49
Chap 3. Formalism 1. Hilbert Space 2. Observables 3. Eigenfunctions of a Hermitian Operator 4. Generalized Statistical Interpretation 5. The Uncertainty Principle 6. Dirac Notation

Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Embed Size (px)

Citation preview

Page 1: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Chap 3. Formalism

1. Hilbert Space

2. Observables

3. Eigenfunctions of a Hermitian Operator

4. Generalized Statistical Interpretation

5. The Uncertainty Principle

6. Dirac Notation

Page 2: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Vector Space & Inner Product

Vector space : Linear space closed under vector addition & scalar multiplication.

Inner product :

: V V

satisfying*

0 0

Conjugate symmetric.

Positive.with 0

b c b c Linear.

which implies * *b c b c

b c

, V a b V ,a b F

orF=R C

Page 3: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Dual Space

Dual space V* of a vector space V Set of all linear

maps

: V F

V* can be associated with an inner product on V by setting

V* is itself a vector space and isomorphic to V.

Thus, the dual | V* of a vector | V is defined as the linear mapping such that

Page 4: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.1. Hilbert Space

State of system : Wave functionObservables : Operators

( -D ) VectorsLinear transformations

Linearity

Hilbert space Complete inner product space.( Cauchy sequence always converges )

E.g., Set of all square-integrable functions over a domain :

2L

*d f f r r exists 2f L

with inner product :

*f g d f g

r r

Quantum state space is a Hilbert space.

L2 L2 :

Page 5: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Schwarz inequality :2

f g f f g g ( cos 1 )

[ Guarantees inner product is finite in Hilbert space. ]

*f g g f

m n m mnf f A orthogonal

1

n nn

f c f

r r

*1n n

n

c d f fA

r r

f fr r

1n n

n

f c f

r r

1n n

n

c f fA

1

1n n

n n

f f IA

completeness

r component of vector f

1n n

n

f c f

1

1n n

n n

f f f fA

conjugate symmetric

Read Prob 3.1, Do Prob 3.2

Page 6: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.2. Observables

1. Hermitian Operators

2. Determinate States

Page 7: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.2.1. Hermitian Operators

* ˆ ˆQ d Q Q

r rExpectation value of Q :

Outcomes of experiments are real :*

Q Q

*ˆ ˆQ Q Q̂ Q̂

ˆ ˆQ Q Q is hermitian (self-adjoint)

Observable are represented by hermitian operators.

E.g. : *ˆ

dp d x

i d x

*d

d xi d x

*

dd x

i d x

Read Prob 3.3, 3.5 Do Prob 3.4

Page 8: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.2.2. Determinate States

Determinate state : A state on which every measurement of Q gives the same value q.

220 Q Q

i.e., ˆQ Q q

2Q q

Q̂ q

2Q̂ q ˆ ˆQ q Q q

Determinate states are eigenstates.

Spectrum of an operator Set of all of its eigenvalues

If two or more independent eigenfunctions share the same eigenvalue, the spectrum is degenerate.

E.g., solutions to the Schrodinger eq. H E

are determinate states of the total energy,

as well as eigenfunctions of the hamiltonian.

Page 9: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.1.

Let ˆ dQ i

d , where is the polar coordinate in 2-

D.

Is Q hermitian ?

Find its eigenfunctions and eigenvalues.

Ans. Consider the Hilbert space of all functions 2f f 0, 2

2*

0

ˆ d gf Q g d f i

d

2 *

2

00

d fi f g d i g

d

Q̂ f g

Q is hermitian.

*2

0

d fd i g

d

d fi q f

d has eigenfunctions i qf A e Eigenequation

2f f 0, 1, 2, ...q 2 1i qe

Spectrum of Q is the set of integers, & it’s non-degenerate.

Page 10: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.3. Eigenfunctions of a Hermitian Operator

1. Discrete Spectra

2. Continuous Spectra

Page 11: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Phys : Determinate states of observables.Math : Eigenfunctions of hermitian operators.

Discrete spectrum : n L2 normalizable & physically realizable.

