15
2/7/2014 1 03. Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Vibrations 3.01 Single DOF Systems: Governing Equations ยง 1 . Chapter Objectives โ€ข Obtain the governing equation of motion for single degree-of- freedom (dof) translating and rotating systems by using force balance and moment balance methods โ€ข Obtain the governing equation of motion for single dof translating and rotating systems by using Lagrangeโ€™s equations โ€ข Determine the equivalent mass, equivalent stiffness, and equivalent damping of a single dof system โ€ข Determine the natural frequency and damping factor of a system HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Vibrations 3.02 Single DOF Systems: Governing Equations ยง 2 . Force - Balance and Moment - Balance Methods 1.Force Balance Method Newtonian principle of linear momentum โˆ’ =0 (3.1a) : the net external force vector acting on the system : the absolute linear momentum of the considered system For a system of constant mass whose center of mass is moving with absolute acceleration , the rate of change of linear momentum = โˆ’ =0 (3.1b) โˆ’ : inertial force โŸนThe sum of the external forces and inertial forces acting on the system is zero; that is, the system is in equilibrium under the action of external and inertial forces Vibrations 3.03 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Force - Balance and Moment - Balance Methods Vertical Vibrations of a Spring-Mass-Damper System - Obtain an equation to describe the motions of the spring-mass- damper system in the vertical The position vector of the mass from the fixed point = = ( + + ) Force balance along the direction + โˆ’ + โˆ’ โˆ’ 2 2 =0 Vibrations 3.04 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Force - Balance and Moment - Balance Methods - Noting that and are constants, rearranging terms to get the following scalar differential equation 2 2 + + + = + Vibrations 3.05 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien ยง 2 . Force - Balance and Moment - Balance Methods Static Equilibrium Position - The static-equilibrium position of a system is the position that corresponds to the systemโ€™s rest state; that is, a position with zero velocity and zero acceleration - The static-equilibrium position is the solution of + = - The static displacement = โŸน=0 is the static-equilibrium position of the system - The spring has an unstretched length , the static-equilibrium position measured from the origin is given by = = ( + ) Vibrations 3.06 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Ch.03 Single DOF Systems - Governing Equations

Embed Size (px)

Citation preview

Page 1: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

1

03. Single DOF Systems:

Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Vibrations 3.01 Single DOF Systems: Governing Equations

ยง1.Chapter Objectives

โ€ข Obtain the governing equation of motion for single degree-of-

freedom (dof) translating and rotating systems by using force

balance and moment balance methods

โ€ข Obtain the governing equation of motion for single dof

translating and rotating systems by using Lagrangeโ€™s

equations

โ€ข Determine the equivalent mass, equivalent stiffness, and

equivalent damping of a single dof system

โ€ข Determine the natural frequency and damping factor of a

system

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Vibrations 3.02 Single DOF Systems: Governing Equations

ยง2.Force-Balance and Moment-Balance Methods

1.Force Balance Method

Newtonian principle of linear momentum

๐น โˆ’ ๐‘ = 0 (3.1a)

๐น : the net external force vector acting on the system

๐‘ : the absolute linear momentum of the considered system

For a system of constant mass ๐‘š whose center of mass is

moving with absolute acceleration ๐‘Ž, the rate of change of

linear momentum ๐‘ = ๐‘š ๐‘Ž

๐น โˆ’ ๐‘š ๐‘Ž = 0 (3.1b)

โˆ’๐‘š ๐‘Ž : inertial force

โŸนThe sum of the external forces and inertial forces acting on

the system is zero; that is, the system is in equilibrium

under the action of external and inertial forces

Vibrations 3.03 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Vertical Vibrations of a Spring-Mass-Damper System

- Obtain an equation to describe the motions of the spring-mass-

damper system in the vertical

The position vector of

the mass from the fixed

point ๐‘‚ ๐‘Ÿ = ๐‘Ÿ ๐‘—= (๐ฟ + ๐›ฟ๐‘ ๐‘ก + ๐‘ฅ) ๐‘—

Force balance along

the ๐‘— direction

๐‘“ ๐‘ก ๐‘— + ๐‘š๐‘” ๐‘— โˆ’ ๐‘˜๐‘ฅ + ๐‘˜๐›ฟ๐‘ ๐‘ก ๐‘— โˆ’ ๐‘๐‘‘๐‘Ÿ

๐‘‘๐‘ก ๐‘— โˆ’ ๐‘š

๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2 ๐‘— = 0

Vibrations 3.04 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

- Noting that ๐ฟ and ๐›ฟ๐‘ ๐‘ก are constants, rearranging terms to get

the following scalar differential equation

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜ ๐‘ฅ + ๐›ฟ๐‘ ๐‘ก = ๐‘“ ๐‘ก + ๐‘š๐‘”

