105
Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II

Embed Size (px)

DESCRIPTION

Chapter 10 Chemical Bonding II. Lewis Structure  Molecular Structure. Structure determines chemical properties. Electron domain/group: area where electrons appear in Lewis structures. It can be electron lone pairs, single bonds, double bonds, triple bonds, or single electrons. - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 10 Chemical Bonding II

Chapter 10

Chemical Bonding II

Page 2: Chapter 10 Chemical Bonding II

Lewis Structure Molecular Structure

Structure determines chemical properties

Page 3: Chapter 10 Chemical Bonding II

Electron domain/group: area where electrons appear in Lewis structures.

It can be electron lone pairs, single bonds,

double bonds, triple bonds, or single electrons.

H2O, NH3, CH4, O2, N2, SCl2, CCl4, PCl3, NO+, NH4

+, CO, CO2

Page 4: Chapter 10 Chemical Bonding II

Valence Shell Electron Pair Repulsion (VSEPR) model

The lowest energy arrangement of a given number of electron

domains is the one that minimizes the repulsions among them.

The shape of ABn molecules or ions depend on the number of

electron domains surrounding the central A atom.

number of electron domains: 2 to 6

Page 5: Chapter 10 Chemical Bonding II

Know how to spellthe names!

Page 6: Chapter 10 Chemical Bonding II

How to predict geometry of a molecule?

1) Draw the Lewis structure of the molecule or ion, and countthe number of electron domains around the central atom.

2) Determine the electron domain arrangement by arranging theelectron domains about the central atom so that the repulsionsamong them are minimized.

3) Use the arrangement of the bonded atoms to determine the molecular geometry.

CO2

Page 7: Chapter 10 Chemical Bonding II
Page 8: Chapter 10 Chemical Bonding II

BF3, NO3−, H2CO

Page 9: Chapter 10 Chemical Bonding II

Electron domains for multiple bonds exert a greaterrepulsion force on adjacent electron domains than do electron domains for single bonds.

lone pair-lone pair > lone pair-bonding pair > bonding pair- bonding pair

Page 10: Chapter 10 Chemical Bonding II

SO2

119°

Electron domain arrangement is not necessarily the same as the molecular structure.

Bent or V-shaped

Page 11: Chapter 10 Chemical Bonding II

CH4

Page 12: Chapter 10 Chemical Bonding II

NH3

Page 13: Chapter 10 Chemical Bonding II
Page 14: Chapter 10 Chemical Bonding II

H2O

Page 15: Chapter 10 Chemical Bonding II
Page 16: Chapter 10 Chemical Bonding II

PCl5

Page 17: Chapter 10 Chemical Bonding II

SF4

To minimize repulsion, electron lone pairs are always placed in equatorial positions for trigonal bipyramidal geometry.

Page 18: Chapter 10 Chemical Bonding II

BrF3

Page 19: Chapter 10 Chemical Bonding II

XeF2

Page 20: Chapter 10 Chemical Bonding II

SF6

Page 21: Chapter 10 Chemical Bonding II

BrF5

Page 22: Chapter 10 Chemical Bonding II

XeF4

Page 23: Chapter 10 Chemical Bonding II
Page 24: Chapter 10 Chemical Bonding II

Polarity of a molecule

Page 25: Chapter 10 Chemical Bonding II

How to quantify the polarity of a bond?