Continuous spectrum : k not normalizable & not physically realizable.Can be used to form wave packets.

Examples:

Purely discrete spectrum : Harmonic oscillator.

Purely continuous spectrum : Free particle.

Mixed spectrum : Finite square well.

Page 12: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.3.1. Discrete Spectra

Theorem 1 : Eigenvalues of hermitian operators are real.

Proof :

Q̂ f q fLet

ˆ ˆf Q f Q f f

( f is eigenfunction of Q with eigenvalue q )

( Q is hermitian )

*q f f q f f

*q q QED

Page 13: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Theorem 2 : Eigenfunctions belonging to distinct eigenvalues are orthogonal.

Proof :

Q̂ f q fLet

ˆ ˆf Q g Q f g

( f , g are eigenfunctions of Q with eigenvalue q and r )

( Q is hermitian )

*r f g q f g

0f g r q QED

Q̂ g r g

q f g ( Theorem 1 )

Using the Gram-Schmidt orthogonalization scheme on the degenerate subspaces, all eigenfuctions of a hermitian operator can be made orthonormal.

Page 14: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Axiom (Dirac) : Eigenfunctions of an observable operator are complete.

Note:

Eigenfunctions of a hermitian operator on a finite dimensional space are complete.

Not necessarily so if the space is infinite dimensional.

( Required to guarantee every measurement has a result. )

Page 15: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.3.2. Continuous Spectra

Eigenfunctions not normalizable.

Example 3.2. Momentum Operator

Example 3.3. Position Operator

Page 16: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.2. Momentum Operator

Find the eigenfunctions & eigenvalues of the momentum operator.

p p

df x p f x

i d x

expp

i p xf x A

2* expp p

i p p xd x f x f x A d x

2

2A p p

1

2i k xd x e k

expp

i p xf x

* 2p pd x f x f x p p

Set

2p p p p

Ans.

( Dirac orthogonality )Placement of the 2 is a matter of taste.

Page 17: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

;i k xe k R is complete ( Fourier transform )

2 p

d pf x c p f x

For any real function f :

/

2i p xd p

c p e

//

2i p p xi p x d p

d x f x e c p d x e

d p c p p p

c p

i.e. /i p xc p d x f x e

Page 18: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.3. Position Operator

Find the eigenfunctions & eigenvalues of the position operator.

y yx g x y g x

Ans. Let gy be the eigenfunction with eigenvalue y.

yg x A x y

Dirac orthonormality : y yg g y y

2*y yd x g x g x A d x x y x y

2A y y

2

1A

yg x x y

f x d y f y y x

Completeness:For any real function f

yd y c y g x

c y f ywith

Page 19: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Preferred Derivation

2p p p p 12

d pp p

2

d pp p

2

d px x p p

2

ip xd p

x e p

p d x p x x

d x x x

i

p xp d x e x

x x x x 1d x x x

Page 20: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.4. Generalized Statistical Interpretation

Generalized statistical interpretation :1.Measurement of an observable Q(x, p) on a state (x, t) always gets one of the eigenvalues of the hermitian operator Q(x, i d / dx).

22

n nc f

2.a) Discrete eigenvalues, orthonormalized eigenfunctions :

2 2

zc z dz f dz

2.b) Continuous eigenvalues, Dirac orthonormalized eigenfunctions :Probability of getting an eigenvalue q(z) with z between z and z + dz is

Probability of getting the eigenvalue qn is

3. Upon measurement, collapses to fn or fz .

Page 21: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Proof for Discrete Eigenvalues

, n nn

x t c f x n nc f * ,nd x f x x t

21n

n

c If is normalized.

m m n nm n

c f c f *m n m n

m n

c c f f *m n mn

m n

c c

ˆQ Q m m n n nm n

c f c q f *m n n m n

m n

c c q f f *m n n mn

m n

c q c 2

n nm

q c

| cn |2 = Probability of getting the eigenvalue qn .

| cn |2 could be a probability.

Page 22: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Position Eigenfunctions

yg x x y Eigenfunction of position operator :

yc y g * ,yd x g x x t

,d x x y x t

,y t

2 2,c y dy y t dy = probability of finding particle within ( y, y+dy ).