Vibrations 3.05 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Static Equilibrium Position

- The static-equilibrium position of a system is the position that

corresponds to the systemโ€™s rest state; that is, a position with

zero velocity and zero acceleration

- The static-equilibrium position is the solution of

๐‘˜ ๐‘ฅ + ๐›ฟ๐‘ ๐‘ก = ๐‘š๐‘”

- The static displacement

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜โŸน ๐‘ฅ = 0 is the static-equilibrium position of the system

- The spring has an unstretched length ๐ฟ, the static-equilibrium

position measured from the origin ๐‘‚ is given by

๐‘ฅ๐‘ ๐‘ก = ๐‘ฅ๐‘ ๐‘ก ๐‘— = (๐ฟ + ๐›ฟ๐‘ ๐‘ก) ๐‘—

Vibrations 3.06 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 2: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

2

ยง2.Force-Balance and Moment-Balance Methods

Equation of Motion for Oscillations about the Static-EquilibriumPosition

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜ ๐‘ฅ + ๐›ฟ๐‘ ๐‘ก = ๐‘“ ๐‘ก + ๐‘š๐‘”

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜

โŸน ๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก

Equation (3.8) is the governing equation of motion of a single

dof system for oscillations about the static-equilibrium position

โ€ข The left-hand side: the forces from the components that

comprise a single dof system

โ€ข The right-hand side: the external force acting on the mass

Vibrations 3.07 Single DOF Systems: Governing Equations

(3.8)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Horizontal Vibrations of a Spring-Mass-Damper System

Consider a mass moving in a direction normal

to the direction of gravity

โ€ข It is assumed that the mass moves without

friction

โ€ข The unstretched length of the spring is ๐ฟ, and

a fixed point ๐‘‚ is located at the unstretched

position of the spring

โ€ข The spring does not undergo any static

deflection and carrying out a force balance

along the ๐‘– direction

โ€ข The static-equilibrium position ๐‘ฅ = 0 coincides with the

position corresponding to the unstretched spring

Vibrations 3.08 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Force Transmitted to Fixed Surface

The total reaction force due to the spring and

the damper on the fixed surface is the sum of

the static and dynamic forces

๐น๐‘… = ๐‘˜๐›ฟ๐‘ ๐‘ก + ๐‘˜๐‘ฅ + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก

If considering only the dynamic part of the

reaction force-that is, only those forces created

by the motion ๐‘ฅ(๐‘ก) from its static equilibrium

position, then

๐น๐‘…๐‘‘ = ๐‘˜๐‘ฅ + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก

Vibrations 3.09 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

- Ex.3.1 Wind-drivenOscillationsaboutaSystemโ€™sStatic-EquilibriumPosition

The wind flow across civil structures typically generates a

excitation force ๐‘“(๐‘ก) on the structure that consists of a steady-

state part and a fluctuating part

๐‘“ ๐‘ก = ๐‘“๐‘ ๐‘  + ๐‘“๐‘‘(๐‘ก)

๐‘“๐‘ ๐‘  : the time-independent steady-state force

๐‘“๐‘‘(๐‘ก) : the fluctuating time-dependent portion of the force

A single dof model of the vibrating structure

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“๐‘ ๐‘  + ๐‘“๐‘‘ ๐‘ก โŸน ๐‘ฅ ๐‘ก = ๐‘ฅ0 + ๐‘ฅ๐‘‘(๐‘ก)

