogramsarespecificallyaimedatincreasingwoodybiomassstockforenergyuse,partlybecausewood-for-energymarketshavenotyetbeenestablished.However,moreoftenthannot,improvementinforestbiomassavailabilityandsustainableuseisanoffshootalthoughnottheoverarchinggoaloftheseprograms.AlthoughtheminimumacreageandstockinglevelsforpropertytaxcalculationsvaryacrossSouthernStates,thegeneralobjectiveofallthesetaxesistoprovideanincentiveformanaginglandonasustainedyieldbasisandadisincentiveforconvertingforestlandtootheruses.Theobjectivesof

Statecost-shareprogramsaretoreforestcutoverland,plantopenland,orimprovewoodlands;andmanyStatesoffertosharethecostsofotherforestmanagementactivities.Forexample,SouthCarolinahasforestrycommissioncost-shareprogramsandNorthCarolinahasforestagriculturecost-sharingprograms.Theseprogramsleadtohigheravailabilityoffeedstocksforenergyconversion.

SeveralFederalprogramsprovideincentivesforconservationofforestlandsandmaintainingsustainableforestmanagementpractices.Forexample,theEnvironmentalQualityIncentivesProgram(EQIP)providescostsharesforinstallinggreenhousegasmitigatingtechnologiesandtheLandownersIncentiveProgramprovidesfinancialassistancetolandownersforavarietyofconservationgoalsincludingcarbonsequestration.TheForestLandEnhancementProgrampromotesadditionalcarbonsequestrationandotherecosystemservicesthroughcostshareswithlandowners.Theseprogramshelptoreducelandusechangeawayfromforests,inturnindirectlymaintainingtheforeststockthatcanbeusedforenergyproductionatalaterdate.IncentiveprogramsforreforestationhavelongbeenestablishedinanumberofStates.Forexample,Mississippiprovidestaxcreditsforreforestation.

Table 10.4—Number of financial incentives for renewable energy at Federal and State levels (blanks indicate no incentives): Number in the parentheses means whether incentives are State governments (S), utility companies (U), local governments (L), or nonprofit organizations (N)

State(s)Personal tax

corporate tax

Sales tax

Property tax Rebates Grants loans

industry support

Performance- based incentive

All States (Federal incentives) 3 4 3 5 1 1Alabama 1(1S) 3(3U) 1(1S) 3(1S,2U) 1(1U)Arkansas 2(1S,1U) 1(1U) 1(1S)Florida 2(2S) 2(2S) 12(1S,10U,1L) 6(1S,5U) 1(1L) 2(2U)Georgia 1(1S) 1(1S) 1(1S) 10(1S,9U) 1(1S) 2(2U)Kentucky 1(1S) 2(2S) 1(1S) 11(1S,10U) 1(S) 4(1S,1U,1L,1N) 1(1S)Louisiana 1(1S) 1(1S) 1(S) 2(2S)Mississippi 5(1S,4U) 4(1S,3U) 1(S)North Carolina 1(1S) 1(1S) 1(1S) 2(2S) 6(6U) 1(1S) 4(3S,1U) 4(3S,1N)Oklahoma 1(1S) 3(3U) 6(4S,2(U) 1(S)South Carolina 1(1S) 2(2S) 1(1S) 6(6U) 6(1S,5U) 4(1S,2U,1N)Tennessee 1(S) 2(1S,1U) 2(2S) 3(2S,1U) 1(S) 1(S)Texas 1(1S) 1(1S) 27(25U,2L) 2(2S) 2(2S) 1(1S) 2(2U)Virginia 1(1S) 1(1S) 1(1S) 1(1S) 1(1U)Total 9 15 6 6 88 10 48 7 20

Source: Database of State Incentives for Renewables and Efficiency (2010).

Page 32: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

244The Southern Forest Futures Project

Regulations and support programs—AttheFederallevel,theEnergyPolicyActof2005establishedRenewableFuelStandards,whichmandatedthattransportationfuelscontainaminimumvolumeofrenewablefuels,startingwith4billiongallonsin2006and7.5billiongallonsby2012.TheEnergyIndependenceSecurityAct(2007)calledforproductionof36billiongallonsofbiofuelsby2022,ofwhich21billiongallonsmustbecellulosicbiofuel.The2008FarmBillauthorizedmandatoryfundingof$1.1billionforthe2008to2012,providinggrantsandloanstopromotealternativefeedstockresourcesincludingwoodybiomass.InterconnectionstandardsandgreenpowerpurchasinghavealsobeenformulatedattheFederallevel.

ConstructionanddesignsupportforestablishmentofbioenergyproductionfacilitiesandnetmeteringavailabletobiomassbasedenergyfacilitiessotheycansellpowerbacktothegridarethemostemployedState-levelpoliciesintheSouthand10SouthernStateshavealsoformulatedrenewableportfoliostandardsastargetsforusingcleanersourcesofenergyinutilitiesandindustries.

Extensionandsupportactivitieshavefacilitatedknowledgetransfers,technologydemonstrations,andinformationsharingsessions;andhavedevelopedmulti-stakeholderpartnershipstoreducegreenhousegasemissions.Extensionagentsandspecialistsatland-grantuniversitiesandgovernmentinstitutionstransferknowledgeaboutnaturalresourcemanagement(includingwoodybiomass-basedenergy)toclientgroups,suchasforestowners,forestersandothernaturalresourcemanagers,treegrowers,loggers,andforestworkers.Non-StateeffortsaimedatlandownersincludeaStateTreeFarmprogramthatrecognizeslandownerswhoaredoingagoodjobofmanagingtheirlandwithacertificate,subscriptiontoTreeFarmmagazine,andTreeFarmsigntodisplayontheirproperty.Regularinteractionbetweenlandownersandprofessionalforestersisfacilitatedthroughperiodicvisitsbyforesters.

TherehavebeennumberofeffortsbypolicymakersintheUnitedStatestocreatemarketsasamechanismtoregulateGHGemissions,althoughnobillhasyetbecomelaw.Forexample,theHousepassedtheAmericanCleanEnergyandSecurityAct(a.k.a.Waxman-Markey)onJune26,2009,andthreeotherbillsweresubmittedtotheSenatein2009and2010:theCleanEnergyJobsandAmericanPowerAct(Kerry-Boxer),theAmericanPowerAct(Kerry-Lieberman),andtheCarbonLimitsandEnergyforAmerica’sRenewalAct(Cantwell-Collins).Waxman-Markey,Kerry-Boxer,andKerry-Liebermanwouldcreatemarketsforemittingandoffsettingcarbondioxideandpermitthepurchaseofupto2billionmetrictonsofcarbonoffsetsannually(Mercerandothers2011).GorteandRamseur’s(2008)estimatethatataCO2epriceof$50permetricton,morethan800millionmetrictonofCO2ecouldbesequesteredthrough

afforestationactivities,andapproximately380millionmetrictonthroughimprovedforestmanagementactivities.Since2010,littlecongressionalefforthasfocusedonclimateingeneralandcarbonsequestrationpoliciesinparticular.

Forestryoffsetprojectsincludingmitigationofgreenhousegasesthroughbioenergyproductioncanpotentiallyaccruecarboncreditsbuttheaccountingischallenging.Assumingthatenergycropsdonotleadtolandusechanges,lifecycleanalysesofdifferentbiofuels(includingwoodybiomass)suggestoverallgreenhousegasreductions(BlottnitzandCurran2006,Erikssonandothers2007,Gustavssonandothers2007).Searchingerandothers(2008)arguethatlifecyclestudieshavefailedtofactorinindirectlandusechangeeffects,andsuggestthatusingU.S.croplandsorforestlandsforbiofuelsresultsinadverselanduseeffectselsewhere,thusharmingtheenvironmentratherthanhelpingit.Indirectlandusechangeeffectsaredifficulttoassess,andtodaythereisnogenerallyacceptedmethodologyfordeterminingsucheffects.Fritscheandothers(2006)argueforassessingindirectinfluenceofbioenergyonlandusechangethroughmeasuressuchaslandpricesandrents.However,conductingsuchassessmentsatthesitelevelandtranslatingthesetooperationalindicatorsisquitecostly.Asatisfactorymethodologyforincorporatingtheeffectsofindirectlandusechangesintothelifecyclegreenhousegasemissionsoffuelsremainsanimportantchallenge.

TherearealsopoliciesandregulationsthatcouldlimitdevelopmentofabioenergyindustryintheSouth.TheEnvironmentalProtectionAgency’sfinalGreenhouseGasTailoringRule,doesnotexemptbiomasspowerproducersfromgreenhousegaspermittingrequirements,andmightacttolimittheestablishmentofbioenergyconversionplants(Mendellandothers2010).Thisruletreatscarbonemissionsfrombiomasscombustionidenticallytofossilfuelsemissionsandincreasescostsassociatedwithobtainingpermitsandcostsassociatedwithtechnologyrequirements,suchasBestAvailableControlTechnology.Mendellandothers(2010)suggestthatregulatoryuncertaintycreatedduetothisregulationcouldaffectestablishmentof130renewableenergyprojects,and$18billionincapitalinvestmentacrossthecountry.Similarly,theEnvironmentalProtectionAgency’sairqualitypermittingforbiomassboilersimpactsbiomassbasedelectricityproducersadversely.

Assessing efficacy of policies—Anumberofresearcherssuggestthatprivatelandownersarebyandlargeunresponsivetopropertytaxandcapitalgainsprovisions,andthatforestpropertytaxprogramsareonlymodestlysuccessfulinachievingtheirgoals(Greeneandothers2005,Jacobsonandothers2009,Kilgoreandothers2007).Manyauthorshavefoundthatlandownersarelargelyunawareoftheexistenceofincentivesordonotunderstandhowincentivesmightapplytothem.Forexample,Butler(2008)based

Page 33: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

245chAPTeR 10. Forest Biomass-Based Energy

onlandownerresponsestotheForestService’sNationalWoodlandOwnerSurvey,concludedthatnotalllandownersareprice-responsive.Factorssuchasmaintainingforestlandforaestheticsorwildlifeconservation,aswellamovementtowardssmallerownerships,mightberesponsibleforthispriceunresponsiveness.Nevertheless,ataggregatelevel,theseincentivebasedpoliciesresultinincreasedwelfare,asshownbyHuang(2010)whofoundthatwhencombinedwithinvestmentintechnology,theycanresultinoverallpositiveoutcomesfortheSouth’seconomyandhouseholdwelfare.

Beachandothers(2005)andGreeneandothers(2005)foundthatnonindustrialprivateforestownersmoreoftenrespondtotargetedgovernmentprogramsthantomarketpricesorotherfinancialincentives.Theyalsosuggestthattechnicalassistance,cost-sharepayments,anddirectcontactwithprofessionalforestersornaturalresourcespecialistsmoreoftenthannotsucceedinchangingforestmanagementdecisions.AuthorslikeHaines(2002)andArnold(2000)haveproposedintegratinglanduseplanning(andwoodybiomass-basedenergyuse)intoextensionprograms.Educatinglandownersandthegeneralpublicaboutthebenefitsderivedfromcleanerenergysourcessuchaswoodybiomasswillimproveandincreaseinterestinforestbiomassutilization.Mayfieldandothers(2008)indicatedthateducationandcommunityengagementplayimportantrolesinthedevelopmentofcleanertechnologylikewood-basedenergy.JoshiandArano(2009)agreethatlandownersarelargelyunawareofincentiveprogramsavailabletothem,andthusarguethatmuchremainstobedonetoencourageprivateinvestmentinforestryactivities.Inlightofthesefindings,extensionandoutreachsupportprogramsbecomeimportantforincreasingtheacceptabilityofwood-for-energytechnologyoptionsandimprovingforestandlandmanagementpractices.

Sustainability

Thedevelopmentofforestbioenergysystemspresentsnewopportunitiesaswellasrisks.Manysustainabilityconcernsarebeingraisedaboutwoodbiomassutilizationforenergy.Theseconcernsrangefromproductionprocessestoconsumptionprocesses—feedstockproduction,harvesting,transport,conversion,distribution,consumption,andwastedisposal—andincludeissuesofjobcreationandsocietalbenefitdistribution.

