94
PARTIAL DERIVATIVES 14

Chap14_Sec2 partial derivatives

Embed Size (px)

DESCRIPTION

Multipvariable Calc

Citation preview

Page 1: Chap14_Sec2 partial derivatives

PARTIAL  DERIVATIVES

14

Page 2: Chap14_Sec2 partial derivatives

PARTIAL  DERIVATIVES

14.2Limits  and  Continuity

In  this  section,  we  will   learn  about:

Limits  and  continuity  of  

various  types  of  functions.

Page 3: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

Let’s  compare  the  behavior  of  the  functions  

as  x  and  y  both  approach  0  (and  thus  the  point  (x,  y)  approaches  the  origin).

2 2 2 2

2 2 2 2

sin( )( , ) and ( , )x y x yf x y g x yx y x y

+ −= =

+ +

Page 4: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

The  following  tables  show  values  of  f(x,  y)  and  g(x,  y),  correct  to  three  decimal  places,  for  points  (x,  y)  near  the  origin.

Page 5: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

This  table  shows  values  of  f(x,  y).Table  1

Page 6: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITYThis  table  shows  values  of  g(x,  y).

Table  2

Page 7: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

Notice  that  neither  function  is  defined  at  the  origin.

§ It  appears  that,  as  (x,  y)  approaches  (0,  0),  the  values  of  f(x,  y)  are  approaching   1,  whereas  the  values  of  g(x,  y)  aren’t  approaching   any  number.

Page 8: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

It  turns  out  that  these  guesses  based  on  numerical  evidence  are  correct.

Thus,  we  write:

§

§ does  not  exist.

2 2

2 2( , ) (0,0)

sin( )lim 1x y

x yx y→

+=

+2 2

2 2( , ) (0,0)lim

x y

x yx y→

+

Page 9: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

In  general,  we  use  the  notation

to  indicate  that:

§ The  values  of  f(x,  y)  approach   the  number  L  as  the  point  (x,  y)  approaches   the  point  (a,  b)  along  any  path  that  stays  within  the  domain  of  f.

( , ) ( , )lim ( , )

x y a bf x y L

→=

Page 10: Chap14_Sec2 partial derivatives

LIMITS  AND  CONTINUITY

In  other  words,  we  can  make  the  values  of  f(x,  y)  as  close  to  L  as  we  like  by  taking  the  point  (x,  y)  sufficiently  close  to  the  point  (a,  b),  but  not  equal  to  (a,  b).  

§A  more  precise  definition  follows.

Page 11: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Let  f be  a  function  of  two  variables  whose  domain  D  includes  points  arbitrarily  close  to  (a,  b).

Then,  we  say  that  the  limit  of  f(x,  y)  as  (x,  y)  approaches  (a,  b)  is  L.

Definition  1

Page 12: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

We  write  

if:

§ For  every  number  ε >  0,  there  is  a  corresponding  number  δ >  0  such  that,

if

then

( , ) ( , )lim ( , )

x y a bf x y L

→=

2 2( , ) and 0 ( ) ( )x y D x a y b δ∈ < − + − <

Definition  1

| ( , ) |f x y L ε− <

Page 13: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Other  notations  for  the  limit  in  Definition  1  are:

lim ( , )

( , ) as ( , ) ( , )

x ay b

f x y L

f x y L x y a b

→→

=

→ →

Page 14: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Notice  that:

§ is  the  distance  between  the  numbers  f(x,  y)  and  L

§ is  the  distance  between  the  point  (x,  y)  and  the  point  (a,  b).

| ( , ) |f x y L−

2 2( ) ( )x a y b− + −

Page 15: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Thus,  Definition  1  says  that  the  distance  between  f(x,  y)  and  L can  be  made  arbitrarily  small  by  making  the  distance  from  (x,  y)  to  (a,  b)  sufficiently  small  (but  not  0).

Page 16: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

The  figure  illustrates  Definition  1  by  means  of  an  arrow  diagram.

Page 17: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If  any  small  interval  (L – ε,  L +  ε)  is  given  around  L,  then  we  can  find  a  disk  Dδ with  center  (a,  b)  and  radius  δ >  0  such  that:  

§ f maps  all  the  points  in  Dδ [except  possibly  (a,  b)]  into  the  interval  (L – ε,  L +  ε).