Dipole moment

Page 26: Chapter 10 Chemical Bonding II

+ −Dipole

Dipole has a magnitude and a direction — vector

Magnitude (length) of a dipole — dipole moment

μ = qr

q — charge, r — distance between + and − charge

Page 27: Chapter 10 Chemical Bonding II

H — Fdipole

dipole moment of a bond ≠ 0 ↔ polar bond

dipole moment of a bond = 0 ↔ nonpolar bond

Page 28: Chapter 10 Chemical Bonding II

The Pauling Electronegativity Values

Page 29: Chapter 10 Chemical Bonding II

Polarity of a molecule

dipole moment of a molecule ≠ 0 ↔ polar molecule

dipole moment of a molecule = 0 ↔ nonpolar molecule

dipole of a molecule = sum of all the bond dipoles

Page 30: Chapter 10 Chemical Bonding II

v1

v2

v = v1 + v2

v3 = v2

Page 31: Chapter 10 Chemical Bonding II
Page 32: Chapter 10 Chemical Bonding II
Page 33: Chapter 10 Chemical Bonding II
Page 34: Chapter 10 Chemical Bonding II

SO3

Page 35: Chapter 10 Chemical Bonding II

120°

=

=

Net dipole moment = 0, nonpolar molecule

SO3

Page 36: Chapter 10 Chemical Bonding II

109.5°

CCl4

=

=Net dipole moment = 0, nonpolar molecule

Page 37: Chapter 10 Chemical Bonding II

Polarity of a molecule depends on the polarity of its bonds AND the geometry of the molecule.

Page 38: Chapter 10 Chemical Bonding II

NH3

Page 39: Chapter 10 Chemical Bonding II
Page 40: Chapter 10 Chemical Bonding II

How are electrons shared in covalent bonds?

Valence Bond Theory

Molecular Orbital Theory

Page 41: Chapter 10 Chemical Bonding II

Valence Bond Theory:

Orbital Overlap as a Chemical Bond

Page 42: Chapter 10 Chemical Bonding II
Page 43: Chapter 10 Chemical Bonding II
Page 44: Chapter 10 Chemical Bonding II

CH4

Page 45: Chapter 10 Chemical Bonding II
Page 46: Chapter 10 Chemical Bonding II
Page 47: Chapter 10 Chemical Bonding II

CH4

Page 48: Chapter 10 Chemical Bonding II

4 electron domains

sp3 hybridization

tetrahedral arrangement

Page 49: Chapter 10 Chemical Bonding II

NH3

Page 50: Chapter 10 Chemical Bonding II

sp3 on OH2O

Page 51: Chapter 10 Chemical Bonding II

C = C

Ethylene

H

H

H

H

~120°

All atoms are in the same plane

Page 52: Chapter 10 Chemical Bonding II
Page 53: Chapter 10 Chemical Bonding II
Page 54: Chapter 10 Chemical Bonding II
Page 55: Chapter 10 Chemical Bonding II

C = C

Ethylene

H

H

H

H

~120°

All atoms are in the same plane

Page 56: Chapter 10 Chemical Bonding II

The σ Bonds in Ethylene

Page 57: Chapter 10 Chemical Bonding II

C = C

Ethylene

H

H

H

H

~120°

All atoms are in the same plane

Page 58: Chapter 10 Chemical Bonding II

A Carbon-Carbon Double Bond Consists of a σ and a π Bond

Page 59: Chapter 10 Chemical Bonding II
Page 60: Chapter 10 Chemical Bonding II
Page 61: Chapter 10 Chemical Bonding II

3 electron domains

sp2 hybridization

trigonal planar arrangement

Page 62: Chapter 10 Chemical Bonding II

H−C ≡ C−H

Acetylene

Linear molecule

Page 63: Chapter 10 Chemical Bonding II
Page 64: Chapter 10 Chemical Bonding II
Page 65: Chapter 10 Chemical Bonding II
Page 66: Chapter 10 Chemical Bonding II
Page 67: Chapter 10 Chemical Bonding II

N2 :N≡N:

Page 68: Chapter 10 Chemical Bonding II

2 electron domains

sp hybridization

Linear arrangement

Page 69: Chapter 10 Chemical Bonding II

Single bond: σ

double bond: one σ, one π

triple bond: one σ, two π

Page 70: Chapter 10 Chemical Bonding II

C

H

H

CH

=O

O C ≡ N:

::