Forestsprovidenotonlywoodfortraditionalusesbutalsoseveralecosystemservicessuchascleanwaterandbiodiversity(Amacherandothers2008,Neary2002,Stupakandothers2007).Thesepotentialimpacts—groupedintoproductivity,waterquality,andbiodiversitycategories—aredescribedindetailbelow.

Productivity—Theforestflooraccumulatesnitrogen,phosphorus,calcium,andothernutrientsthatareessentialfortreegrowth.Unliketraditionaltimberharvests,biomassharvestsforenergyproductioncouldimpactregenerationandsiteproductivityunlessproductivityreductionsassociatedwithsitequalityareoffsetbyfertilization.Studiesofforestbiomassbasedenergyproductionraiseconcernsregardingsoilcompactionandrutting(Reijnders2006),decreasedamountsofdecayingwoodonforestedlandscapes,changesinthechemicalandphysicalenvironmentofsoils(Astromandothers2005),increaseduseofagrochemicals(Fritscheandothers2006),increasedsoilerosion(Burger2002),andnutrientloss(Burger2002).Theseissuessuggestaneedforintensifiedsiteandoff-sitemonitoringwhereforestmanagementisintensified.

Themachineryusedtobuildroadsandinfrastructureforbiomassharvestingbiomassforenergymightbedifferentfromwhatwasusedintraditionaltimberharvestingandharvestingmighttakeplaceinareaswheretimberharvestingistraditionallynotundertaken,resultinginnewroadsorpathways(Lalandothers2011,SmithandLattimore2008).Frequencyofharvestsforbiomassremovalcouldalsobegenerallyhigherthanfortraditionalharvests,andsecondoperationsorharvestresiduecollectionsmightresultinvehiclere-entryatthesite(Lalandothers2009).Intensiveremovalsofforestbiomassforbioenergymightreducesoilcarbonandorganicmattertolevelsthatareinadequateforsustainingforestproductivity.Hope(2007)throughtheirsiteexperimentsinBritishColumbiaobservedthatstumpremovaldecreasesthesoilstockofcarbonby53percent,nitrogenby60percent,andphosphorusby50percent;andthattheforestfloordepthwasdecreasedby20to50percent.Pengandothers(2002)throughtheirstudyinCentralCanadareportedthatwhole-treeharvestingproducesanadditional32percentlossofsoilcarboncomparedtoconventionaltreeharvesting.SmithandLattimore(2008),whilediscussingpotentialenvironmentalimpactsofbioenergyharvestingonbiodiversitylistcontributingactivitiessuchasmechanicaldamagetoresidualtrees;expandedroadnetworks;increasedremovalsandlandusechangesthatmightimpactproductiveanddiverseecosystems.ScottandDean’s(2006)LongTermSiteProductivityStudyfoundthatwhole-treeharvestingreducedproductivityonover75percentofthestudyblocksinSouthbyanaverageof18percent.However,theyalsofoundthataone-timeapplicationofnitrogenandphosphorusfertilizermaintainedproductivityandincreasedproductivitybyanadditional47percentabovethestem-onlyharvestlevel.

Harvestingslashremainingafterconventionalharvestingofloblollypine(Pinustaeda)intheCoastalPlainalongtheGulfofMexicoreducedsiteproductivity,decreasingsoilorganicmatterandassociatednutrientsby18percent(Scott

Page 34: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

246The Southern Forest Futures Project

andDean2006).Reductionsofjackpine(P.banksiana)heightgrowthof18percentonwhole-treeharvestedplotsinsitesofQuebecregionofCanadawereattributedtolowersoilmoistureandnutrientavailability(Thiffaultandothers2006).Toavoiddecreasedproductivityfromsoilcompactionduringbiomassharvesting,JanowiakandWebster(2010),afterreviewingthestateofknowledgeregardingtheimpactsofintensiveforestrywithrespecttoissuesrelevanttobioenergyproduction,recommendedusingmachinerythatissimilartowhatisusedinconventionalharvesting.

Water quality—Increasedbiomassharvestingactivitiesforawood-to-energymarketmighthaveadverseimpactsonwaterqualityinstreams,rivers,andlakes.Increasedroadconstructionrequiredforwoodybiomassharvestingmightleadtosoilerosion,highsoilmoisture,andincreasedrunoffandsedimentsfromforestroadsandlandings(JanowiakandWebster2010).Increasedmachineryusemightalsoimpactthewatertableattheharvestsite,leadingtoimpermeablesoilsfromcompaction.Removalofyoungertreesandloppingandtoppingduringbiomassharvestsmightdecreaseleafsurfacearea,resultingindecreasedtranspirationandinterception(Lalandothers2009).

Machinere-entryatharvestsitesmightincreasesedimentationandflowlevelsinwaterways,increasingthechancesofsedimentmovementintowetlandsthroughdamagederosioncontrolfeatures.Frequentharvestsmightincreasesuspendedsolidsandaluminumlevelsinwater,raisingacidificationlevelsandnegativelyimpactingfishandotheraquaticorganisms(Grigal2000).Inaddition,woodybiomassharvestingadjacenttowaterwaysmightincreasetheprobabilityofhigherwatertemperatures,disturbedchemistry,andreducedclaritythatwoulddamagebiologicalcommunitiesandalterecologicalprocesses(JanowiakandWebster2010).AustandBlinn(2004)reviewedbestmanagementpracticesfortimberharvestingandsitepreparationintheeasternUnitedStatesintermsofwaterqualityandproductivityresearchduringforthetimeperiodbetween1982and2002,andconcludedthateffectsofharvestingonforesthydrologyarehighlyvariableacrosssitesandtimeperiods.However,harvestingimpactsonforesthydrologyarelikelytobegreaterimmediatelyfollowingharvest,withtherecoverytopreharvestconditionstakingupto5years

Biodiversity—Theextractionofadditionalbiomassforbioenergycoulddegradehabitatsbeyondtherangeofnaturalvariabilityandproducenegativeeffectsonsomespecies(JanowiakandWebster2010).Increasedaccessandintensityofharvestcanalsofragmenthabitatsandadverselyimpactwildlifecorridors(Fletcherandothers2011,Lalandothers2009).Naturaldisturbancessuchasfire,wind,andpestoutbreakspermitacontinuoussupplyofdeadwoodinunmanagedforests.Intensiveforestmanagementleadingto

removalofstumpsmightreducetheamountofdeadwoodthatisconsideredessentialtoforestecosystemsandprovideshabitatsfordifferentorganisms(Humphreyandothers2002).

Theremovalofresiduesandstumpsmightnegativelyaltertheentiresoilfaunacommunityandstructureofthefoodweb,harmingsmallmammals,andreducingecologicalniches,therebyloweringdiversityandnumbersofinvertebratessuchasspidersandpredatoryinsects(Eckeandothers2002).Thereisalsoachanceofinsectsorotherwood-colonizingspeciesgettingtrappedinwoodburntforfuel.

However,intensiveforestmanagementpracticescontrollingpestsanddiseasecanalsoimproveforesthabitats.Forexample,certainfungispeciescauserootandbuttrotdiseasetoconifersworldwide.Stumpremovalassociatedwithwhole-treeharvestinggenerallyleadstosignificantreductionsintheareaofthestumpcolonizedbythesefungi,reducingtheriskofattack(ThorandStenlid2005).Conversely,theharvestingofforestresiduesandstumpswouldalsofavorpioneeringspeciesofflorathatarealsomoretolerantofexposureandsoilmoisturelevels.Whenallbiomassisremoved,growththesespeciesismorevigorous,particularlytheinvasivenonforestfieldvegetation,which—ifitisnotmanaged—mightleadtoareductionintimberproductivity(WalmsleyandGodbold2010).ScottandDean(2006)alsosuggestthatintheGulfCoastalPlain,soilanalysescouldbeusedtoidentifyharvestingsitesatriskofharvesting-inducedproductivityloss,andfertilizationtreatmentcouldbeusedtoavoidproductivitylosscausedbywhole-treeharvesting.

Meta-analysisbyFletcherandothers(2011)ofstudiesoncropsbeingusedorconsideredintheUnitedStates,foundthatvertebratediversityandabundancearegenerallylowerinbiofuelcrophabitatsrelativetothenon-crophabitats.Theyfounddiversityeffectsarelowerforpineandpoplarthanforcorn,andbirdsofconservationconcernexperiencelowernegativeeffects.However,forminimizingimpactsofbiofuelcropsonbiodiversity,theysuggestpracticesthatreducechemicalinputs,increaseheterogeneitywithinfields,anddelayharvestsuntilafterbirdbreeding.ManyofthesepracticesmightalreadybeincorporatedunderintensivemanagementregimesinSouthandcouldbeincorporatedintobiomassproductionsystemsandmanagementplanningusedtoavoidadverseimpactonforestedlandscapes.

Resultsofdirectandindirectlandusechangetoagriculturalrowsystemscanalsocausehabitatloss(Jonsell2007).Thelandusechangefromnaturalforeststoforestplantations,includingshortrotationwoodycrops,isofthegreatestconcernfromanecologicalpointofview(Wearandothers2010).Interventionsfocusedonecologicalrestorationorfuelreductionactivitiesassociatedwithwoodybiomasswouldalsobenefitwildlifehabitat(JanowiakandWebster2010).

Page 35: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

247chAPTeR 10. Forest Biomass-Based Energy

However,biomassproductionmightalsohavenegativeconsequencesunlesscoordinatedwithbreedingandnestingseasonsandmaintainingcoverforoverwinteringsmallmammalspecies(Bies2006).

Justasimportanttosoutherners,butlessquantifiable,arethepotentialimpactsofincreasedwoodybiomassremovalsonquality-of-lifeissues:aesthetics,communityrelationships,andappreciationofforestlandasanintegralpartofthesocialandphysicallandscape(Wearandothers2010).

DiScuSSioN AND coNcluSioNS

markets

Ourdemandanalysisshowsthattheconsumptionrequirementsforwoodfrombioenergymarketswouldnotlikelybemetbyurbanwoodwastealone,andthatdemandsforwoodybiomasswouldrequireharvestingresiduesorbiomassfromtimbermarketsby2013(fig.10.2).Pricesforallforestproductswouldlikelyincrease,resultinginincreasedreturnstoforestlandowners.Pricechangesaregreaterthanchangesinremovalsorinventory,consistentwithaninelasticmarketresponse.Althoughremovalsareresponsivetopricechanges(higherremovalsathigherprices),forestinventorieswillalsodependonfactorslikeforestgrowth,afforestationofagriculturalorpasturelands,intensivemanagementofforestland,andincreasedplantationsoffastgrowingspecies.Themodelsusedforouranalysisattempttoaccountforthesefactors,butfutureconditionsarecloudedbylargeuncertaintiesaboutdemandandsupplyfactors.Consistentwithchapter4,themarketmodelindicatesthatincreasedpricesunderbioenergyfutureswouldmitigatethelossofforestlandinthefuture.Plantedpineforestareaisthemostresponsivetothesepricetrends.Bioenergydemandswouldresultindeclininguseoftimberbyforestindustry,withimpactsmorepronouncedforpulp-basedindustriesthanforsawtimberindustries.

Withhighdemandforwoodybiomass,sawtimberindustriescouldalsobeimpacted,althoughatlowerlevels.ThisprojectionisconsistentwithstudiesbyAulisiandothers(2007)andGalikandothers(2009),whofoundthatpulpwoodmarketsaremorelikelytobeimpactedbyanemergingwood-basedenergyindustry.Furthermore,Aulisiandothers(2007)suggestthatsawmillsmightbenefitfromthehigherpricespaidbybioenergymarketsforsecondaryproductssuchassawdustandchips.Oursimulationindicatesthatathighlevelsofbioenergydemands,thesoftwoodsawtimberindustrywouldeventuallybeadverselyimpacted.

Forestindustrymightalsofaceincreasedfeedstockpricesfortheirpulpandsawtimberoperations.Inthelongrun,price

increasesforsoftwoodnonsawtimberarelessseverethanforhardwoodnonsawtimberbecausepineplantationareacanrespondquickly,andhardwoodplantationsarenotcommonintheSouth.