๐‘ฅ0 : the static equilibrium position, ๐‘ฅ0 = ๐‘“๐‘ ๐‘ /๐‘˜

๐‘ฅ๐‘‘(๐‘ก) : motions about the static position

โŸน ๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“๐‘‘ ๐‘ก

Vibrations 3.10 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

- Ex.3.2 EardrumOscillations:NonlinearOscillatorandLinearizedSystems

Determine the static-equilibrium positions of this system and

illustrate how the governing nonlinear equation can be

linearized to study oscillations local to an equilibrium position

Solution

The governing nonlinear equation

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘˜๐‘ฅ + ๐‘˜๐‘ฅ2 = 0

The restoring force of the eardrum has a component with a

quadratic nonlinearity

Static-Equilibrium Positions

Equilibrium positions ๐‘ฅ = ๐‘ฅ0 are solutions of the algebraic equation

๐‘˜ ๐‘ฅ0 + ๐‘ฅ02 = 0 โŸน ๐‘ฅ0 = 0, ๐‘ฅ0 = โˆ’1

Vibrations 3.11 Single DOF Systems: Governing Equations

(๐‘Ž)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Linearization

Equilibrium positions ๐‘ฅ = ๐‘ฅ0 are solutions of the algebraic equation

๐‘˜ ๐‘ฅ0 + ๐‘ฅ02 = 0 โŸน ๐‘ฅ0 = 0, ๐‘ฅ0 = โˆ’1

Subtitute ๐‘ฅ ๐‘ก = ๐‘ฅ0 + ๐‘ฅ(๐‘ก) into (a) with note that

๐‘ฅ2 ๐‘ก = ๐‘ฅ0 + ๐‘ฅ ๐‘ก2

โ‰ˆ ๐‘ฅ02 + 2๐‘ฅ0 ๐‘ฅ ๐‘ก + โ‹ฏ

๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 =๐‘‘2 ๐‘ฅ0 + ๐‘ฅ ๐‘ก

๐‘‘๐‘ก2 =๐‘‘2 ๐‘ฅ

๐‘‘๐‘ก2

โŸน ๐‘š๐‘‘2 ๐‘ฅ

๐‘‘๐‘ก2 + ๐‘˜ ๐‘ฅ0 + ๐‘ฅ(๐‘ก) + ๐‘˜ ๐‘ฅ02 + 2๐‘ฅ0 ๐‘ฅ ๐‘ก = 0

๐‘ฅ0 = 0 โŸน ๐‘š๐‘‘2 ๐‘ฅ

๐‘‘๐‘ก2 + ๐‘˜ ๐‘ฅ(๐‘ก) = 0

๐‘ฅ0 = โˆ’1 โŸน ๐‘š๐‘‘2 ๐‘ฅ

๐‘‘๐‘ก2 โˆ’ ๐‘˜ ๐‘ฅ(๐‘ก) = 0

โŸน the equations have different stiffness terms

Vibrations 3.12 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 3: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

3

ยง2.Force-Balance and Moment-Balance Methods

2. Moment-Balance Methods

For single dof systems that undergo rotational motion, the

moment balance method is useful in deriving the governing

equation

The angular momentum about the center of mass of the disc

๐ป = ๐ฝ๐บ ๐œƒ๐‘˜

โŸน ๐‘€ = ๐ฝ๐บ ๐œƒ๐‘˜

Vibrations 3.13 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

The governing equation of motion

๐‘€ ๐‘ก ๐‘˜ โˆ’ ๐‘˜๐‘ก ๐œƒ๐‘˜ โˆ’ ๐‘๐‘ก

๐‘‘๐œƒ

๐‘‘๐‘ก๐‘˜ โˆ’ ๐ฝ๐บ

๐‘‘2๐œƒ

๐‘‘๐‘ก2 = 0

โŸน ๐ฝ๐บ๐‘‘2๐œƒ

๐‘‘๐‘ก2 + ๐‘๐‘ก

๐‘‘๐œƒ

๐‘‘๐‘ก+ ๐‘˜๐‘ก๐œƒ = ๐‘€ ๐‘ก

Vibrations 3.14 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

All linear single dof vibratory systems are governed by a linear

second-order ordinary differential equation with an inertia term,

a stiffness term, a damping term, and a term related to the

external forcing imposed on the system

โ€ข Translational motion

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก

โ€ข Rotational motion

๐ฝ๐บ๐‘‘2๐œƒ

๐‘‘๐‘ก2 + ๐‘๐‘ก

๐‘‘๐œƒ

๐‘‘๐‘ก+ ๐‘˜๐‘ก๐œƒ = ๐‘€ ๐‘ก

Vibrations 3.15 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Ex.3.3 Hand Biomechanics