Page 18: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Another  illustration  of  Definition  1  is  given  here,  where  the  surface  Sis  the  graph  of  f.

Page 19: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If  ε >  0  is  given,  we  can  find  δ >  0 such  that,  if  (x,  y)  is  restricted  to  lie  in  the  disk  Dδ and  (x,  y)  ≠  (a,  b),  then  

§ The  corresponding  part  of  S lies  between  the  horizontal  planes  z =  L – ε and  z =  L +  ε.

Page 20: Chap14_Sec2 partial derivatives

SINGLE  VARIABLE  FUNCTIONS

For  functions  of  a  single  variable,  when  we  let  x approach  a,  there  are  only  two  possible  directions  of  approach,  from  the  left  or  from  the  right.

§ We  recall  from  Chapter  2  that,  if  then                                does  not  exist.  

lim ( ) lim ( ),x a x a

f x f x− +→ →

≠lim ( )x af x

Page 21: Chap14_Sec2 partial derivatives

DOUBLE  VARIABLE  FUNCTIONS

For  functions  of  two  variables,  the  situation  is  not  as  simple.  

Page 22: Chap14_Sec2 partial derivatives

DOUBLE  VARIABLE  FUNCTIONS

This  is  because  we  can  let  (x,  y)  approach  (a,  b)  from  an  infinite  number  of  directions  in  any  manner  whatsoever  as  long  as  (x,  y)  stays  within  the  domain  of  f.

Page 23: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Definition  1  refers  only  to  the  distancebetween  (x,  y)  and  (a,  b).  

§ It  does  not  refer  to  the  direction  of  approach.

Page 24: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Therefore,  if  the  limit  exists,  then  f(x,  y)  must  approach  the  same  limit  no  matter  how  (x,  y)  approaches  (a,  b).

Page 25: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Thus,  if  we  can  find  two  different  paths  of  approach  along  which  the  function  f(x,  y)  has  different  limits,  then  it  follows  that  

does  not  exist.( , ) ( , )lim ( , )

x y a bf x y

Page 26: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If  f(x,  y)  →  L1 as  (x,  y)  → (a,  b)  along  a  path  C1and  f(x,  y)  → L2 as  (x,  y)  → (a,  b)  along  a  path  C2,  where  L1 ≠  L2,  then  

does  not  exist.( , ) ( , )lim ( , )

x y a bf x y

Page 27: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Show  that                                                    

does  not  exist.

§ Let  f(x,  y)  =  (x2 – y2)/(x2 +  y2).

Example  1

2 2

2 2( , ) (0,0)lim

x y

x yx y→

+

Page 28: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

First,  let’s  approach  (0,  0)  along  the  x-­axis.

§ Then,  y =  0  gives  f(x,  0)  =  x2/x2 =  1  for  all  x ≠  0.

§ So,  f(x,  y)  →  1  as  (x,  y)  →  (0,  0)  along  the  x-­axis.

Example  1

Page 29: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

We  now  approach  along  the  y-­axis  by  putting  x =  0.

§ Then,  f(0,  y)  =  –y2/y2 =  –1  for  all  y ≠  0.

§ So,  f(x,  y)  →  –1  as  (x,  y)  →  (0,  0)  along  the  y-­axis.

Example  1

Page 30: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Since  f has  two  different  limits  along  two  different  lines,  the  given  limit  does  not  exist.  

§ This  confirms  the  conjecture  we  made  on  the  basis  of  numerical  evidence  at  the  beginning  of  the  section.

Example  1

Page 31: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If                                                

does                                            

exist?

Example  2

2 2( , ) xyf x yx y

=+

( , ) (0,0)lim ( , )

x yf x y

Page 32: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If  y =  0,  then  f(x,  0)  =  0/x2 =  0.

§ Therefore,

f(x,  y)  →  0  as  (x,  y)  → (0,  0)  along  the  x-­axis.

Example  2

Page 33: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If  x =  0,  then  f(0,  y)  =  0/y2 =  0.

§So,  

f(x,  y)  →  0  as  (x,  y)  → (0,  0)  along  the  y-­axis.

