Chapter 1 control

Embed Size (px)

DESCRIPTION

Chapter 1

Citation preview

  • 7/17/2019 Chapter 1 control

    1/32

    Chapter:1

    INTRODUCTION OF SIGNALS AND

    SYSTEMS

    Chapter 1

    1UNIKL BMI- SIGNALS AND SYSTEMS - 2015

  • 7/17/2019 Chapter 1 control

    2/32

    1.0 Introduction of Signals and Systems

    Defnition

    i) A signal:

    A variation o a !"antit# $e%&% pre''"re( te)perat"re( po'ition( *o+o"r( vo+ta&e( heart

    rate( ne"ron irin&( et*%,

    Conve#' inor)ation re&arin& the 'tate( the *hara*teri'ti*'( the *o)po'ition( thetra.e*tor#( the evo+"tion or the inten'ion o the 'o"r*e%

    I' a )ean to *onve# inor)ation

    ii) A system:

    A )athe)ati*a+ )oe+ or a ph#'i*a+ pro*e'' that re+ate' the inp"t 'i&na+ to the o"tp"t

    The o"tp"t )a# /e enhan*e( )anip"+ate( )oiie( an tran'or)e ver'ion o the

    inp"t( or the inor)ation that i' etra*te ro) the inp"t%

    2

  • 7/17/2019 Chapter 1 control

    3/32

    Mathematical model of signals and systems3

    Model O Signals And Systems

  • 7/17/2019 Chapter 1 control

    4/32

    4

    Application Areas Specific Uses of Signals and Systems

    Telecommunications An'erin& )a*hine( )oe)( a )a*hine( *e++ phone'( 'peaer'

    phone'%

    Speech and Audio

    Processing

    3oi*e )ai+( 'peaer verii*ation( '#ntheti* 'pee*h( a"io

    *o)pre''ion( 'pee*h re*o&nition( 'pee*h *oin&( et*%

    Automotive En&ine *ontro+( anti+o* /reain& '#'te)'( a*tive '"'pen'ion( air/a&

    *ontro+( '#'te) ia&no'i'( et*%

    Medical 4eart irin&( hearin& ai'( re)ote )onitorin&( "+tra'o"n i)a&in&()a&neti* re'onan*e i)a&in& $MI,( et*%

    Image Processing 6D ani)ation( i)a&e enhan*e)ent( i)a&e *o)pre''ion $78EG,(

    vieo *o)pre''ion $M8EG,( hi&h einition T3( et*%

    Control Systems 4ea po'itionin& in i'* rive'( +a'er *ontro+ ( ro/ot'( en&ine an

    )otor *ontro+'( et*%

    Military and Aerospace aar an 'onar( navi&ation '#'te)'( 'e*"re *o))"ni*ation'(

    )i''i+e &"ian*e( /att+eie+ 'en'or'( et*%

  • 7/17/2019 Chapter 1 control

    5/32

    Continuos-Time (CT) signals Discrete-Time (DT) signals

    Continuous-time signal isindicating the denition ofindependent variable x(t) , (t) iscontinuous value, such asamplitude, frequency, and phase

    !he discrete-time signals aredened only at discrete time, andthe independent variable x[n], n]ta"es only a discrete set ofvalues # integer values

    Continuos-Time (CT) signals Discrete-Time (DT) signals

    Signals Classifiati!n

    $

  • 7/17/2019 Chapter 1 control

    6/32

    %

    Deterministic vs. Random

    Periodic vs Aperiodic

    here Ti' the perio in 'e*on

  • 7/17/2019 Chapter 1 control

    7/32

    1"# $asi Signals

    1. Real-valued exponential signals:

    The ti)e *on'tant i' the ti)e re!"ire or the

    eponentia+ t0e*rea'e /# a a*tor o 19 e( hi*h i'

    approi)ate+# 0%6:;

  • 7/17/2019 Chapter 1 control

    8/32

    3. Sinusoids:

    Where :

    - A is the amplitude (A, V, W)

    - w0= 2pf0 is the angular frequency (rad/s),

    - f0 is the carrier frequency (Hz),

    - Tis the period (s) ithf0= 1/T,

    -f is the phase (rad)!

    "sing #uler$s equation:

    We can deri%e:

    &ampled sinusoid: n = ',,,!,*

    Where Tsis the sampling time and fs= 1/Ts is the sampling frequency!