The moment balance about

point ๐‘‚

๐‘€ โˆ’ ๐ฝ0 ๐œƒ๐‘˜ = 0

๐ฝ0: the rotary inertia of the

forearm and the object

held in the hand

The net moment ๐‘€ acting

about the point ๐‘‚ due to gravity loading and the forces due to

the biceps and triceps

๐‘€ = โˆ’๐‘€๐‘”๐‘™๐‘๐‘œ๐‘ ๐œƒ๐‘˜ โˆ’ ๐‘š๐‘”๐‘™

2๐‘๐‘œ๐‘ ๐œƒ๐‘˜ + ๐น๐‘๐‘Ž๐‘˜ โˆ’ ๐น๐‘ก๐‘Ž๐‘˜

โŸน โˆ’๐‘€๐‘”๐‘™๐‘๐‘œ๐‘ ๐œƒ๐‘˜ โˆ’ ๐‘š๐‘”๐‘™

2๐‘๐‘œ๐‘ ๐œƒ๐‘˜ + ๐น๐‘๐‘Ž๐‘˜ โˆ’ ๐ฝ0 ๐œƒ๐‘˜ = 0

Vibrations 3.16 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

โˆ’๐‘€๐‘”๐‘™๐‘๐‘œ๐‘ ๐œƒ๐‘˜ โˆ’ ๐‘š๐‘”๐‘™

2๐‘๐‘œ๐‘ ๐œƒ๐‘˜ + ๐น๐‘๐‘Ž๐‘˜ โˆ’ ๐ฝ0 ๐œƒ๐‘˜ = 0

Note that: ๐น๐‘ = โˆ’๐‘˜๐‘๐œƒ, ๐น๐‘ก = ๐พ๐‘ก๐‘ฃ = ๐พ๐‘ก๐‘Ž ๐œƒ, ๐น0 = ๐‘š๐‘™2/3 + ๐‘€๐‘™2

โŸน ๐‘€ +๐‘š

3๐‘™2 ๐œƒ + ๐พ๐‘ก๐‘Ž

2 ๐œƒ + ๐‘˜๐‘๐‘Ž๐œƒ + ๐‘€ +๐‘š

2๐‘”๐‘™๐‘๐‘œ๐‘ ๐œƒ = 0

Static-Equilibrium Position

The equilibrium position ๐œƒ = ๐œƒ0 is a solution of the

transcendental equation

๐‘˜๐‘๐‘Ž๐œƒ0 + ๐‘€ +๐‘š

2๐‘”๐‘™๐‘๐‘œ๐‘ ๐œƒ0 = 0

Vibrations 3.17 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง2.Force-Balance and Moment-Balance Methods

Linear System Governing โ€œSmallโ€ Oscillations about the Static-

Equilibrium Position

Consider oscillations about the static-equilibrium position and

expand the angular variable ๐œƒ ๐‘ก = ๐œƒ0 + ๐œƒ ๐‘ก with note that

๐‘๐‘œ๐‘ ๐œƒ = cos ๐œƒ0 + ๐œƒ โ‰ˆ ๐‘๐‘œ๐‘ ๐œƒ0 โˆ’ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ0 + โ‹ฏ

๐‘‘๐œƒ(๐‘ก)

๐‘‘๐‘ก=

๐‘‘(๐œƒ0 + ๐œƒ)

๐‘‘๐‘ก= ๐œƒ(๐‘ก)

๐‘‘2๐œƒ(๐‘ก)

๐‘‘๐‘ก2 =๐‘‘2(๐œƒ0 + ๐œƒ)

๐‘‘๐‘ก2 = ๐œƒ(๐‘ก)

โŸน ๐‘€ +๐‘š

3๐‘™2 ๐œƒ + ๐พ๐‘ก๐‘Ž

2 ๐œƒ + ๐‘˜๐‘’ ๐œƒ = 0

where

๐‘˜๐‘’ = ๐‘˜๐‘๐‘Ž โˆ’ ๐‘€ +๐‘š

2๐‘”๐‘™๐‘ ๐‘–๐‘›๐œƒ0

Vibrations 3.18 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 4: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