Page 23: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Momentum Eigenfunctions

/i p xpf x e

Eigenfunction of momentum operator :

pc p f * ,pd x f x x t

/ ,i p xd x e x t

2 2,

2 2

dp dpc p p t

= probability of finding particle with momentum within ( p, p+dp ).

Momentum space wave function. /, ,i p xp t d x e x t

/, ,2

i p xd px t e p t

Position space wave function.

2 2, ,

2

d pd x x t p t

Note :

Page 24: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.4.

A particle of mass m is bound in the delta function well V(x) = ( x).

What is the probability that a measurement of its momentum would yield a value greater than p0 = m / .

2 2, exp exp

m m ix t x E t

Ans. 2

22

mE

2 2, exp exp

m i i mp t E t d x px x

00

1exp exp

p iE t d x i px p x

20

2

p

m

Page 25: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

0

0 0 0

0

1 1 1exp exp expd x i px p x d x i p p x d x i p p x

0 0i p p i p p

0

2 20

2 p

p p

00

1, exp exp

p ip t E t d x i px p x

3/20

2 20

, 2 expp i

p t E tp p

0

2

0 ,2p

d pP p p p t

0

30 22 2

0

2 1

p

p d pp p

0

102 2

0 0

1tan

p

p p p

p p p

12 3 2 22 2

1 1tan

2

ax xd x

a x a ax a

1 1

2 2 4

1 1

2 4 0.0908

Read Prob 3.12

Do Prob 3.11

Page 26: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.5. The Uncertainty Principle

1. Proof of the Generalized Uncertainty Principle

2. The Minimum Uncertainty Wave Packet

3. The Energy-Time Uncertainty Principle

2x p

Page 27: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.5.1. Proof of the Generalized Uncertainty Principle

22A A A

2A f f

ˆ ˆA A A A

A hermitian, A real.

2

* ˆd A A r r System in state .

*

ˆ ˆd A A A A r r

ˆf A A where

2B g g ˆg B B where

2 2A B f f g g 2

f g Schwarz inequality

Page 28: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

22 2A B f g

2Im f g

2*1

2f g f g

i

2

1

2f g g f

i

ˆf A A ˆg B B

ˆ ˆf g A A B B

ˆ ˆA A B B A, B hermitian, A , B real.

ˆ ˆˆ ˆA B A B B A A B

ˆ ˆA B A B

ˆ ˆf g AB A B f g , A B ˆˆg f B A A B

ˆ ˆˆ ˆf g g f AB B A ˆ ˆ,A B ˆ ˆ ˆˆ ˆ ˆ,A B AB B A where

22 2 1 ˆ ˆ,

2A B A Bi

Generalized Uncertainty Principle

1 ˆ ˆ,2A B A Bi

or

Page 29: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

1 ˆ ˆ,2A B A Bi

1ˆ ˆ,

2x p x pi

2

ˆ ˆ,x p i

Observables A and B are incompatible if ˆ ˆ, 0A B

Stationary states of a system can be specified by the eigenvalues of a maximal (complete) set of observables compatible with H.

Measuring A collapses state to an eigenstate of A, and similarly for B.

If A and B are incompatible, repeated measurements of A, B, A, B, ..., will never, except by accident, get the same values.

If A and B are compatible, repeated measurements of A, B, A, B, ..., will get the same values provided A and B are also compatible with H.

Read Prob 3.13Do Prob 3.15

Page 30: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.5.2. The Minimum Uncertainty Wave Packet

E.g., ground state of a harmonic oscillator ,Gaussian wave packets of a free particle.2x p

Minimum Uncertainty

g c f

Setting the Schwarz inequality to equality

c i a

2f f g g f g c = constant

22 2 ImA B f g

Minimal uncertainty thus implies

Re 0f g a = real

g i a f

ˆB̂ B i a A A

i.e.

minimal uncertainty state

Uncertainty principle keeps only Im < f | g > to give

Re 0c f f

2 22 2 ImA B f g f g

or

Page 31: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

ˆB̂ B i a A A

For position-momentum uncertainty : dp i a x x

i d x

2exp exp

2

a ix A x x p x

Prob 3.16

Page 32: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.5.3. The Energy-Time Uncertainty Principle

Position-momentum uncertainty :2x p x p

Special relativity suggests energy-time uncertainty :2

t E 4-vectors:

( c t, x ), (E / c, p )

Non-relativistic theory :

1. t is a parameter, not a dynamic variable.