Example  2

Page 34: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Although  we  have  obtained  identical  limits  along  the  axes,  that  does  not  show  that  the  given  limit  is  0.  

Example  2

Page 35: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Let’s  now  approach  (0,  0)  along  another  line,  say  y =  x.  

§ For  all  x ≠  0,

§ Therefore,

Example  2

2

2 2

1( , )2

xf x xx x

= =+

12( , ) as ( , ) (0,0) along f x y x y y x→ → =

Page 36: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Since  we  have  obtained  different  limits  along  different  paths,  the  given  limit  does  not  exist.

Example  2

Page 37: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

This  figure  sheds  some  light  on  Example  2.

§ The  ridge  that  occurs  above  the  line  y =  xcorresponds  to  the  fact  that  f(x,  y)  =  ½  for  all  points  (x,  y)  on  that  line  except  the  origin.

Page 38: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

If                                                    

does                                                

exist?

Example  3

2

2 4( , ) xyf x yx y

=+

( , ) (0,0)lim ( , )

x yf x y

Page 39: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

With  the  solution  of  Example  2  in  mind,  let’s  try  to  save  time  by  letting  (x,  y)  →  (0,  0)  along  any  nonvertical  line  through  the  origin.

Example  3

Page 40: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Then,  y =  mx,  where  m is  the  slope,  and

Example  3

2

2 4

2 3

2 4 4

2

4 2

( , ) ( , )( )( )

1

f x y f x mxx mxx mxm x

x m xm xm x

=

=+

=+

=+

Page 41: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Therefore,  

f(x,  y)  →  0  as  (x,  y)  →  (0,  0)  along  y =  mx

§ Thus,  f has  the  same  limiting  value  along  every  nonvertical  line  through  the  origin.

Example  3

Page 42: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

However,  that  does  not  show  that  the  given  limit  is  0.

§ This  is  because,   if  we  now  let  (x,  y)  →  (0,  0)  along  the  parabola  x =  y2  

we  have:

§ So,f(x,  y)  →  ½  as  (x,  y)  →  (0,  0)  along  x =  y2

Example  3

2 2 42

2 2 4 4

1( , ) ( , )( ) 2 2y y yf x y f y yy y y

⋅= = = =

+

Page 43: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Since  different  paths  lead  to  different  limiting  values,  the  given  limit  does  not  exist.

Example  3

Page 44: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Now,  let’s  look  at  limits  that  do exist.

Page 45: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Just  as  for  functions  of  one  variable,  the  calculation  of  limits  for  functions  of  two  variables  can  be  greatly  simplified  by  the  use  of  properties  of  limits.

Page 46: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

The  Limit  Laws  listed  in  Section  2.3  can  be  extended  to  functions  of  two  variables.

For  instance,

§ The  limit  of  a  sum  is  the  sum  of  the  limits.

§ The  limit  of  a  product  is  the  product  of  the  limits.

Page 47: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

In  particular,  the  following  equations  are  true.

Equations  2

( , ) ( , )

( , ) ( , )

( , ) ( , )

lim

lim

lim

x y a b

x y a b

x y a b

x a

y b

c c

=

=

=

Page 48: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

The  Squeeze  Theorem  also  holds.

Equations  2

Page 49: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Find                                              

if  it  exists.

Example  4

2

2 2( , ) (0,0)

3limx y

x yx y→ +

Page 50: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

As  in  Example  3,  we  could  show  that  the  limit  along  any  line  through  the  origin  is  0.

§ However,  this  doesn’t  prove  that  the  given  limit  is  0.

Example  4

Page 51: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

However,  the  limits  along  the  parabolas  y =  x2 and  x =  y2 also  turn  out  to  be  0.  

§ So,  we  begin  to  suspect  that  the  limit  does  exist  and  is  equal  to  0.

Example  4

Page 52: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Let  ε >  0.  