Increasedforestproductivitycouldmoderatepricegrowthandresultinhigherratesofremovalsandinventories.AlthoughproductivityhasgrownsubstantiallyintheSouthasaresponsetointensivemanagementandgeneticimprovements,productivityeffectsarenotlimitedtosoftwoods.Priceincreasesaresmallestwithproductivitygrowthstrategiesthatextendtoallmanagementtypesalongwithanincreaseinshortrotationplantations.Expandingdemandsforbioenergywouldnotnecessarilyreducethelevelsofforestinventories.Oursimulationsshowthatanincreaseindemandfromtheenergyindustry,coupledwithproductivityincreases,couldleadtohigherlevelsofbothremovalsandinventory.

Withmanagementandtechnologicaladvancements,woodybioenergymarketscouldresultinincreasesininventory,removals,forestacreage,andreturnstolandowners.Southernforestscouldbemanagedtoproducesubstantiallymoretimberforbioenergyandotherforestproductsconsistentwiththeprojectionsshowninchapter9.

Theseresultsindicatethatthefuturetrajectoryofsouthernforestswilldependonthestateofwood-basedenergymarketsasinfluencedbytechnologicaldevelopmentsandcostconsiderations.Marketswillalsobeshapedbyotherunknowns,includingtheamountofrenewableenergythatwillcomefromsolar,wind,andothersourcesofrenewableenergy.Similartoanynascentindustry,thefutureofwood-basedenergywilldependonanumberofuncertainties,includingthecostsofproduction,technologicalbreakthroughs,thegovernmentpoliciesthatsupportrenewabletechnologies,forestproductivitydecisions,andtheexpansionofshortrotationwoodycrops.Alongtheselines,ifcarbonmarketsemergeandcarboncreditsfordisplacingfossilfuelswithwoodybioenergyareconsidered,morechangesinforestmanagementandshortrotationwoodycropsmightbeexpected,butinclusionofthesedetailsisbeyondthescopeofthischapter.

Technologies

Onthewoodybiomass-basedenergytechnologyfront,thereisnoemergentfavorite.Evensupposedly“low-hangingfruits”suchasco-firingfacesignificantchallenges,suchasboilerashdeposition,corrosion,andfeedstockselection.FederalandStategovernments,alongwithforestindustry,areinvestingresearchdollarsintothesetechnologieswithhopesofcommercialsuccess.Differenttypesofwoodybioenergyoccupydifferentplacesonthecostfeasibilityspectrum.Woodpelletsarealreadyfeasibleundercurrent

Page 36: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

248The Southern Forest Futures Project

markets,whilebiofuelsarenoteconomicallycompetitiveatthecurrentleveloftechnology.

Advantagesofwoodpelletizationincludehighenergy-to-weightratio,lowercapitalrequirements,abilitytooperateproductionfacilitiesatavarietyofscalesbasedondemandorwoodsupply,lowercostsofshippingthefinalproduct,easierhandling,and,mostofall,highdemandinEuropeancountries.Conversely,preferredconversiontechnologiesforwood-basedfuelsremainlargelyuncertainbecauseofthehighcostofproduction,project-specificfactors,andenvironmentalstandards(McKendry2002).Thehighunitcostofwoodybiomass-basedenergyislargelyattributedtohighharvestingandtransportcosts;forexample,makingwoodybiomass-basedethanolcompetitivewithstarch-basedethanolorgasolinewouldrequirereducedcapitalcoststhroughtechnologyimprovements,reducedfeedstockcosts(primarilyfromyieldimprovement),anddensificationofwoodattheharvestsitetolowerharvestingcosts(AlavalapatiandLal2009,Dwivediandothers2009,Jacksonandothers2010).Thecostoftransportfromthesupplysource(forexample,theforest)totheconversionplantalsodeterminestheviabilityofthemanufacturedproduct(electricity,heat,orliquidfuels).Overcomingthissignificantchallengerequiresthatplantshaveeasyaccesstothewoodsupplyandtodistributionmarkets.

Nospeciesgrouphasemergedasafavoriteforwoodybioenergy.Bothsoftwoodsandhardwoodscanbeco-firedwithcoal,usedincombinedheatingandpowerplants,andcompressedforwoodpelletproduction(SpelterandToth2009).Evidencesupportingaclearpreferenceforhardwoodorsoftwoodspeciesforwood-basedliquidfuelislackingaswell.ZhuandPan(2010)suggestthatsulfitepretreatmenttoovercomelignocellulosesrecalcitranceprocessholdspromiseforwoodybiomassconversion,especiallyforsoftwoodspecies.However,softwoodscontainmoreligninthanhardwoods(GalbeandZacchi2002),meaningthattheconversiontoliquidfuelsmightbelessefficientinsoftwoodsbecauseligninneedstoberemovedduringthepretreatmentprocess.EvenZhuandPan(2010)notedthatinoneofthemostcommonpretreatmentprocesses(acidcatalyzedsteamexplosion)sugarwassuccessfullyrecoveredfromhardwoods(forexample,65to80percentrecoveryfrompoplars)comparedtolessencouragingresultsforsoftwoodspecies.

Regardlessoftheconversiontechnologyemployed,acontinuouslong-termflowofwoodwouldbeneededasrawmaterial.BecausemanySouthernStatesareemphasizingrenewabletechnologies,newco-firingandcombinedheatandpowerplantsandethanolbiorefineriesarelikelytobeestablishedinthefuture.Expansionofthissector—morewoodybiomass-basedenergyplantsorexpansionofexisting

facilitiestoachieveeconomiesofscale—willbeassociatedwithanincreaseinthedemandforwoodfiber.TomeettheburgeoningdemandforwoodybiomassforenergyestimatedbySRTSsimulationruns,merchantabletimberandsmall-diameterwoodwouldberequiredinadditiontologgingresiduesorwoodwastesuchassawdust,shavings,andchipsfromotherwoodproductmanufacturingprocesses.

Technologicaladvancementsareessentialformakingwoodenergycompetitivewithothersourcessuchasgasolineandcoal.Policysupportforwoodybiomass-basedenergy,anascentindustry,mighthelpinattainingcommercialviabilityanddevelopingamaturemarket.

Policies

Availablepolicyinstrumentshaveadvantagesanddisadvantages(AguilarandSaunders2010,Alavalapatiandothers2009).Financialincentivesallowdirectlymeasurementsoftheirimpactonprices.Moreover,theycanpromotesustaineddemandforandsupplyofenergyfeedstocks,andcanlowerthecapitalcostsofinvestments.However,fundingfortheseprogramsisvulnerableduringhardeconomictimes.Regulationssuchasrenewableportfoliostandardsareeasytoadopt,andproducersgenerallybearincurredcosts.However,thesetypesofpoliciesmightsufferfrominflexibility,andinformationneededforeffectivetargetingcanbeelusive.Abetteroptionmightbetodevelopasuiteofpolicyoptionsgearedtowardswoodybiomass-basedenergy.Forexample,anEnvironmentalandEnergyStudyInstituteproposal(2010)suggeststhatinuncertaintimes,anintegratedpolicyapproachforbioenergymightinclude:inventoryingbioenergyresourcesandmarketsanddevelopingalongrangebioenergyplan;developingsustainablefeedstockproductionguidelines;developinglocallyappropriatefeedstocksandconversiontechnologies;creatingeasementprogramsforsustainablefeedstockproduction;establishingminimumrenewablefuelstandards;enactingalowcarbonfuelstandard;promotinginteragencycooperationandcooperationwithotherStates;providingtaxincentivesforproducersandretaildistributors;andleveragingStateresourcesthroughFederalandprivatepartnerships.

Givencurrentlogisticalandtechnologicalchallenges,developingamaturewoodybiomass-basedenergymarketwouldlikelydependonsomelevelofgovernmentsupportthatincludesfinancialincentivesandotherregulatoryandsupportpolicies.Indeed,suchpolicieshaveemergedinvariousforms,includingresearchanddevelopment,consumptionincentives(suchasfueltaxreductions),productionincentives(suchastaxincentives,directsubsidies,andloanguarantees),andmandatoryconsumptionrequirements.Theseandfuturepoliciesforproduction,conversiontechnologies,andmarkets

Page 37: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

249chAPTeR 10. Forest Biomass-Based Energy

anddistributioncanpotentiallyimpacttheproductionandcommercializationofwoodybiomassforenergy,butmightalsoaltertheecosystemservicesprovidedbyforests.

Financialincentivesmightfacilitatetheincreasedproductionanddiversionofwoodybiomass,likelyincreasingwooddemandandaddingtotheprofitabilityoflandownersandthoseengagedinwood-to-energyconversion.StandimprovementandrestorationactivitiesprioritizedbyStates,suchaslandrecoveryandcostshareprograms,mighthelplandownersmakethelong-terminvestments.Supportforweedandpestmanagement,suchasthepinebarkbeetlepreventionprograminVirginia,mightalsoincreasebiomassavailability.Bestmanagementpracticesandharvestingguidelinesdevelopedespeciallyforbioenergycouldrestrictwoodavailabilitybyreducingharvestingimpactsthroughminimumtillageandreducedapplicationsoffertilizersandpesticides;protectingwildlifecorridors,riparianzones,andothersensitiveareas;andadoptingwildlifehabitatenhancementmeasuressuchasleavingpatchesofundisturbedareas,promotingcertainspeciesmixturesandcroprotations,andretainingquantitiesofharvestresidues,litter,deadwood,snags,anddentrees.

Researchandtechnologygrants,coupledwithsubsidies,couldhelpdevelopcurrentandfuturewood-for-energymarkets.Otherfinancialincentivestargetingenergyproducersmightalsofavortheprogressofnewconversiontechnologiesandtheintegrationofnewtechnologieswithexistingones.Policyeffortsgearedtowardsdevelopmentofgasificationtechniquesoranintegratedprocesswithbiomass-basedelectricitygenerationwouldlikelyincreasetheproductionofwoodybiomass-basedenergy.Technologicalinnovationschanneledtowardsreducingfeedstockproductioncostsaresignificant,astheyarelikelytospikethedemandofwood,luringawaysomesharefromtraditionalforestindustries.

Awidearrayofpolicyinstrumentsgearedtowardsimprovingthemarketinganddistributionofwoodybiomass-basedbioenergy—suchasapplianceefficiencystandards,mandatoryutilitygreenpoweroptions,andrenewableportfoliostandards—couldplayapivotalroleindecidingwherethewood–to-energyconversionplantsanddistributioncentersaresetup.Becauselocationofinfrastructuretranslatestoincreaseddemandforforestbiomass,theconditionsofnearbyforestsmightchange.

Economicandtechnologicaluncertaintiesmightinfluencetheimpactsthatcurrentandfuturepolicieshaveonsouthernforests.However,thegreatvarietyofpolicies—andthemultitudeofwaysinwhichthecaninteract—confoundseffortstopredicttheirpotentialeffects.Policiesaddressingotherenvironmentalandsocietalbenefitsassociatedwithforestsandwood-to-energymarketsmightalsoalterthe

impactsofbioenergypolicies.Inparticular,emergenceofcarbonmarketscouldspurfurthergrowthinthewood-to-energyindustry,butformulatingapolicymechanismtorealizecarbonpaymentsisahugechallenge.Forexample,undertheCarbonCapandTradeBillcurrentlyintheU.S.Congress,manyforestlandownerswouldnotqualifyforcarbonmarketbenefitsbecausetheywouldnotgetcreditforexistinglevelsofcarbonsequestration,norcouldtheymeetsequestrationpermanencestandards.

Sustainability issues

Productionofwoodybiomassforbioenergycanhelpmeetenergygoals,butcanalsostimulateacceleratedharvesting,withpotentiallynegativeimplicationsforforestecosystems.Reductionofsoilnutrientsaswellassoilcompactionwouldlikelydecreaseforestproductivity.Intensivebiomassremovalmightaffectaquaticcommunitiesbyincreasingerosion,runoff,andwaterwaysedimentation.Intensiveforestmanagementmightalsodegradeforesthabitatconditions,negativelyaffectingfloraandfaunaandreducingbiodiversity.Landusechangesfromnaturalforesttomanagedplantationsmightadverselyaffectimperiledspeciesincertainlocations(seechapter14).However,changesfromagriculturalsystemstoforestsmightimprovehabitatconditions.Further,thehighgradingofstandsgenerallyobservedduringsometimberharvestingmightbeeliminatedwithbiomassharvesting.