¨¨

Page 71: Chapter 10 Chemical Bonding II

PCl5

Page 72: Chapter 10 Chemical Bonding II
Page 73: Chapter 10 Chemical Bonding II

The Orbitals Used to Form the Bonds in PCl5

Page 74: Chapter 10 Chemical Bonding II

5 electron domains

dsp3 hybridization

trigonal bipyramidal arrangement

Page 75: Chapter 10 Chemical Bonding II

SF6

Page 76: Chapter 10 Chemical Bonding II
Page 77: Chapter 10 Chemical Bonding II

An Octahedral Set of d2sp3 Orbitals on Sulfur Atom

Page 78: Chapter 10 Chemical Bonding II

6 electron domains

d2sp3 hybridization

octahedral arrangement

Page 79: Chapter 10 Chemical Bonding II
Page 80: Chapter 10 Chemical Bonding II

paramagnetismdiamagnetism

paired electrons unpaired electrons

Page 81: Chapter 10 Chemical Bonding II

Liquid O2 is paramagnetic

Page 82: Chapter 10 Chemical Bonding II

How are electrons shared in covalent bonds?

Valence Bond Theory

Molecular Orbital Theory

Page 83: Chapter 10 Chemical Bonding II

EH

Atoms → atomic orbitals

Molecules → molecular orbitals

Molecular Orbital (MO)≈ Linear Combination of Atomic Orbitals (LCAO)

Page 84: Chapter 10 Chemical Bonding II

H2

Page 85: Chapter 10 Chemical Bonding II
Page 86: Chapter 10 Chemical Bonding II
Page 87: Chapter 10 Chemical Bonding II

Electron configuration

(σ1s)2

Pauli principleand Hund’s ruleapply

Page 88: Chapter 10 Chemical Bonding II

Bond order = ½ (number of bonding electrons − number of antibonding electrons)

If bond order > 0, the molecule is stable

If bond order = 0, the molecule is not stable

bond order = 1 → single bond

bond order = 2 → double bond

bond order = 3 → triple bond

Page 89: Chapter 10 Chemical Bonding II

Electron configuration

(σ1s)2 bond order = 1

Page 90: Chapter 10 Chemical Bonding II

(σ1s)2(σ1s*)1 bond order = 0.5

Page 91: Chapter 10 Chemical Bonding II

(σ1s)2(σ1s*)2 bond order = 0

Page 92: Chapter 10 Chemical Bonding II

(σ1s)2(σ1s*)1 bond order = 0.5

Page 93: Chapter 10 Chemical Bonding II

Li2

Page 94: Chapter 10 Chemical Bonding II

(σ2s)2 bond order = 1

Page 95: Chapter 10 Chemical Bonding II

(σ2s)2(σ2s*)2 bond order = 0

Page 96: Chapter 10 Chemical Bonding II
Page 97: Chapter 10 Chemical Bonding II
Page 98: Chapter 10 Chemical Bonding II
Page 99: Chapter 10 Chemical Bonding II
Page 100: Chapter 10 Chemical Bonding II

O2, F2, Ne2: (σ2s) (σ2s*) (σ2p) (π2p) (π2p

*) (σ2p*)

B2, C2, N2: (σ2s) (σ2s*) (π2p) (σ2p) (π2p

*) (σ2p*)

1)Electron configuration.

2)Bond order → stable molecule/ion?

3)Paramagnetic or Diamagnetic?

O2, F2, N2, N2−, N2

+

Page 101: Chapter 10 Chemical Bonding II
Page 102: Chapter 10 Chemical Bonding II

Homonuclear diatomic molecules/ions

Heteronuclear diatomic molecules/ions

Page 103: Chapter 10 Chemical Bonding II
Page 104: Chapter 10 Chemical Bonding II
Page 105: Chapter 10 Chemical Bonding II

Problems Chapter 10

1-7 ,33,35,39,42,47,51,53,59,61,63,69,

71,85,86