We  want  to  find  δ >  0  such  that

Example  4

22 2

2 2

3if 0 then 0x yx yx y

δ ε< + < − <+

22 2

2 2

3x | |that is, if 0 then yx yx y

δ ε< + < <+

Page 53: Chap14_Sec2 partial derivatives

However,  x2 ≤  x2 =  y2 since  y2 ≥  0

§ Thus,  x2/(x2 +  y2)  ≤  1

Example  4LIMIT  OF  A  FUNCTION

Page 54: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Therefore,

22 2 2

2 2

3 | | 3 | | 3 3x y y y x yx y

≤ = ≤ ++

E.  g.  4—Equation  3

Page 55: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Thus,  if  we  choose  δ =  ε/3  and  let  then

Example  4

2 20 x y δ< + <

22 2

2 2

3 0 3 3 33

x y x yx y

εδ

ε

⎛ ⎞− ≤ + < = ⎜ ⎟+ ⎝ ⎠

=

Page 56: Chap14_Sec2 partial derivatives

LIMIT  OF  A  FUNCTION

Hence,  by  Definition  1,Example  4

2

2 2( , ) (0,0)

3lim 0x y

x yx y→

=+

Page 57: Chap14_Sec2 partial derivatives

CONTINUITY  OF  SINGLE  VARIABLE  FUNCTIONS

Recall  that  evaluating  limits  of  continuousfunctions  of  a  single  variable  is  easy.  

§ It  can  be  accomplished  by  direct  substitution.

§ This  is  because   the  defining  property  of  a  continuous   function   is lim ( ) ( )

x af x f a

→=

Page 58: Chap14_Sec2 partial derivatives

Continuous  functions  of  two  variables  are  also  defined  by  the  direct  substitution  property.

CONTINUITY  OF  DOUBLE  VARIABLE  FUNCTIONS

Page 59: Chap14_Sec2 partial derivatives

CONTINUITY

A  function  f of  two  variables  is  called  continuous  at  (a,  b)  if

We  say  f is  continuous  on  D if  f is  continuous  at  every  point  (a,  b)  in  D.

Definition  4

( , ) ( , )lim ( , ) ( , )

x y a bf x y f a b

→=

Page 60: Chap14_Sec2 partial derivatives

CONTINUITY

The  intuitive  meaning  of  continuity  is  that,  if  the  point  (x,  y)  changes  by  a  small  amount,  then  the  value  of  f(x,  y)  changes  by  a  small  amount.  

§ This  means  that  a  surface  that  is  the  graph  of  a  continuous   function  has  no  hole  or  break.

Page 61: Chap14_Sec2 partial derivatives

CONTINUITY

Using  the  properties  of  limits,  you  can  see  that  sums,  differences,  products,  quotients  of  continuous  functions  are  continuous  on  their  domains.

§ Let’s  use  this  fact  to  give  examples  of  continuous   functions.  

Page 62: Chap14_Sec2 partial derivatives

A  polynomial  function  of  two  variables(polynomial,  for  short)  is  a  sum  of  terms  of  the  form  cxmyn,  where:

§ c is  a  constant.§m and  n are  nonnegative   integers.

POLYNOMIAL

Page 63: Chap14_Sec2 partial derivatives

RATIONAL  FUNCTION

A  rational  function is  a  ratio  of  polynomials.

Page 64: Chap14_Sec2 partial derivatives

RATIONAL  FUNCTION  VS.  POLYNOMIAL

is  a  polynomial.

is  a  rational  function.

4 3 2 4( , ) 5 6 7 6f x y x x y xy y= + + − +

2 2

2 1( , ) xyg x yx y

+=

+

Page 65: Chap14_Sec2 partial derivatives

CONTINUITY

The  limits  in  Equations  2  show  that  the  functions  

f(x,  y)  =  x,  g(x,  y)  =  y,  h(x,  y)  =  c

are  continuous.

Page 66: Chap14_Sec2 partial derivatives

CONTINUOUS  POLYNOMIALS

Any  polynomial  can  be  built  up  out  of  the  simple  functions  f,  g,  and  hby  multiplication  and  addition.

§ It  follows  that  all  polynomials  are  continuous  on R2.  

Page 67: Chap14_Sec2 partial derivatives

CONTINUOUS  RATIONAL  FUNCTIONS

Likewise,  any  rational  function  is  continuous  on  its  domain  because  it  is  a  quotient  of  continuous  functions.

Page 68: Chap14_Sec2 partial derivatives

CONTINUITY

Evaluate

§ is  a  polynomial.

§ Thus,  it  is  continuous  everywhere.