Intensivewoodybiomassremovalmightalsohavesomenegativeimplicationsforcommunityrelationships,aesthetics,andpublicperceptionsaboutforestlandasanintegralcomponentofsouthernecosystems.Potentialimpactsonforestecosystemsatlocalandregionallevelsismostlikelytochallengetheforestrycommunitytoconsultnewresearchfindingslikethosesummarizedbelowandupdateexistingcertificationsystemswithguidelinesonhow,when,andwherewoodybiomassremovalsshouldbeconducted:

JanowiakandWebster(2010)provideaframeworkthatincludesadaptingmanagementtositeconditions,increasingforestedlandwherefeasible,usingbiomassharvestsasarestorationtool,evaluatingthepossibilityoffertilizationandwoodashrecycling,andretainingdeadwoodandstructuralheterogeneityforbiodiversity.

Hennenbergandothers(2009)suggestcreatingprotectedareasthatcanbeusedtoconserverelevantportionsofbiodiversity.

Lalandothers(2011)similarlyreportasetofninecriteriathatarenecessarytothepursuitofsustainablewoodybiomassextraction:reforestationandproductivecapacity,landusechange,biodiversityconservation,soilquality

Page 38: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

250The Southern Forest Futures Project

anderosionprevention,hydrologicprocesses,profitability,communitybenefits,stakeholderparticipation,andcommunityandhumanrights.

Fletcherandothers(2011)recommendthefollowingstrategiestoensurehabitatforbiodiversity:reducingharvestingimpactsthroughminimumtillageandreducedfertilizersandpesticides;protectingwildlifecorridors,riparianzones,andothersensitiveareas;andadoptingwildlifehabitatenhancementmeasuressuchasleavingpatchesofundisturbedareas,promotingcertainspeciesmixturesandcroprotations,andretainingquantitiesofharvestresidues,litter,deadwood,snags,anddentrees.

Multi-stakeholdereffortssuchastheRoundtableonSustainableBiofuelsandtheGlobalBioenergyPartnershipforbiomassharvestingarealreadyunderway.TheRoundtableonSustainableBiofuelsandGlobalBioenergyPartnershipareintheprocessofdevelopingglobalprinciplesandcriteriafordevelopingasetofglobal,science-basedcriteriaandindicatorscoupledwithfieldexamplesandbestpractices(includingbenchmarks)forbioenergysustainability.

Inadditiontotheoverallscaleofbiomassproduction,thelocationandmethodsofwoodybiomassharvestswouldaffectthehealth,vitality,andecologicalfunctionofsouthernforests.ExistingcertificationsystemssuchastheForestStewardshipCouncil,AmericanTreeFarmSystem,andSustainableForestryInitiativehavecriteriaandindicatorstosafeguardsiteproductivity,waterquality,andbiodiversitybutsomeadditionalindicatorsmayberequiredforwoodybiomassharvests.Forexample,anindicatormightbeneededtoaddressharvestresiduesleftonsitetomaintainhabitatforsmallmammals,insects,reptiles,andamphibians.Levelsofnecessaryresidueswoulddependonsite-specificconditions,althoughgeneralguidelinescouldbeformulatedatStateorSouthwidelevels.Similarly,erosion-preventingindicators(suchasthoseprohibitingharvestsonshallowandnutrient-poorsoils)wouldneedtoconsiderspecificsoilconditionssuchasdepthofsoils,nutrientconditions,andregenerationpotential.

Biomassharvestingatthelevelsexploredinthischaptercouldhavenegativeimplicationsforfutureforestconditionsandecosystemservicesflowingfromsouthernforestsincludingwater(chapter13)andwildlife/biodiversity(chapter14).Theseoutcomesdependontheamountandlocationofharvesting,butperhapsmorecriticallyonthemanagementstrategiesused.Theresearchdescribedaboveindicatesthatmanagementsystemscanbedesignedtomitigatedamagestovariousecosystemservices.Ofcourse,thisrequiresmanagementplanningthataddressesmanagementobjectivesinthecontextoflocalconditions.

Theneedforadditionalbestmanagementpracticesorotherguidelineswilldependontherateofdevelopmentofthebioenergysector,whichishighlyuncertain.Theacceptabilityoftheseapproacheswoulddependontheprocessofupdatingbestmanagementpractices,whichwouldideallycombinepublicinvolvementwithascience-basedprocessatappropriatescales(AlavalapatiandLal2009).

SummARy

Wood-basedenergymarketshavebeenproposedasameanstoensuresustainableforests,enhanceenergysecurity,promoteenvironmentalquality,andrealizesocialbenefits.However,severalcomplexissuesareinfluencingtheabilitytodevelopthesemarketsineconomicallyefficient,environmentallybenign,andsociallydesirableways.Theseissuesincludebiomassavailabilityorsupply,marketcompetitivenessandtechnologydevelopment,supportiveFederalandStatepolicies,tradeoffswithtraditionalforestproductindustries,sustainability,andecosystemintegrity.

Thischapterhasfocusedonfourinterrelateddimensionsofbioenergyfuturesrelatedtosouthernforests:markets,technologies,policies,andsustainability.Acrossthevariousbioenergyscenarios,thesenewdemandswouldaffectthemarketsforallwoodproductsandleadtopriceincreasesfortimberproductsandhigherreturnstoprivatelandowners.Thedegreetowhichotherwoodconsumersareimpactedwoulddependonexpansioninsupply,whichinturndependsonintensificationofforestmanagementandchangesinlanduse(primarilyfromagriculturaltoforestry).

Newdemandsforbioenergywillbedeterminedbyexpansionofexistingtechnologies—forexample,pelletsandco-firingwithcoal—butmorecriticallyontheemergenceofnewtechnologiesthatarenotyeteconomicallyviable.AcceleratedtechnologicaldevelopmentsandreducedproductioncostsmightbeachievedthroughvariouspoliciesatFederalandStatelevels.ThesustainabilityissuessurroundingbioenergyaredefinedbythenegativeexternalitiesassociatedwithacceleratedharvestingintheSouth.Researchindicatesthatmanagementsystemsandstandardscanbedesignedtoprotectthesevalues,defininganotherinterfacewithfuturepolicy.

Allofthesedimensionsarefraughtwithuncertainty.Marketfuturesdependondemandsfortraditionalwoodproductsandonenergyprices.Technologydevelopmentdependsonresearchfundingbutalsoonunknowablelimitstotechnicalfeasibilityandtheprospectofeconomicreturns.Policydevelopmentishighlyuncertainandfundamentallyengagestradeoffsamongenergy,environment,community,andother

Page 39: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

251chAPTeR 10. Forest Biomass-Based Energy

societalobjectives.Therelationshipbetweenharvestingatunprecedentedlevelsandforestecosystemservicesisnotfullyknown.

Thischapterlaysoutabroadrangeofpotentialdevelopmentsandmanagementoptions.Clearlythepathtosustainablebioenergyfutureswillinvolveenhancingknowledge,monitoringchanges,updatingexpectations,andnarrowingtheoveralluncertaintyaboutfutureprospects.Theseissueswilllikelybethefocusofforestassessmentsforyearstocome.

kNoWleDGe AND iNFoRmATioN GAPS

Thefutureofwoodybioenergymarketsdependsonamultitudeoffactorssuchassupplyandavailabilityofwoodbiomass;advancementsinconversiontechnologies;improvementsinharvesting,collection,storage,densification,preprocessing,andtransportation;productpricesandelasticities;infrastructure;andproductivityincreases.

Determiningmanysuchfactorswithconfidencewasdifficult,andouranalysistoolswerelimited.Thebioeconomicmodelthatweemployedformarketanalysiscalculatesharvestlevels,relatedprices,inventory,andacreageasfunctionsofinputdemands,productivityincreases,andvariousassumedparameters.Theserelationshipsarenotknownwithhighprecision,andthemarketanalysiscannotaccountforeveryeconomicvariableandstrategicresponsetotheimpactsonenergymarkets.Applyingthemodelstoalargenumberofscenariosprovidesinsightsintotherangeofpotentialmarketresponsesinthefuture.Improvedestimatesofthevarioussupply,demand,andproductionrelationshipswouldenhanceforecastsoffuturemarketdevelopments.What’smore,high-demandbioenergyfuturesimplyimportanttradesbetweenwoodproductssectorswithimplicationsforemployment,income,andruraleconomiesthatwarrantadditionalstudy.

Ourstylizedapproachtoconstructingconsumptionprojectionsfortheregionleavescertainaspectsofbioenergyfuturesunaddressed.Importantly,questionsregardinginterregionalandinternationaltradeinwoodproductsthatcouldaffecttheultimateexpressionofregionaldemandswerenotdirectlyaddressed.TrademodelingwasbeyondthescopeoftheFuturesProjectandexplainswhyabroadrangeoffutureswasevaluated—i.e.,tocaptureareasonablerangeoffuturesregardlessofthemechanismsleadingtodemandoutcomes.Thenationalassessmentoftimberandwoodproductsmarketscontainedinthe2010RPAAssessment(Inceandothers2011)explorestradeundersimilarscenariosandservesasausefulreference.

Woodybioenergyproductionmightbemorecostcompetitiveunderagreenhousegasreductionstrategythatassignsamarketvaluetocarbonemissions,ineffectallowingsocialandenvironmentalbenefitstobeaccruedtowoodybioenergy.Thisapproachcouldmonetizethebenefitsgainedthroughgreenhousegasreduction,andthosegainscouldbetradedinacarbonmarket.Althoughlikelytospurfurthergrowthinabioenergyindustry,thecarbonmarketapproachhasyettoformulateaviablemechanismforrealizingcarbonpaymentstoforestlandowners.

Thelegaldefinitionsofwhatqualifiesas‘forestbiomass’underdifferentpolicydescriptionswouldgeneratelargevariationsinforestbiomassutilizationandthereforerequireresearchattention.Forexample,theEnergyIndependenceSecurityAct(2007)providesarestricteddefinitionbyexcludingbiomassfrompublicforestsandnaturallyregeneratedprivateforests.Conversely,the2008FarmBillprovidesacomprehensivedefinitionforforestbiomass.

Estimatesofthevolumeofwoodymaterialthatcanusedforenergyproductionatsecondarywoodproductsmanufacturingfacilitiesareimpreciseandbasedonvaryingassumptionsaboutproductionfacilitiesandper-unitproductionpotential.Alsoneedingresearchattentioniscomprehensiveanalysesofshortrotationwoodycropsthatcanbemadeavailableforenergyuse;landusetradeoffsofshortrotationwoodycropswithagriculture,pastures,andforestland;andpotentialforpine-switchgrassandotheragroforestrysystemstoexpand.Productivitygainsfromchangingthegeographicrangeofagricultureandwoodybiomassfeedstocksandimprovingmanagementisanotherresearchareathatwarrantsfurtherattention,asisdocumentinglandownerwillingnesstoparticipateinforestbiomassmarketsandincorporatingthisinformationintowoodybiomasssupplyfunctions.

Additionalresearchisneededtoidentifysustainabilityissuessurroundingwoodybiomassutilizationforenergy.Thefocusoftheseconcernsrangesfromproductionprocessestoconsumptionprocesses(feedstockproduction,harvesting,transport,conversion,distribution,consumption,andwastedisposal)tojobcreationandsocietalbenefitdistribution.Futureresearchwouldnecessarilyfocusonthetradeoffsarisingfromwoodybiomassdiversionforenergyuse,andthelevelatwhichwoodybioenergymightbecomeecologically,economically,andsociallyundesirable.

AckNoWleDGmeNTS

TheauthorswishtothankRobertJ.Huggett,Jr.,andKarenL.Abt,U.S.DepartmentofAgriculture,ForestService,SouthernResearchStation;andFrederickJ.Rossi,Schoolof

Page 40: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

252The Southern Forest Futures Project

ForestResourcesandConservation,UniversityofFlorida,fortheirsupportandinsights.ThanksarealsoduetoCarolWhitlockandShawnaReidfromtheU.S.DepartmentofAgricultureForestService,SouthernResearchStation,fortechnicaleditsandhelpinpreparingGISmapsrespectively.

liTeRATuRe ciTeDAbt,R.C.;Abt,K.L.2013.Potentialimpactofbioenergydemandonthesustainabilityofthesouthernforestresource.JournalofSustainableForestry.32(1-2):175-194.