    +n practice, fs> 2 f0( yquist heorem)!(

    )sin()( 0 += tAtx

    )sin()cos( ajae ja =

    )(

    ')sin( 000

    tjtjee

    jt

    = )(

    ')cos( 000

    tjtjeet +=

    ),sin()( 0 += snTfAny

  • 7/17/2019 Chapter 1 control

    9/32

    4. Step unction !"eaveside #nit unction)

    Signals Analogue signal Digital signal

    )tep function

    Signals Analogue signal Digital signal

    )tep function

    *

  • 7/17/2019 Chapter 1 control

    10/32

    5. Rectangular Pulse

    Signals Analogue signals Digital signals

    +ectangularpulse

    Signals Analogue signals Digital signals

    +ectangular

    pulse

    1

  • 7/17/2019 Chapter 1 control

    11/32

    11

    6. Unit Impulse function ( Dirc!delt impulse"

    .roperties of irac-delta function:

    i) #%en function : ,

    ii) &ampling .roperty: =

  • 7/17/2019 Chapter 1 control

    12/32

    12

    #. Si$n function

  • 7/17/2019 Chapter 1 control

    13/32

    13

    1.4 $nergy-type vs Po%er-type

    Signal energy

    nergy signal .

    /eterministic aperiodic signals are energy-type signals

    Po!er signal

    0eriodic and random signals are poer-type signals

  • 7/17/2019 Chapter 1 control

    14/32

    14

    &.' $ven and (dd

    i x(- t) = x(t)or a++ ( then the 'i&na+ i' even%

    i x(-t) = -x(t)or a++ t( then the 'i&na+ i' o%

  • 7/17/2019 Chapter 1 control

    15/32

    1$

    1"% Transf!r&ati!ns !f the In'epen'ent (aria)le

    central concept in signal and system analysis is that of thetransformation of a signal

    i) Time-shit

    time-shift in continuous-time signal, hich to signals that are

    identical in shape, but that are displaced or shifted relative to each

    other here is represents a delayed if is positive, or advanced if

    is negative

  • 7/17/2019 Chapter 1 control

    16/32

    1%

    ii" Time #eversal%

    Startin& ro) the 'i&na+ in *ontin"o"' ti)e( ti)e rever'a+ reer' to the

    operation that &ive' "' the 'i&na+ that i' a re+e*tion o a/o"t

  • 7/17/2019 Chapter 1 control

    17/32

    1'

    ii" Time Scaling%

    Startin& ro) the 'i&na+ in *ontin"o"' ti)e( ti)e '*a+in& reer' to the

    operation that &ive' "' the 'i&na+ that i'=

    linearly stressed if ,

    linearly compressed if and

    reversed in time if

  • 7/17/2019 Chapter 1 control

    18/32

    1(

    Examle

  • 7/17/2019 Chapter 1 control

    19/32

    1*

    C!ntin*!*s+Ti&e S,ste&s

    system is a mathematical model or a physical process that relates the input signal to

    the output signal!

    continuous-time system is a system in hich continuous-time input signals are

    applied and result in continuous-time output signals! discrete-time system is a

    system in hich discrete-time signals are applied and result in discrete-time output

    signals!

    he input %oltage produces an output %oltage!

    1

    E(t)V0(t)

    input

    output

    &ysteminput outputx(t) y(t)

  • 7/17/2019 Chapter 1 control

    20/32

    2

    Inter!nneti!n !f s,ste&s

    '! &eries or cascade interconnection! he output of &ystem ' is the output to &ystem !

    ! .arallel interconnection

    he same input signal is applied to &ystem ' and &ystem

    )ystem 1 &ystem utput5ntput

    &ystem '

    &ystem

    utput5ntput 2

  • 7/17/2019 Chapter 1 control

    21/32

    21

    ! 3om4ination of 4oth cascade and parallel interconnection!

    5! 6eed4ac7 interconnection! he output of &ystem is fed 4ac7 and added to the e8ternal

    input to produce the actual input to &ystem '

    &ystem

    9utput+ntput2

    &ystem ' &ystem

    &ystem 5

    &ystem '

    &ystem

    9utput+ntput

    2

  • 7/17/2019 Chapter 1 control

    22/32

    22

    -r!perties !f S,ste&

    - o sho that the system has one of the properties, it is generally necessary to sho

    that the property holds for all possi4le input signals!

    1" S,ste&s .ith an' .ith!*t &e&!r,

    Me&!r,less s,ste&s!

    he output at instant tfor continuous-time systems depends only on the

    %alue of

    input at the same instant t!

    6or e8ample :

    S,ste&s .ith &e&!r,!he output at instant tfor continuous-time systems depends not only on the

    %alue

    of input at the same instant t, 4ut also on past or future %alues of the input!

    6or e8ample: !

  • 7/17/2019 Chapter 1 control

    23/32

    23

    23

    #8ample:

    '! y(t)=3x(t) 4x2(t-1)

    Sine t!e "#tp#t $epen$s "n #%%ent x(t) an$ past &a'#e "f inp#ts (x(t-1)) syste

    is n"t e"%y'ess "% syste wit! e"%y

    2 y(t) = 4x(t-1) * +x (t-2)

    Sine t!e "#tp#t $epen$s "n past &a'#es "f inp#ts, syste is n"t e"%y'ess0

  • 7/17/2019 Chapter 1 control

    24/32

    24

    #" Ca*sal S,ste&

    system is causal if (and only if) the current output is only a function of present and

    past inputs!

    the current output does not depend on future inputs(or outputs)!