2 3 3 2

( , ) (1,2)lim ( 3 2 )

x yx y x y x y

→− + +

Example  5

2 3 3 2( , ) 3 2f x y x y x y x y= − + +

Page 69: Chap14_Sec2 partial derivatives

CONTINUITY

§Hence,  we  can  find  the  limit  by  direct  substitution:

2 3 3 2

( , ) (1,2)

2 3 3 2

lim ( 3 2 )

1 2 1 2 3 1 2 211

x yx y x y x y

→− + +

= ⋅ − ⋅ + ⋅ + ⋅

=

Example  5

Page 70: Chap14_Sec2 partial derivatives

CONTINUITY

Where  is  the  function  

continuous?

Example  6

2 2

2 2( , ) x yf x yx y−

=+

Page 71: Chap14_Sec2 partial derivatives

CONTINUITY

The  function  f is  discontinuous  at  (0,  0)  because  it  is  not  defined  there.

Since  f is  a  rational  function,  it  is  continuous  on  its  domain,  which  is  the  set

D =  {(x,  y)  |  (x,  y)  ≠  (0,  0)}

Example  6

Page 72: Chap14_Sec2 partial derivatives

CONTINUITY

Let

§ Here,  g is  defined  at  (0,  0).§ However,  it  is  still  discontinuous   there  because  

does  not  exist  (see  Example  1).

Example  72 2

2 2 if ( , ) (0,0)( , )

0 if ( , ) (0,0)

x y x yg x y x y

x y

⎧ −≠⎪

= +⎨⎪ =⎩

( , ) (0,0)lim ( , )

x yg x y

Page 73: Chap14_Sec2 partial derivatives

CONTINUITY

LetExample  8

2

2 2

3 if ( , ) (0,0)( , )

0 if ( , ) (0,0)

x y x yf x y x y

x y

⎧≠⎪

= +⎨⎪ ≠⎩

Page 74: Chap14_Sec2 partial derivatives

CONTINUITY

We  know  f is  continuous  for  (x,  y)  ≠  (0,  0)  since  it  is  equal  to  a  rational  function  there.  

Also,  from  Example  4,  we  have:

Example  8

2

2 2( , ) (0,0) ( , ) (0,0)

3lim ( , ) lim

0 (0,0)

x y x y

x yf x yx y

f

→ →=

+

= =

Page 75: Chap14_Sec2 partial derivatives

CONTINUITY

Thus,  f is  continuous  at  (0,  0).

§So,  it  is  continuous  on  R2.

Example  8

Page 76: Chap14_Sec2 partial derivatives

CONTINUITY

This  figure  shows  the  graph  of  the  continuous  function  in  Example  8.

Page 77: Chap14_Sec2 partial derivatives

COMPOSITE  FUNCTIONS

Just  as  for  functions  of  one  variable,  composition  is  another  way  of  combining  two  continuous  functions  to  get  a  third.

Page 78: Chap14_Sec2 partial derivatives

COMPOSITE  FUNCTIONS

In  fact,  it  can  be  shown  that,  if  f is  a  continuous  function  of  two  variables  and  g is  a  continuous  function  of  a  single  variable  defined  on  the  range  of  f, then

§ The composite  function  h =  g ◦ f defined  by  h(x,  y)  =  g(f(x,  y))  is  also  a  continuous   function.

Page 79: Chap14_Sec2 partial derivatives

COMPOSITE  FUNCTIONS

Where  is  the  function  h(x,  y)  =  arctan(y/x)  continuous?

§ The  function   f(x,  y)  =  y/x is  a  rational  function  and  therefore  continuous   except  on  the  line  x =  0.

§ The  function  g(t)  =  arctan  t is  continuous  everywhere.

Example  9

Page 80: Chap14_Sec2 partial derivatives

COMPOSITE  FUNCTIONS

§So,  the  composite  function  

g(f(x,  y))  =  arctan(y,  x)  =  h(x,  y)

is  continuous  except  where  x =  0.

Example  9

Page 81: Chap14_Sec2 partial derivatives

COMPOSITE  FUNCTIONS

The  figure  shows  the  break  in  the  graph  of  h above  the  y-­axis.