2.t t .

3. t = time for system to change appreciably.

Energy-time uncertainty is NOT like the other uncertainty pairs.

Page 33: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

ˆd Q dQ

dt d t

Let Q( x, p, t ) be some characteristic observable of the system.

ˆˆ ˆQ

Q Qt t t

ˆ1 1ˆ ˆˆ ˆQH Q Q H

i t i

ˆi H

t

ˆ1 ˆ ˆ,Q

Q Hi t

1 ˆ ˆ,d Q Q

Q Hdt i t

H hermitian

1 ˆ ˆ,2A B A Bi

1 ˆˆ ,2H Q H Qi

2

d Q

dt

Q = Q( x, p )

2E t

DefineQt

d Q

d t

HE

Page 34: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.5.

For a stationary state, 0d Q

dt for all observable Q.

E 0, t

Time dependence occurs only for linear combinations of stationary states.

E.g., 1 2/ /1 2, i E t i E tx t a x e b x e

a, b, 1 , 2 real.

2 2 22 2 2 11 2 1 2, 2 cos

E Ex t a x b x ab x x t

E E2 E12 1

2 2t

E E

2E t 2

Page 35: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.6.

How long does it take for a free-particle wave packet to pass by a particular point ?

Roughly, x m x

tv p

2

2

pE

mNote : p p

Em

E t p x 2

c.f. Prob 3.19

x width of wave packet.

Page 36: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.7.

The particle lasts about 1023 s before spontaneously disintegrate.

A histogram of all measurements of its mass gives a bell-shaped curve centered at 1232 MeV/c2, with a width about 120 MeV/c2.

Why does the rest energy ( mc2 ) sometimes come out larger than 1232, and sometimes lower? Is this experimental error?

Ans.

231120 10

2E t MeV s

226 10 MeV s

while 166.58 10 eV s 223.29 102

MeV s

Spread in measured mass is close to minimum uncertainty allowed. It’s not experimental error.

Measured data :

Page 37: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

2t E

Caution :

does NOT mean you can violate energy conservation by

borrowing energy E and paying it back within t / (2E).

Page 38: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

3.6. Dirac Notation

The set of all eigenfunctions of any observable is complete.

It can be used as a basis for the system’s Hilbert space.

State of system ( vector in Hilbert space ) : t t is a parameter

r-representation : Basis = Eigenstates of the position operator.

, t t r r

3 ˆd r I r r completeness

3t d r t r r 3 ,d r t r r

r r r r orthogonality, Dirac normalization

Page 39: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

p - Representationp-representation : Basis = Eigenstates of the momentum operator.

, t t p p

3

2

d pI

p p

completeness

3

32

d pt t

p p

, t t r r

3

3 ,2

d pt

r p p

32 p p p p orthogonality, Dirac

normalization

3

32

d p

r p p r r r

r r

3

3 exp2

d p i

p r r

expi

r p p r

exp

i

p r p r

3 ˆd r I r r 3d r p r r p p p 3 expi

d r p p r

3

3 exp ,2

d p it

p r p

Page 40: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Let ˆnH n E n | n is an energy eigenstate.