Abt,R.;Abt,K.;Cubbage,F.;Henderson,J.2010.Effectofpolicy-basedbioenergydemandonsoutherntimbermarkets:acasestudyofNorthCarolina.BiomassandBioenergy.34(12):1679–1686.

Abt,R.C.;Cubbage,F.W.;Abt,K.L.2009.Projectingsoutherntimbersupplyformultipleproductsbysubregion.ForestProductsJournal.59(7–8):7–16.

Abt,R.;Cubbage,F.;Pacheco,G.2000.SouthernforestresourceassessmentusingtheSubregionalTimberSupply(SRTS)model.ForestProductsJournal.50(4):25–33.

Adams,D.M.;Alig,R.;Callaway,J.M.[andothers].1996.TheForestandAgriculturalSectorOptimizationModel(FASOM):modelstructureandapplications.Res.Pap.PNW–RP–495.Portland,OR:U.S.DepartmentofAgricultureForestService,PacificNorthwestResearchStation.60p.

Aguilar,F.X.;Saunders,A.2010.Policyinstrumentspromotingwood-to-energyusesinthecontinentalUnitedStates.JournalofForestry.108(3):132–140.

Alavalapati,J.;Lal,P.2009.Woodybiomassforenergy:anoverviewofkeyemergingissues.VirginiaForests.Fall:4–8.

Alavalapati,J.R.R.;Hodges,A.W.;Lal,P.[andothers].2009.Southernbioenergyroadmap.ResearchTrianglePark,NC:SoutheastAgricultureandForestryEnergyResourcesAlliance(SAFER),SouthernGrowthPolicesBoard.127p.

Amacher,A.J.;Barrett,R.H.;Moghaddas,J.J.;Stephens,S.L.2008.Preliminaryeffectsoffireandmechanicalfueltreatmentsontheabundanceofsmallmammalsinthemixed-coniferforestoftheSierraNevada.ForestEcologyandManagement.255(8–9):3193–3202.

Arnold,C.L.2000.Landuseistheissue,butislandgranttheanswer?JournalofExtension.38(6).http://www.joe.org/joe/2000december/comm1.html.[Dateaccessed:June15,2010].

Astrom,M.;Dynesius,M.;Hylander,K.;Nilsson,C.2005.Effectsofslashharvestonbryophytesandvascularplantsinsouthernborealforestclear-cuts.JournalofAppliedEcology.42:1194–1202.

Aulisi,A.;Sauer,A.;Wellington,F.2007.Treesinthegreenhouse:whyclimatechangeistransformingtheforestproductsbusiness.WorldResourcesInstituteReport.74p.

Aust,W.;Blinn,C.2004.ForestrybestmanagementpracticesfortimberharvestingandsitepreparationintheEasternUnitedStates:anoverviewofwaterqualityandproductivityresearchduringthepast20years(1982-2002).Water,Air,andSoilPollutionFocus.4:5–36.

Beach,R.;Pattanayak,S.;Yang,J.[andothers].2005.Econometricstudiesofnon-industrialprivateforestmanagement:areviewandsynthesis.ForestEconomicsandPolicy.7:261–281.

Belanger,R.;Hedden,R.;Lorio,P.1993.Managementstrategiestoreducelossesfromthesouthernpinebeetle.SouthernJournalofAppliedForestry.17:150–154.

Bies,L.2006.Thebiofuelsexplosion:isgreenenergygoodforwildlife?WildlifeSocietyBulletin.34:1203–1205.

Bingham,M.F.;Prestemon,J.P.;MacNair,D.A.;Abt,R.C.2003.MarketstructureinU.S.southernpineroundwood.JournalofForestEconomics.9:97–117.

Blottnitz,V.H.;Curran,M.A.2007.Areviewofassessmentsconductedonbio-ethanolasatransportationfuelfromanetenergy,greenhousegas,andenvironmentallife-cycleperspectives.JournalofCleanerProduction.15(7):607-619.

Burger,J.A.2002.Soilandlong-termsiteproductivityvalues.In:Richardson,J.;Bjorheden,R.;Hakkila,P.[andothers],eds.Bioenergyfromsustainableforestry:guidingprinciplesandpractice.Dordrecht,TheNetherlands:KluwerAcademicPublishers:165–189.

Butler,B.J.2008.FamilyforestownersoftheUnitedStates,2006.Gen.Tech.Rep.NRS–27.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NorthernResearchStation.72p.

Carter,D.;Langholtz,M.;Schroeder,R.2007.BiomassresourceassessmentpartI:availabilityandcostanalysisofwoodybiomassforGainesvilleregionalutilities.Gainesville,FL:UniversityofFlorida,SchoolofForestResourcesandConservation.122p.

DatabaseofStateIncentivesforRenewablesandEfficiency.2010.summaryTables:Financialincentivesforrenewableenergy/energyefficiencyandrules,regulationsandpoliciesforrenewableenergy/energyefficiency.http://www.dsireusa.org/summarytables/index.cfm?EE=1&RE=1.[Dateaccessed:June12,2010].

DeLaTorreUgarte,D.;English,B.;Jensen,K.[andothers].2006.Economicandagriculturalimpactsofethanolandbiodieselexpansion.StudyreportbyUniversityofTennessee,AgriculturalEconomics.http://beag.ag.utk.edu/pub/Ethanolagimpacts.pdf.[Dateaccessed:July14,2010].

DeLaTorreUgarte,D.G.;Ray,D.E.2000.BiomassandbioenergyapplicationsofthePOLYSYSmodelingframework.BiomassandBioenergy.18(14):291–308.

DeLaTorreUgarte,D.G.;Ray,D.E.;Tiller,K.H.1998.UsingthePOLYSYSmodelingframeworktoevaluateenvironmentalimpactsinagriculture.In:Robertson,T.;English,B.C.;Alexander,R.R.,eds.Evaluatingnaturalresourceuseinagriculture.Ames,IA:IowaStateUniversityPress:151–172.

Dwivedi,P.;Alavalapati,J.2009.Stakeholders’perceptionsonforestbiomass-basedbioenergydevelopmentintheSouthernU.S.EnergyPolicy.37:1999–2007.

Dwivedi,P.;Alavalapati,J.R.R.;Lal,P.2009.CellulosicethanolproductionintheUnitedStates:conversiontechnologies,currentproductionstatus,economics,andemergingdevelopments.EnergyforSustainableDevelopment.13(3):174–182.

Dwivedi,P.;Bailis,R.;Bush,T.;Marinescu,M.2011.QuantifyingGWIofwoodpelletproductionintheSouthernUnitedStatesanditssubsequentutilizationforelectricityproductionintheNetherlands/Florida.BioenergyResearch:1-13.

Ecke,F.;Löfgren,O.;Sörlin,D.2002.PopulationdynamicsofsmallmammalsinrelationtoforestageandstructuralhabitatfactorsinnorthernSweden.JournalofAppliedEcology.39:781–792.

EnergyIndependenceandSecurityAct.2007.H.R.6.110thU.S.Congress.http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf.[Dateaccessed:June16,2010].

EnergyInformationAdministration.2007.Energyandeconomicimpactsofimplementingbotha25-percentrenewableportfoliostandardanda25-percentrenewablefuelstandardby2025.ReportSR/OIAF/2007–05.http://www.eia.doe.gov/oiaf/servicerpt/eeim/index.html.[Dateaccessed:July14,2010].

Page 41: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

253chAPTeR 10. Forest Biomass-Based Energy

EnergyInformationAdministration.2009.Annualenergyoutlook.ReportDOE/EIA–0383(2009).http://www.eia.doe.gov/oiaf/aeo/pdf/0383(2009).pdf.[Dateaccessed:January12,2010].

EnergyInformationAdministration.2010a.Annualenergyoutlook.ReportDOE/EIA–0383(2010).http://www.eia.doe.gov/oiaf/aeo/index.html.[Dateaccessed:June12,2010].

EnergyInformationAdministration.2010b.Annualenergyoutlook.Year-by-yearreferencecasetables(2007-2035).ReportDOE/EIA–0383(2010).http://www.eia.doe.gov/oiaf/aeo/aeoref_tab.html.[Dateaccessed:June14,2010].

EnergyInformationAdministration.2010c.Netsummercapacityofplantscofiringbiomassandcoal,2007and2008.http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/table1_9.pdf.[Dateaccessed:June15].

EnergyInformationAdministration.2010d.Electricpowergenerationandfuelconsumptionandstocksmonthlytimeseriesfile.FormEIA–923.http://www.eia.doe.gov/cneaf/electricity/page/eia906_920.html.[Dateaccessed:June12,2010].

EnvironmentalandEnergyStudyInstitute.2010.Developingandadvancedbiofuelsindustry:Statepolicyoptionsanduncertaintimes.http://www.eesi.org/021610_state_biofuel_paper.[Dateaccessed:June15].

Eriksson,E.;Gillespie,A.;Gustavsson,L.[andothers].2007.Integratedcarbonanalysisofforestmanagementpracticesandwoodsubstitution.CanadianJournalofForestResearch.37(3):671-681.

Faaij,A.;Domac,J.2006.Emerginginternationalbioenergymarketsandopportunitiesforsocio-economicdevelopment.EnergyforSustainableDevelopment.1:7–19.

Fletcher,R.;Robertson,B.A.;Evans,J.[andothers].2011.Biodiversityconservationintheeraofbiofuels:risksandopportunities.FrontiersinEcologyandtheEnvironment.9:161–168.

Fox,T.;Jokela,E.;Allen,H.2007.ThedevelopmentofpineplantationsilvicultureintheSouthernUnitedStates.JournalofForestry:337–347.

Fritsche,U.R.;Hunecke,K.;Schulze,F.;Wiegman.K.2006.Sustainabilitystandardsforbioenergy.Darmstadt,Germany:WWFGermany,Oeko-Institut.www.wwf.de/fileadmin/fm-wwf/pdf_neu/Sustainability_Standards_for_Bioenergy.pdf.[Dateaccessed:July6,2010].

Galbe,M.;Zacchi,G.2002.Areviewoftheproductionofethanolfromsoftwood.AppliedMicrobiolgyBiotechnology.59:618–628.

Galik,C.;Abt,R.;Wu,Y.2009.ForestbiomasssupplyintheSoutheasternUnitedStates—implicationsforindustrialroundwoodandbioenergyproduction.JournalofForestry.107(2):69–77.

Gan,J.;Mayfield,C.2007a.Benefitstolandownersfromforestbiomass/bioenergyproduction.In:Hubbard,W.;Biles,L.;Mayfield,C.;Ashton,S.,eds.2007.Sustainableforestryforbioenergyandbio-basedproducts:trainerscurriculumnotebook.Athens,GA:SouthernForestResearchPartnership,Inc:225-228.

Gan,J.;Mayfield,C.2007b.Theeconomicsofforestbiomassproductionanduse.In:Hubbard,W.;Biles,L.;Mayfield,C.;Ashton,S.,eds.2007.Sustainableforestryforbioenergyandbio-basedproducts:trainerscurriculumnotebook.Athens,GA:SouthernForestResearchPartnership,Inc:213-216.

Gan,J.;Smith,C.T.2006a.AcomparativeanalysisofwoodybiomassandcoalforelectricitygenerationundervariousCO2emissionsreductionsandtaxes.BiomassandBioenergy.30(4):296-303.

Gan,J.;Smith,C.T.2006b.AvailabilityofloggingresiduesandpotentialforelectricityproductionandcarbondisplacementintheUSA.BiomassandBioenergy.30(12):1011–1020.

Gorte,R.W.;Ramseur,J.L.2008.Forestcarbonmarkets:potentialanddrawbacks.ReportpreparedbyCRSforCongress.Washington,DC:CRSRL34560.http://www.nationalaglawcenter.org/assets/crs/RL34560.pdf.[Dateaccessed:July16,2010].