Example  9

Page 82: Chap14_Sec2 partial derivatives

FUNCTIONS  OF  THREE  OR  MORE  VARIABLES

Everything  that  we  have  done  in  this  section  can  be  extended  to  functions  of  three  or  more  variables.  

Page 83: Chap14_Sec2 partial derivatives

The  notation  

means  that:

§ The  values  of  f(x,  y,  z)  approach   the  number  L  as  the  point  (x,  y,  z)  approaches   the  point  (a,  b,  c)  along  any  path  in  the  domain  of  f.

( , , ) ( , , )lim ( , , )

x y z a b cf x y z L

→=

MULTIPLE  VARIABLE  FUNCTIONS

Page 84: Chap14_Sec2 partial derivatives

The  distance  between  two  points  (x,  y,  z)  and  (a,  b,  c)  in  R3 is  given  by:

§ Thus,  we  can  write  the  precise  definition  as  follows.

MULTIPLE  VARIABLE  FUNCTIONS

2 2 2( ) ( ) ( )x a y b z c− + − + −

Page 85: Chap14_Sec2 partial derivatives

For  every  number  ε >  0,  there  is  a  corresponding  number  δ >  0  such  that,  if  (x,  y,  z)  is  in  the  domain  of  fand

then  |f(x,  y,  z)  – L|  <  ε

2 2 20 ( ) ( ) ( )x a y b z c δ< − + − + − <

MULTIPLE  VARIABLE  FUNCTIONS

Page 86: Chap14_Sec2 partial derivatives

The  function  f  is  continuous at  (a,  b,  c)  if:

( , , ) ( , , )lim ( , , ) ( , , )

x y z a b cf x y z f a b c

→=

MULTIPLE  VARIABLE  FUNCTIONS

Page 87: Chap14_Sec2 partial derivatives

For  instance,  the  function  

is  a  rational  function  of  three  variables.

§ So,  it  is  continuous  at  every  point  in  R3except  where  x2 +  y2 +  z2 =  1.  

MULTIPLE  VARIABLE  FUNCTIONS

2 2 2

1( , , )1

f x y zx y z

=+ + −

Page 88: Chap14_Sec2 partial derivatives

In  other  words,  it  is  discontinuous  on  the  sphere  with  center  the  origin  and  radius  1.

MULTIPLE  VARIABLE  FUNCTIONS

Page 89: Chap14_Sec2 partial derivatives

If  we  use  the  vector  notation  introduced  at  the  end  of  Section  14.1,  then  we  can  write  the  definitions  of  a  limit  for  functions  of  two  or  three  variables  in  a  single  compact  form  as  follows.

MULTIPLE  VARIABLE  FUNCTIONS

Page 90: Chap14_Sec2 partial derivatives

MULTIPLE  VARIABLE  FUNCTIONS

If  f is  defined  on  a  subset  D  of  Rn,  then                                          means  that,  for  every  number  ε >  0,  there  is  a  corresponding  number  δ >  0  such  that

Equation  5

lim ( )x af L

→=x

if and 0 | |then | ( ) |D

f Lδ

ε

∈ < − <

− <

x x ax

Page 91: Chap14_Sec2 partial derivatives

MULTIPLE  VARIABLE  FUNCTIONS

If  n =  1,  then  x =  x and        a =  a

§So, Equation  5  is  just  the  definition  of  a  limit  for  functions  of  a  single  variable.

Page 92: Chap14_Sec2 partial derivatives

MULTIPLE  VARIABLE  FUNCTIONS

If  n =  2,  we  have  x =  <x,  y>a =  <a,  b>

§So,  Equation  5  becomes  Definition  1.

2 2| | ( ) ( )x a y b− = − + −x a

Page 93: Chap14_Sec2 partial derivatives

MULTIPLE  VARIABLE  FUNCTIONS

If  n =  3,  then  x =  <x,  y,  z> and a =  <a,  b,  c>

§So,  Equation  5  becomes  the  definition  of  a  limit  of  a  function  of  three  variables.

Page 94: Chap14_Sec2 partial derivatives

MULTIPLE  VARIABLE  FUNCTIONS

In  each  case,  the  definition  of  continuity  can  be  written  as:

lim ( ) ( )f f→

=x a

x a