ˆn

n n I completeness

n

t n n t

n

t n n t r r

mnm n orthonormality

, n nn

t c t r r nc t n t

ˆexp 0i

t H t ˆi t H t

t

ˆexp 0n

ic t n H t

ˆexp 0n

iH t

exp 0n

iE t n

expn n n

ic t E t c

0nc n , expn n n

n

it c E t

r r

where

Page 41: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Operators: Discrete Basis

Operators are linear transformations :

Orthonormal basis ne n nn

a e n na e

n nn

b e n nb e

ˆn n n n

n n

a Q e b e ˆn m n n m n

n n

a e Q e b e e mb

Or mn n mn

Q a b ˆmn m nQ e Q ewhere matrix elements

ˆ m ne Q e

Page 42: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Operators: Continuous Basis

Operators are linear transformations :

Dirac-orthonormal basis z d z a z z a z d z z

d z b z z b z d z z

ˆd z a z Q z d z b z z ˆd z a z z Q z d z b z z z b z

Or ,d z Q z z a z b z ˆ,Q z z z Q z where matrix elements

,Q z z Q z z z Q z a z b zIf Q is diagonal, i.e., then

Page 43: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example: x-representation

x x x x x̂ x x x

ˆx x x x x x Matrix elements : x x x x x x

ˆ ˆ ˆ ˆ ˆ ˆ,x x p x x x p px x ˆ ˆx x p x x x p x ˆx x x p x

i x x i x x

Since ( prove it ! )

ˆd

x p x i x xd x

di x x

d x

d f xdf x x a x a

d x d x

we have dx x x x x x

d x

Page 44: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

ˆd

x p x i x xd x

ˆ ˆx p d x x p x x d x xd x i x

d x

d xd x i x x

dx

ˆ

d xx p

i dx

ˆd

pi d x

ˆ ˆp d x x x p d x

d x xi dx

ˆx x x x x x

2ˆˆ ˆ

2

pH d x x x V x

m

2ˆˆ ˆ

2

px H d x x x x V x

m

22

22

d xd x x x V x x

m d x

22

22

d xV x x

m d x

di t

d t

di x t

d t

,i x tt

Page 45: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Example 3.8

Consider a system with only 2 independent states1

10

02

1

General normalized state : 1 2S a ba

b

with

2 21a b

Most general Hamiltonian :1*

2

h g

g h

H with h1, h2 real.

Assumeh g

g h

H with h, g real.

If the system starts out ( at t = 0 ) in state | 1 , what is its state at time t ?

Ans :

Time-dependent Schrodinger eq.

Time-independent Schrodinger eq.

S Sd

i Hd t

s sH E

Page 46: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

s sH Eh g

g h

H

det 0

h E gE

g h EH I Characteristic eq.

2 2 0 h E g h E g

E h g Eigenenergies are :

Corresponding eigenvectors are given by: 0

h E g

g h E

0

0

h E g

g h E

Eigenenergies are :

E h

g

1

1s

Normalized :11

12s

Page 47: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

11

12s

System starts out ( at t = 0 ) in state | 1 : 10

0S

1

2s s

1

2S s s

i i

E t E tt e e

1 11

1 12

i i

h g t h g te e

1

2

i ih g t h g t

i ih g t h g t

e e

e e

E h g

cos

sin

ih t

g t

eg t

i

neutrino oscillation: e .

Page 48: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

ket : | f is a vector in L2 .bra : f | is in its dual L2

*.

Dirac notation :

* f d f

For L2 infinite dimensional,| f is a function, f | a linear functional:

so that*f g d f g

For L2 finite dimensional,| is a column vector, | is a row vector :

* * *1 2 na a a

1

2

n

a

a

a

so that*

1

n

j jj

a b

Page 49: Chap 3. Formalism 1.Hilbert Space 2.Observables 3.Eigenfunctions of a Hermitian Operator 4.Generalized Statistical Interpretation 5.The Uncertainty Principle

Let | be normalized, then

ˆ P is the projection operator onto the 1-D space spanned by | .

ˆ PE.g.

is a vector in the direction | with magnitude | .

Let { | en ; n = 1, ..., N } be an orthonormal basis, i.e., m n mne e

then1

ˆ

N

n nn

e e I = unit operator in N-dimensional space spanned by { | en } .

1 1

N N

n n n nn n

e e e eE.g.

If { | ez } is a Dirac orthonormalized continous basis, i.e., z ze e z z

then ˆ z zd z e e I = unit operator in function space spanned by { | ez }.

ne magnitude of | along | en

Read Prob 3.21, 3.24 Do Prob 3.22, 3.23