Greene,J.L.;Daniels,S.;Kilgore,M.A.[andothers].2005.Existingandpotentialincentivesforpracticingsustainableforestryonnonindustrialprivateforestlands.FinalreporttotheNationalCommissiononScienceforSustainableForestry.http://www.srs.fs.usda.gov/econ/data/forestincentives/ncssf-c2-final-report.pdf.[Dateaccessed:July15,2010].

Grigal,D.2000.Effectsofextensiveforestmanagementonsoilproductivity.ForestEcologyandManagement.138:167–185.

Guo,Z.;Sun,C.;Grebner,D.Q.2007.UtilizationofforestderivedbiomassforenergyproductionintheU.S.A.:status,challenges,andpublicpolicies.InternationalForestryReview.9(3):748–758.

Gustavsson,L.;Holmberg,J.;Dornburg,V.[andothers].2007.Usingbiomassforclimatechangemitigationandoilreduction.EnergyPolicy.35(11):5671-5691.

Haines,A.L.2002.Blendedteaching:landuseplanningeducationinWisconsinandlessonslearned.JournalofExtension.40(5):5IAW2.http://www.joe.org/joe/2002october/iw2.shtml.[Dateaccessed:June12,2010].

Hanson,C.;Yonavjak,L.;Clarke,C.[andothers].2010.SouthernForestsfortheFuture.IssueBrief2.Washington,DC:WorldResourcesInstitute:1-16.

Hardie,W.;Narayan,T.A.;Gardner,B.L.2001.Thejointinfluenceofagriculturalandnonfarmfactorsonrealestatevalues:anapplicationtothemid-Atlanticregion.AmericanJournalofAgriculturalEconomics.83(1):120–132.

Hennenberg,K.;Dragisic,C.;Hewson,J.[andothers].2009.Thepowerofbioenergy-relatedstandardstoprotectbiodiversity.ConservationBiology.24(2):412–423.

Hill,J.;Nelson,E.;Tilman,D.[andothers].2006.Environmental,economic,andenergeticcostsandbenefitsofbiodieselandethanolbiofuels.ProceedingsoftheNationalAcademyofSciences.103(30):11,206–11,210.

Hope,G.2007.Changesinsoilproperties,treegrowth,andnutritionoveraperiodof10yearsafterstumpremovalandscarificationonmoderatelycoarsesoilsininteriorBritishColumbia.ForestEcologyManagement.242(2–3):625–635.

Huang,M.Y.2010.RegionalimpactsofbioenergypoliciesintheSoutheasternUnitedStates:acomputablegeneralequilibriumanalysis.UniversityofFlorida.134p.Ph.D.dissertation.http://purl.fcla.edu/fcla/etd/UFE0041091.[Dateaccessed:June26,2011].

Hughes,E.2000.Biomassco-firing:economics,policyandopportunities.BiomassandBioenergy.19:457–465.

Humphrey,J.;Davey,S.;Peace,A.[andothers].2002.LichensandbryophytecommunitiesofplantedandseminaturalforestsinBritain:theinfluenceofsitetype,standstructureanddeadwood.BiologyConservation.107(2):165–180.

Ince,P.J.;Kramp,A.D.;Skog,K.E.[andothers].2011.U.S.forestproductsmodule:atechnicaldocumentsupportingtheForestService2010RPAAssessment.ResearchPaperFPL-RP-662.Madison,WI:U.S.DepartmentofAgricultureForestService,ForestProductsLaboratory.61p.

Jackson,S.;Rials,T.;Taylor,A.M.[andothers].2010.Woodtoenergy:astateofthescienceandtechnologyreport.UniversityofTennesseeandU.S.EndowmentforForestryandCommunitiesReport.Knoxville,TN:UniversityofTennessee.56p.

Jacobson,M.G.;Greene,J.L.;Straka,T.J.[andothers].2009.InfluenceandeffectivenessoffinancialincentiveprogramsinpromotingsustainableforestryintheSouth.NorthernJournalofAppliedForestry.33(1):35–41.

Janowiak,M.;Webster,C.2010.Promotingecologicalsustainabilityinwoodybiomassharvesting.JournalofForestry.108(1):16–23.

Page 42: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

254The Southern Forest Futures Project

Johnson,T.G.;Bentley,J.W.;Howell,M.2009.TheSouth’stimberindustry—anassessmentoftimberproductoutputanduse,2007.Resour.Bull.SRS–164.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.52p.

Jonsell,M.2007.Effectsonbiodiversityofforestfuelextraction,governedbyprocessesworkingonalargescale.BiomassandBioenergy.31(10):726–732.

Joshi,S.;Arano,K.G.2009.Determinantsofprivateforestmanagementdecisions:astudyonWestVirginiaNIPFlandowners.ForestPolicyandEconomics.11(2):118–125.

Kilgore,M.A.;Greene,J.L.;Jacobson,M.G.[andothers].2007.Theinfluenceoffinancialincentiveprogramsinpromotingsustainableforestryonthenation’sfamilyforests.JournalofForestry:184–191.

Kumarappan,S.;Joshi,S.;MacLean,H.2009.Biomasssupplyforbiofuelproduction:estimatesfortheUnitedStatesandCanada.BioResources.4(3):1070–1087.

Lal,P.;Alavalapati,J.;Marinescu,M.[andothers].2009.Sustainabilityindicatorsforwoodybiomassharvesting.ThefutureofwoodbioenergyintheUnitedStates:definingsustainability,status,trendsandoutlooksforregionaldevelopmentvolumebyPinchotInstituteforConservation.http://www.pinchot.org/bioenergy_paper.[Dateaccessed:July12,2010].

Lal,P.;Alavalapati,J.;Marinescu,M.[andothers].2011.DevelopingsustainabilityindicatorsforwoodybiomassharvestingintheUnitedStates.JournalofSustainableForestry.30(8):736–755.

Liao,X.;Zhang,Y.2008.AneconometricanalysisofsoftwoodproductionintheU.S.South:acomparisonofindustrialandnonindustrialforestownerships.ForestProductsJournal.58(11):69–74.

Lucier,A.2010.FatalflawinManomet’sbiomassstudy.TheForestrySource.September2010:4p.

ManometCenterforConservationSciences.2010.MassachusettsBiomassSustainabilityandCarbonPolicyStudy:ReporttotheCommonwealthofMassachusettsDepartmentofEnergyResources.Walker,T.,ed.NaturalCapitalInitiativeReportNCI-2010-03.Brunswick,ME:ManometCenterforConservationSciences.182p.

Mayfield,C.A.;Foster,C.D.;Smith,C.T.[andothers].2008.Opportunities,barriers,andstrategiesforforestbioenergyandbio-basedproductdevelopmentintheSouthernUnitedStates.BiomassandBioenergy.31(9):631–637.

Mckendry,P.2002.Energyproductionfrombiomass(part2):conversiontechnologies.BioresourceTechnology.83(1):47–54.

Mendell,B.;Lang,A.H.;Tydor,T.2010.EconomicandregionalimpactanalysisofthetreatmentofbiomassenergyundertheEPAgreenhousegastailoringrule.CommissionedbyNationalAllianceofForestOwners.Athens,GA:ForiskConsulting.32p.

Mercer,E.;Lal,P.;Alavalapati,J.2011.CompetitivenessofcarbonoffsetprojectsonnonindustrialprivateforestlandsintheUnitedStates.In:Alig,R.J.,ed.Economicmodelingofeffectsofclimatechangeontheforestsectorandmitigationoptions:acompendiumofbriefingpapers.Gen.Tech.Rep.PNW-GTR837.Portland,OR:U.S.DepartmentofAgricultureForestService,PacificNorthwestResearchStation:119–160.

Milbrandt,A.2005.AgeographicperspectiveonthecurrentbiomassresourceavailabilityintheUnitedStates.Tech.Rep.NREL/TP–560–39181.http://www.nrel.gov/docs/fy06osti/39181.pdf.[Dateaccessed:June16,2010].

Neary,D.G.2002.Hydrologicvalues.In:Richardson,J.;Bjorheden,R.;Hakkila,P.[andothers],eds.Bioenergyfromsustainableforestry:guidingprinciplesandpractice.Dordrecht,TheNetherlands:KluwerAcademicPublishers:190–215.

Neary,D.;Zieroth,E.2007.Forestbioenergysystemtoreducethehazardofwildfires:WhiteMountains,AZ:BiomassandBioenergy.31:638–645.

Nesbit,T.;Alavalapati,J.R.R.;Dwivedi,P.;Marinescu,M.2011.Economicsofethanolproductionusingfeedstockfromslashpine(Pinuselliottii)plantationsintheSouthernUnitedStates.SouthernJournalofAppliedForestry.35(2):61-66.

OakRidgeNationalLaboratory.2008.Bioenergyconversionfactors.bioenergy.ornl.gov/papers/misc/energy_conv.html.[Dateaccessed:June10,2010].

O’Laughlin,J.2010.Accountingforgreenhousegasemissionsfromwoodbioenergy:responsetotheU.S.EnvironmentalProtectionAgency’scallforinformation,includingpartialreviewoftheManometCenterforConservationSciences’biomasssustainabilityandcarbonpolicystudy.ReportNo.31.Moscow,ID:PolicyAnalysisGroup,CollegeofNaturalResources.UniversityofIdaho.58p.

OklahomaDepartmentofAgriculture,Food,andForestry.2008.Southernpinebeetlethreatdrawscost-sharefunds.http://www.ok.gov/~okag/forms/forestry/pinebeetle.pdf.[Dateaccessed:April16,2011].

Pattanayak,S.;Murray,B.;Abt,R.2002.Howjointisjointforestproduction?Aneconometricanalysisoftimbersupplyconditionalonendogenousamenityvalues.ForestScience.48(3):479–491.

Pattanayak,S.K.;Abt,R.C.;Sommer,A.J.[andothers].2005.Forestforecasts:doesindividualheterogeneitymatterformarketandforestlandscapeoutcomes?ForestPolicyandEconomics.6(3–4):243–260.

PelletFuelsInstitute.2010.Fuelavailability.http://pelletheat.org/pellets/fuel-availability/.[Dateaccessed:June16,2010].

Peng,C.;Jiang,H.;Apps,M.J.;Zhang,Y.2002.EffectsofharvestingregimesoncarbonandnitrogendynamicsofborealforestsincentralCanada:Aprocessmodelsimulation.EcologicalModeling.155:177–189.

Perlack,R.D.;Wright,L.L.;Turhollow,A.F.[andothers].2005.Biomassasfeedstockforabioenergyandbioproductsindustry:thetechnicalfeasibilityofabillion-tonannualsupply.DOE/GO–102995–2135.JointreportbyU.S.DepartmentofAgricultureandDepartmentofEnergy.OakRidge,TN:OakRidgeNationalLaboratory.58p.

Prestemon,J.P.;Abt,R.C.2002.Timberproductssupplyanddemand.In:Wear,D.;Greis,J.,eds.SouthernForestResourceAssessment.Gen.Tech.Rep.SRS–53.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:299–326.

Reijnders,L.2006.Conditionsforthesustainabilityofbiomassbasedfueluse.EnergyPolicy.34(7):863–876.

RenewableFuelsAssociation.2010.BiorefineryLocations.http://www.ethanolrfa.org/bio-refinery-locations/.[Dateaccessedaccessed:January7,2010].

Rossi,F.J.;Carter,D.R.;Abt,R.C.2010.WoodybiomassforelectricitygenerationinFlorida:bioeconomicimpactsunderaproposedRenewablePortfolioStandard(RPS)mandate.FinalreportpreparedforFloridaDepartmentofAgricultureandConsumerServices,DivisionofForestry.Gainesville,FL:SchoolofForestResourcesandConservation.98p.

Sample,V.A.2009.Ensuringsustainabilityinthedevelopmentofwood-basedbioenergyintheU.S.South.http://www.pinchot.org/gp/SouthRegionalMeeting.[Dateaccessed:July25,2010].

Schaberg,R.H.;Aruna,P.B.;Cubbage,F.W.[andothers].2005.EconomicandecologicalimpactsofwoodchipproductioninNorthCarolina:anintegratedassessmentandsubsequentapplications.JournalofForestPolicyandEconomics.7(2):157–174.