    Anti+a*sal s,ste&

    &ystem is anti-causal if is not causal!

    3urrent output is depends on the future input!

    ;ost system are causal!

    3ausality is important hen dealing ith online system 4ecause the system does

    not 7no the future %alue! hus, it is impossi4le to compute the un7non %alue!

    Hoe%er non-causal system is not a pro4lem to an offline system here the input

    signal has 4een stored earlier!

  • 7/17/2019 Chapter 1 control

    25/32

    2$

    #8ample:

    '!y(t) = x(t*1)T!is syste is n"na#sa' sine t!e &a'#e y(t) "f t!e "#tp#t at tie t $epen$s "n t!e

    &a'#e x(t*1) "f t!e inp#t at tie (t*1 )

    y()=x(.), y $epen$s "n f#t#%e n"na#sa'

    2 y(t) = x2

    (t-1)

    T!is syste is a#sa' sine t!e &a'#e "f t!e "#tp#t at tie t $epen$s "n'y "n t!e

    &a'#e "f t!e inp#t at tie (t-1)

  • 7/17/2019 Chapter 1 control

    26/32

    2%

    /" Ti&e+in0ariant an' ti&e+0ar,ing s,ste&s

    Ti&e+in0ariant TI2 s,ste&s!

    + system is one in hich if y(t)is the output hen the input x(t)is applied, then

    y(t t0) is the output hen x(t-t0) is applied!

    system is TIif the 4eha%iour and the characteristics of the system are fi8ed o%er

    time! 6or e8ample the system y(t) = ax(t)!

    Ti&e+0ar,ing s,ste&s!

    time-%arying system is one in hich if y(t)is the output hen the input x(t) is

    applied, then y(t t0) is not necessarily the output hen x(t-t0)is applied!

    6or e8ample consider the system y(t) = ax(t)+n that case if y1(t) is the output to

    the input x1(t), then the output to the input

    !

    hus, the system is not time-in%ariant!

  • 7/17/2019 Chapter 1 control

    27/32

    2'

    !he are to 6 transformation7 involved.

    i8 )hifting a signalii8 0utting the signal through the system

    system91:t8 y1:t8

    shiftingy1:t-t8

    92:t8

    )hifting of 91:t8

    system y2:t8;y2:t-t891:t-t8

    8(t) y(t)

    8(t-t0

    ) y(t-t0

    )

    system

    3 Linear an' n!n+linear s,ste&s

  • 7/17/2019 Chapter 1 control

    28/32

    2(

    3" Linear an' n!n+linear s,ste&s

    Linear s,ste&s"

    linear system is one that possesses the property of superposition, i!e!, if the input

    consists of the sum of se%eral signals, then the output is the sum of the responses ofthe system to each of those signals!

    linear system possesses the folloing to properties!

    i) A$$iti&ity p%"pe%ty+f the response to x1(t) is y1(t)and the response to

    x2(t)is y2(t)then the response to the signal x1(t) *x2(t) is y'(t) 2 y(t)

    ii) ""eneity p%"pe%ty+f the response to x1(t)isy1(t), then the response

    to the signal x1(t) is y1(t) here is any comple8 constant!

    N!n+linear s,ste&s!

    t least one of the a4o%e properties does not hold!

    linear system is a system that posses the superposition property!

  • 7/17/2019 Chapter 1 control

    29/32

    2*

    linear system is a system that posses the superposition property!

    :

  • 7/17/2019 Chapter 1 control

    30/32

    3

    '! &7etch the folloing functions!

    a) x(t) = ) f(t) = t

    c) y =-2t $) f(t) = 2-t

    e)

    =

    0

    )(tx

    "t!e%wise

    tt

    0,0

  • 7/17/2019 Chapter 1 control

    31/32

    31

    ! &7etch the transformation of the signal as depicted 6igure '>

    (a) (4)

    6igure '

    a) )( tx

    4) )( +tx

    c) )( +tx

    d) )( + tx

    e) 8(t/ -')

    0 ' -'-

    '

    -'

    x(t)

    t0 ' -'-

    '

    -'

    ! he trapezoidal pulse 8(t) shon in 6igure 5 is defined 4y

  • 7/17/2019 Chapter 1 control

    32/32

    32

    +

    =

    ,0

    ?

    ,'

    ,?

    )(t

    t

    tx

    "t!e%wise

    t

    t

    t

    5?

    55

    ?5

    etermine the total energy of 8(t)!

    6igure 5

    5! etermine if the folloing systems are memoryless, causal, time-in%ariant or linear!

    a) y(t) = x(4t - 3)

    4) y(t) = sin (8(t))

    c) )sin()'()( ++= ttxty hen 0

    d) ))()(cos()( t#txty = !

    e) )()()( = txtxty

    g) )@(cos