Schmidt,K.M.;Menakis,J.P.;Hardy,C.C.[andothers].2002.Developmentofcoarse-scalespatialdataforwildlandfireandfuelmanagment.RMRS-GTR87.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.41p.

Page 43: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

255chAPTeR 10. Forest Biomass-Based Energy

Scott,D.;Dean.T.2006.Energytrade-offsbetweenintensivebiomassutilization,siteproductivityloss,andameliorativetreatmentsinloblollypineplantations.BiomassandBioenergy.30:1001–1010.

Searchinger,T.;Heimlich,R.;Houghton,R.A.[andothers].2008.UseofU.S.croplandsforbiofuelsincreasesgreenhousegasesthroughemissionsfromlandusechange.Science.319(5867):1238-1240.

Sendek,P.E.;Abt,R.C.;Turner,R.J.2003.TimbersupplyprojectionsfornorthernNewEnglandandNewYork:integratingamarketperspective.NorthernJournalofAppliedForestry.20(4):175–185.

Shrum,T.2007.Greenhousegasemissions:policyandeconomics.ReportpreparedfortheKansasEnergyCouncil.Topeka,KS:KansasEnergyCouncil.78p.http://kec.kansas.gov/reports/GHG_Review_FINAL.pdf.[Dateaccessed:July22,2010].

Siry,J.P.;Cubbage,F.;Malmquist,A.2001.PotentialimpactofincreasedmanagementintensitiesonplantedpinegrowthandyieldandtimbersupplymodelingintheSouth.ForestProductsJournal.51(3):42–48.

Siry,J.P.;Robison,D.J.;Cubbage,F.W.2004.Economicreturnsmodelforsilviculturalinvestmentsinyounghardwoodstands.SouthernJournalofAppliedForestry.28:179–184.

Smith,T.;Lattimore,B.2008.Potentialenvironmentalimpactsofbioenergyharvestingonbiodiversity.ForestEncyclopediaNetwork.http://www.threats.forestencyclopedia.net/t/t450/?searchterm=mitigating.[Dateaccessed:April22,2011].

Speight,M.1997.Forestpestsinthetropics:currentstatusandfuturethreats.In:Watt,A.;Stork,N.;Hunter,M.,eds.Forestsandinsects.London:ChapmanandHall.406p.

Spelter,H.;Toth,D.2009.NorthAmerica’swoodpelletsector.Res.Pap.FPL–RP–656.Madison,WI:U.S.DepartmentofAgricultureForestService,ForestProductsLaboratory.21p.

Stupak,I.;Asikainen,A.;Jonsell,M.[andothers].2007.Sustainableutilizationofforestbiomassforenergy—possibilitiesandproblems:policy,legislation,certification,andrecommendationsandguidelinesintheNordic,Baltic,andotherEuropeancountries.BiomassandBioenergy.31(10):666–684.

Susaeta,A.;AlavalapatiJ.;Carter,D.2009.ModelingimpactsofbioenergymarketsonnonindustrialprivateforestmanagementintheSoutheasternUnitedStates.NaturalResourceModeling.22(3):345–369.

Susaeta,A.;Alavalapati,J.;Lal,P.;Matta,J.2010.AssessingpublicpreferencesforforestbiomassbasedenergyintheSouthernUnitedStates.EnvironmentalManagement.45(4):697–710.

Thiffault,E.;Paré,D.;Bélanger,N.[andothers].2006.Harvestingintensityatclear-fellingintheborealforest:impactonsoilandfoliarnutrientstatus.SoilScienceSocietyofAmericanJournal.70:691–701.

Thiffault,E.;Pare,D.;Brais,S.;Titus,B.2010.IntensivebiomassremovalsandsiteproductivityinCanada:areviewofrelevantissues.ForestryChronicle.86(1):36–42.

Thor,M.;Stenlid,J.2005.HeterobasidionannosuminfectionofPiceaabiesfollowingmanualormechanizedstumptreatment.ScandinavianJournalofForestResearch.20:154–164.

UnitedStatesDepartmentofAgriculture(USDA)ForestService.2005.AstrategicassessmentofforestbiomassandfuelreductiontreatmentsinWesternStates.RMRS-GTR-149.FortCollins,CO:U.S.DepartmentofAgricultureForestService,RockyMountainResearchStation.17p.

VanLoo,S.;Koppejan,J.2008.Thehandbookofbiomasscombustionandcofiring.London,UK:Earthscan.442p.

Walmsley,J.;Godbold,D.2010.Stumpharvestingforbioenergy—areviewoftheenvironmentalimpacts.Forestry.83(1):17–38.

Walsh,M.E.2008.U.S.cellulosicbiomassfeedstocksuppliesanddistribution.http://ageconsearch.umn.edu/bitstream/7625/2/U.S.%20Biomass%20Supplies.pdf.[Dateaccessed:July5,2010].

Wear,D.;Abt,R.;Alavalapati,J.[andothers].2010.TheSouth’soutlookforsustainableforestbioenergyandbiofuelsproduction.ThePinchotInstituteReport.20p.

Wear,D.;Greis,J.;Walters,N.2009.TheSouthernForestFuturesProject:usingpublicinputtodefinetheissues.Gen.Tech.Rep.SRS–115.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.17p.

Zhu,J.Y.;Pan,X.J.2010.Woodybiomasspretreatmentforcellulosicethanolproduction:technologyandenergyconsumptionevaluation.BioresourceTechnology.100(13):4992–5002.

Page 44: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS
Page 45: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

257chAPTeR 10. Forest Biomass-Based Energy

Weassigned36percentofthegrid’soutputtotheSouthernStates—Texas,Oklahoma,Arkansas,andLouisiana.

AnEastCentralAreaReliabilityCoordinationAgreementstate,nowmergedintoReliabilityFirstCorporation,servesportionsofKentuckyandVirginia.Weassigned18percentofthegrid’soutputtothoseStates.

WesternTexasalsoreceivessomeelectricityfromtheWesternElectricityGrid.RatherthanapportioningpartoftheWesternGridsupply,weinflatedtheelectricitysupplyofthemajorsupplierintheState(ElectricReliabilityCouncilofTexas)by6percent.

Usingthepercentageapportioningdescribedabove,wescaleddataonthetotalU.S.annualelectricitysalesoutlinedinEnergyInformationAdministration(2010)referencecasescenariototheSouthernStates.

Weestimatedtheshareofwoodybiomass-basedelectricity,usingthesamedatasource(EnergyInformationAdministration2010)fortheelectricitygrids.Thesedataarebrokendownbythetypeofrenewableenergy—includingconventionalhydroelectric,geothermal,woodandotherbiomass,biogenicmunicipalwaste,wind,photovoltaic,andsolarthermalsources;butexcludingethanol,netelectricityimports,andnonmarketedrenewableenergyconsumptionforgeothermalheatpumps,buildingsphotovoltaicsystems,andsolarthermalhotwaterheaters—andscaleddownaccordingtothepercentagefactorsusedtoderivetotaloutputfortheSouth.Usingtotalelectricitydemanded,totalrenewableelectricity,andtotalwoodyandotherbiomass-basedelectricitydata,wederivedtheshareofrenewablesinthetotalelectricityportfoliooftheregion,aswellastheshareofwood-basedbiomasselectricitywithintherenewables.FollowingGalikandothers(2009),weassumedthatallenergyfromwoodandotherbiomasssourcesoutlinedbytheEnergyInformationAdministration(2010)iscompletelycomposedofwood.ThewoodybiomassdemandspecifiedaselectricityinbillionkWhwasconvertedtowoodybiomassinthermalenergytermsoftrillionBtu.FollowingRossiandothers(2010),weusedaconversionfactorof13,648BtuperkWh,whichisthestandardelectricitytothermalenergyconversionfactor(3,412Btuper

Thisappendixaccompanieschapter10.EstimationofthewoodybiomassrequiredforelectricityproductionbeganwithEnergyInformationAdministration(2010)dataonelectricitygeneration,inbillionkilowatthours(kWh),fortheelectricitygridsthatsupplycustomersintheSouthernUnitedStates.Thegrid-basedsalesdataisavailableonlyuntil2035,butweextrapolateditto2050byapplyingtheaveragegrowthratecalculatedoverthefiveprecedingyears.Determiningtheamountofelectricityconsumedinthe13SouthernStatesischallengingbecausetheelectricgridnetworksdonottrackthevolumeofpowerflowingtoorfromindividualareas,nordotheybreakouttheelectricitysalesinformationbyStates.1

We assumed that a fixed percentage of individual grid electricity caters to the South (Galik and others 2009, Rossi and others 2010) and based estimates of that percentage on expert opinions. Our underlying assumption was that the electricity demand storyline will not drastically change, with little alterations in percentages.

TheFloridaReliabilityCoordinatingCouncilandElectricReliabilityCouncilofTexasgridsonlyservecustomersintheSouth,soweassumedthatalloftheirsalesarewithintheSouth.OtherelectricgridscatertocustomersoutsidetheSouthaswell:

TheSoutheastReliabilityCorporationservescustomersthroughoutMissouri,Alabama,Tennessee,NorthCarolina,SouthCarolina,Georgia,andMississippi;aswellasportionsofIowa,Illinois,Kentucky,Virginia,Oklahoma,Arkansas,Louisiana,Texas,andFlorida.ToaccountforsuppliesgoingoutsidetheSouth—mostofMissouriandportionsofIowaandIllinois—wesubtracted16percentofthegridtotalelectricity.

TheSouthwestPowerPoolservescustomersthroughoutKansasaswellasportionsofNewMexico,Texas,Oklahoma,Arkansas,Louisiana,Missouri,andNebraska.

1Personalcommunication,2010.R.J.Robertson,Manager,CustomerRelations.SouthwestPowerPool,415NorthMcKinley,#140PlazaWest,LittleRock,AR72205;andTeresaGlaze,DataAnalyst,SERCReliabilityCorporation,2815ColiseumCentreDrive,Suite500,Charlotte,NC28217.

appeNDIX B. Total Wood Demand for energy estimation

Page 46: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

258The Southern Forest Futures Project

kWh)ata25percentlevelofefficiency.ThisiscongruentwiththeWiltsee(2000)studyofbiomass-fuelledpowerplants,whichreportedthetypicalhigherheatingvaluetobeapproximately14,000BtuperkWh(24.4percentefficiency).

Toaccountforconversionefficiencyincreasesresultingfromfactorssuchasincreaseduseofco-firingwithcoalinthefuture,replacingoldercombustionsteamturbineswithgasificationcombinedcycleplants,andtechnologicaladvancestoalltypesofbiomasspowerplants,weassumedagradualincreaseinthermalefficiencyafter2020toamaximumof40percentin2050.WeconvertedBtuvaluestomassingreentonsbyapplyingaconversionfactorof8.6milliongreentonsperBtuoutlinedbytheForestService(2004)forgreenwood(50percentmoisturecontent).Nextweneededtoallocatehowmuchofthetotalbiomassusedforenergyissourcedfromsoftwoodsversushardwoods.Thisischallengingasweight-to-volumeconversionfactorsvarywithstemsizeandspecificgravityofspecies.Galikandothers(2009)estimatedconversionfactorsfortreesofaveragediametersbasedonTimberMart-South2007data.Wefollowedtheirconversionfactors—34.44greentonsperthousandcubicfeetforsoftwoodsand35.98greentonsperthousandcubicfeetforhardwoods.

eSTimATiNG DemAND

Wood-Based liquid Fuels

EstimationofthewoodybiomassrequiredforliquidfuelsproductionbeganwithEnergyInformationAdministration(2010)projectionsofenergyconsumptionbysectorandsource.Weusedthisinformationtodeterminetheshareofcellulosicethanolwithrespecttothetotaldomesticethanolproduction.Whileextrapolatingethanolproductionfrom2036to2050,wepeggedthecornandstarchethanolproductionvalueatthe2035levelandassumedthatincreasedethanolproductionwillcomefromcellulosicsourcesalone.ThisisinsyncwithcurrentRenewableFuelStandardtargetofpeggingcornandstarchethanolproductionatafixedlevelandallowsforincreaseinethanolproductionthroughcellulosicsourcesalone,althoughtheEnergyInformationAdministration(2010)projectionsassumethattheRenewableFuelStandardtargetofcellulosicethanolwillnotbemetby2022.

Weestimatedtotaldomesticcellulosicethanolproduction(inmillionbarrelsperday)basedonpercentagesharedataonestimatesofliquidfuelssupplyanddisposition,andaddeddataforotherbiomass-derivedliquidssuchaspyrolysisoils,biomass-derivedFischer-Tropschliquids,andrenewablefeedstocksusedfortheproductionofgreendieselandgasoline,gatheredfromthesamesource,togettotalliquidfuelsthatcanbeproducedfromwoodorothercellulosicsources(EnergyInformationAdministration2010).

Wescaledcellulosicliquidfuelsdemandatthenationalleveldowntosouthernlevelsbasedontheassumptionthat55percentofthenationaldemandwillbemetbythe13SouthernStates.Becausewoodisahigh-volumelow-valueproduct,transportationcostslimititstransporttoconversionplantsfarfromharvestingareas.Inthislight,55percentisconservative,as57percentofwoodharvestingoccursintheSouth(Hansonandothers2010).

Asuiteoffeedstocks(includingwood,paperandpulpliquors,algae,switchgrass,andagriculturalresidue)canbeusedtoproducecellulosicethanolorotherbio-oils.Becausethefutureofliquidfuelfrombiomasssourcesisuncertainandwedonotknowhowmuchcellulosicethanolandotherbio-oilswillcomefromwoodsources,weassumedthat30percentofthetotalcellulosicfuelsandbio-oilsarefromwood.Weconvertedbarrel-per-daydemandtogallonsperdayaccordingtoOakRidgeNationalLaboratory(2010)protocols,whichdefined1barrelas42gallons.Weconverteddailyconsumptiondatatoannuallevelsbymultiplyingbyafactorof365.242andconvertedgallonsofethanolandbio-oilstogreentonsofwoodusinganethanolyieldcalculator(http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html),establishingthatagreentonofsoftwoodsproduces40.75gallons,50.4gallonsforhardwoods.Wefurtherconvertedthewooddemandinthousandcubicfeetbyapplyingthevolume-to-weightconversionfactorsdevelopedbyGalikandothers(2009).

Wood Pellets

TheU.S.woodpelletindustryisalreadyestablished,incontrasttothewoodelectricityandwoodfuelsindustries(AlavalapatiandLal2009,SpelterandToth2009).However,toalargeextent,itisbeingdrivenbyEuropeandemand(Gold2009).ThisalongwiththeuseofwoodpelletsfordomesticheatingratherthangridelectricitymightresultinincompleteaccountingbytheEnergyInformationAdministration(2010),whererenewableelectricityproductionestimatesarebasedsolelyonelectricitygridsales.Thispromptedustoaccountforwoodpelletdemandseparatefromwoodbasedelectricitydemand.SpelterandToth(2009)estimatedsouthernpelletplantcapacitytobe1.85milliontonsin2009;basedontheirassessmentthatU.S.plantsoperateatanaverageefficiencyof66percent,weestimatedthedemandforwoodforpelletsinthesouthernregiontobe1.22milliontons.BecausemanyStatesareencouragingtheuseofrenewables,domesticdemandislikelytoincreaseinfuture.Toaccountforexpecteddemandincreaseinfuture,weassumeda0.5-percentannualincreaseinthecapacityofpelletplantsfrom2011onwards.ThecurrentcapacityutilizationofU.S.pelletplantsislowerthancountrieslikeCanada,whichhaveutilizationefficiencyof81percent.SpelterandToth(2009)attributedthistoreasonssuchasnewerplants,normalstartupproblems,andlimits

Page 47: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

259chAPTeR 10. Forest Biomass-Based Energy

onfiberavailability.However,theyalsosaythataspelletplantsbecomeolder,theU.S.capacityutilizationisexpectedtoincrease.Toaccountfortechnologicaladvancements,weassumedthatoverallcapacityutilizationincreasesby1percentperyearfrom2015untilitreaches85percent.

harvesting Residues and urban Wood Waste

Currentliterature(Perlackandothers2005,Galikandothers2009,EnergyInformationAdministration2010)indicatesthatharvestingresidues—discardedtreetopsandlimbsgeneratedduringtheharvestingprocess—currentlybeingleftonthegroundcanbeusedaswoodybiomass-basedenergyfeedstocks.Recentanalyses(Galikandothers2009,Rossiandothers2010)suggestthatharvestingresiduescouldbeusedtoavoiddivertingsomemerchantabletimberforenergyproduction.Rossiandothers(2010)alsoarguethattheprojectionsofwoodybiomassdemandforenergyproductionneedtobescaleddownfurthertoaccountforurbanwoodwaste.Forthisreason,wedroppedurbanwoodwastefromthetotalamountofwoodybiomassconsumption.Thisessentiallygivesusthemerchantabletimberthatwillberequiredforenergyproduction(totalwoodybiomassminusurbanwoodwaste).Notethattheresiduefromadditionalharvestingwashandledendogenously.Themodelcalculatessoftwoodandhardwoodharvestingresiduesalongwiththemerchantabletimberthatcanbeharvestedinaparticularyear.Foreachyear,theamountofharvestingresiduesthatcanbemadeavailableisestimatedalongwiththeharvestlevelsofsoftwoodandhardwoodpulpwoodandsawtimber.Becauseitignoresurbanwoodwaste,wenettedouturbanwoodwastefromtotalwoodybiomassconsumptionandfedtheremainderintothemodel.

Theharvestresiduethatcanbeusedforenergyproductiondependsontotalharvestaswellastheresidueutilizationfactor(thepercentageofharvestresiduethatcanbeconvertedtoenergy).Increasedharvestingefficiencycanreducetheavailabilityofforestresidues(Grusheckyandothers2007).Ratherthanhavingaconstantharvestingresidueutilizationfactor—40percentforWalshandothers(2008),45percentforRossiandothers(2010),and50percentforGalikandothers(2009)—weassume45percentin2010,increasingto67percentin2025,andremainingpeggedatthisleveluntil2050.Webelievethatthistrendcharacterizestheeffectsofcurrentharvestefficienciesandtechnologyimprovementsalongwithpotentialdevelopmentsoftheforestresiduesmarket.Becauseforestresidueremovalalsohasthepotentialforadverseimpactsonsiteproductivityandbiodiversity(Lalandothers2009),someStatebiomassharvestingguidelinesareaimedatretainingof10to33percentforestresiduesonharvestingsites(Lalandothers2011).Consequently,weassumethatnotmorethan67percentofharvestresiduesareremovedandutilizedforenergyproduction.

TotalharvestinformationfordifferenttimeperiodsisestimatedthroughanauxiliarySubregionalTimberSupplymodel,(Abtandothers2000),whichcalculatesgrossharvestresidues.Themodifiedmodelusesresidualfactors(Johnsonandothers2009)toestimatesoftwoodandhardwoodharvestingresiduesproducedfordifferentwoodybiomassconsumptionscenarios.Fortheforestsurveyunitsinthisstudy,theharvestingresidualfactorsforsoftwoodrangesfrom0.049to0.161(percubicfootofremovals)forgrowingstock,and0.091and0.357fornongrowingstock,comparedto0.106to0.247forgrowingstockand0.1945and0.3783fornongrowingstockforhardwoods.

Thesubregionalsupplymodelrunallocatesharvestresiduesbasedonspecies(hardwoodversussoftwood)ratherthantohardwoodandsoftwoodproducts(sawtimberversusnonsawtimber).Todistributeresiduestothefourproducts,weusedaverageproductsharesoftheseproductsasinitialparametervaluesandcalculatedtheaverageproductsharesbasedontheTimberProductOutputsdata(Bentley2003;Johnsonandothers2006,2008,2009).Weestimatedtheresiduesat55.51percentforsoftwoodsawtimber,44.48percentforsoftwoodnonsawtimber,39.74percentforhardwoodsawtimber,and60.25percentforhardwoodnonsawtimber.

Wiltsee(1998)estimatedpercapitaurbanwoodwasteat0.203greentonsperyear,whichweused—alongwiththeyearlyestimatesoffuturepopulationoftheSouthernStatesthrough2050fromtheU.S.CensusBureauStatesInterimPopulationProjectionsbyAgeandSexdatasets(http://www.census.gov/population/www/projections/projectionsagesex.html)—tocalculatetheannualamountofurbanwoodwastegeneratedintheregion.Becausesomeurbanwoodwastewillnotbedivertedforenergyuse,wescaledthepercapitaurbanwoodwasteestimationbyautilizationfactorof60percent(Carterandothers2007).

AllocATiNG meRchANTABle TimBeR iNTo FouR PRoDucTS

Todeterminethepercentagesharewithinaspeciesgroup,weallocatedwoodybiomassrequirement(minusharvestingresidues)onlytothepulpwoodmarket,assawtimberandotherhighervalueforestresourcesmightbetooexpensivetobeusedforbioenergyproduction.Thenonsawtimber-basedfeedstockpreferencecanalsobeobservedinarecentstudybyRossiandothers(2010)inFlorida,whichassumedthat88percentofthetotaltimberdivertedforenergycomesfromnonsawtimbersources.However,Perlackandothers(2005)outlinethepossibilitythathighoilpricesandlowtimberpricesmaycreateconditionswherebypulpwoodorevensmallsawtimberresourcescouldbeusedforbioenergy.Weassumedthatnonsawtimberwillbeusedforenergyproductionearlierthanhighvaluesawtimber.However,at

Page 48: Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R. Alavalapati, Pankaj Lal, Andres Susaeta, Robert C. Abt, and David N. Wear1 key FiNDiNGS

260The Southern Forest Futures Project

higherlevelofwoodybiomassconsumption,wedeterminedhowmuchofthewoodybiomassrequirementexceedswhatcanbemetbynonsawtimber.Wepositthatthisextrarequirementofbiomass(overandabovetheharvestlevelsdepictedbythemodelruns)issourcedbydisplacingsoftwoodsandhardwoodssawtimberfromforestindustries.

Thesubregionalsupplymodelutilizesdiameterdistributionsforeachsubregion,owner,managementtype,andageclasstocalculateproductremovalsandinventoryvolumesbyageclass.Wemodifiedageclassinthesubregionalsupplymodelfromafive-yearperiodtoannuallevelssothatthesupplyresponsecouldbeconsistentwithconsumptiondata.Furthermore,themodelrequiresaspecificcullfactorandadiameterrangethatdetermineshowmuchvolume(ineachproductcategory)contributestononsawtimber.WeusedthecullfactoroutlinedinAbtandothers(2009,2010)anddemarcatedsawtimberversusnonsawtimberbasedondiameteratbreastheight(d.b.h.)definitionsfromtheForestServiceForestInventoryandAnalysisprogram:5–8.9inchesforsoftwoodnonsawtimber,5–10.9inchesforhardwoodnonsawtimber,>9.0inchesforsoftwoodsawtimber,and≥11.0inchesforhardwoodsawtimber.Trees<5inchesd.b.h.areconsideredtobesaplings.

Themodifiedsubregionalsupplymodelrequiresthatconsumptionbeinputaccordingtothesoftwoodandhardwoodcategoriesspecifiedbytheuser.Weapportionedtotalwoodybiomassconsumed(bothforenergyandfortraditionalforestindustryrequirements)foraparticularscenarioamongthehardwoodandsoftwoodsasthestartingpoint.Lookingatroundwoodoutputdataforthepastdecade(Bentley2003;Johnsonandothers2006,2008,2009),weobservedthatthesoftwoodscompriseapproximately70percentofthetotaltimberoutput,comparedto30percentforhardwoods.

Asmostofthetechnologyforwoodybioenergyproductionisinnascentstageandnospeciesgrouphasbeenestablishedasfavored,wefollowedthisgenerictimberoutputtrendandparameterizedtheinitialmodelrunbyassumingthat70percentofwoodusedforenergyorbyindustryissourcedfromsoftwood,andtheremaining30percentisfromhardwoods.