4

ยง3.Natural Frequency and Damping Factor

1.Natural Frequency

Translation Vibrations: Natural Frequency

๐œ”๐‘› = 2๐œ‹๐‘“๐‘› =๐‘˜

๐‘š(๐‘Ÿ๐‘Ž๐‘‘/๐‘ )

๐‘˜ : the stiffness of the system, ๐‘/๐‘š

๐‘š : the system mass, ๐‘˜๐‘”

๐‘“๐‘› : the natural frequency, ๐ป๐‘ง

For the mass-damper-spring system

๐œ”๐‘› = 2๐œ‹๐‘“๐‘› =๐‘”

๐›ฟ๐‘ ๐‘ก(๐‘Ÿ๐‘Ž๐‘‘/๐‘ )

๐›ฟ๐‘ ๐‘ก: the static deflection of the system, ๐‘š

Vibrations 3.19 Single DOF Systems: Governing Equations

(3.15)

(3.14)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Rotational Vibrations: Natural Frequency

๐œ”๐‘› = 2๐œ‹๐‘“๐‘› =๐‘˜๐‘ก

๐ฝ(๐‘Ÿ๐‘Ž๐‘‘/๐‘ )

๐‘˜๐‘ก : the torsion stiffness of the system, ๐‘๐‘š/๐‘Ÿ๐‘Ž๐‘‘

๐ฝ : the system mass, ๐‘˜๐‘”๐‘š/๐‘ 2

๐‘“๐‘› : the natural frequency, ๐ป๐‘ง

Period of Undamped Free Oscillations

For an unforced and undamped system, the period of free

oscillation of the system is given by

๐‘‡ =1

๐‘“๐‘›=

2๐œ‹

๐œ”๐‘›

Vibrations 3.20 Single DOF Systems: Governing Equations

(3.16)

(3.17)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐œ”๐‘› = 2๐œ‹๐‘“๐‘› =๐‘”

๐›ฟ๐‘ ๐‘ก(๐‘Ÿ๐‘Ž๐‘‘/๐‘ ) (3.15)

ยง3.Natural Frequency and Damping Factor

Ex.3.4 Natural Frequency from Static Deflection of a Machine System

The static deflections of a machinery are found to be 0.1, 1,

10(๐‘š๐‘š). Determine the natural frequency for vertical vibrations

Solution

๐‘“๐‘›1 =1

2๐œ‹

๐‘”

๐›ฟ๐‘ ๐‘ก1=

1

2๐œ‹

9.81

0.1 ร— 10โˆ’3 = 49.85๐ป๐‘ง

๐‘“๐‘›2 =1

2๐œ‹

๐‘”

๐›ฟ๐‘ ๐‘ก2=

1

2๐œ‹

9.81

1 ร— 10โˆ’3 = 15.76๐ป๐‘ง

๐‘“๐‘›3 =1

2๐œ‹

๐‘”

๐›ฟ๐‘ ๐‘ก3=

1

2๐œ‹

9.81

10 ร— 10โˆ’3 = 4.98๐ป๐‘ง

Vibrations 3.21 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

- Ex.3.5 Static Deflection and Natural Frequency of the Tibia

Bone in a Human Leg

Consider a person of 100๐‘˜๐‘” mass standing upright. The tibia

has a length of 40๐‘๐‘š, and it is modeled as a hollow tube with an

inner diameter of 2.4๐‘๐‘š and an outer diameter of 3.4๐‘๐‘š. The

Youngโ€™s modulus of elasticity of the bone material is 2 ร—1010๐‘/๐‘š2. Determine the static deflection in the tibia bone and

an estimate of the natural frequency of axial vibrations

Solution

Assume that both legs support the weight of the person

equally, so that the weight supported by the tibia

๐‘š๐‘” = 100/2 ร— 9.81 = 490.5๐‘

Vibrations 3.22 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐œ”๐‘› = 2๐œ‹๐‘“๐‘› =๐‘”

๐›ฟ๐‘ ๐‘ก(๐‘Ÿ๐‘Ž๐‘‘/๐‘ ) (3.15)

ยง3.Natural Frequency and Damping Factor

The stiffness of the tibia

๐‘˜ =๐ด๐ธ

๐ฟ=

1 ร— 1010 ร—๐œ‹4

3.4 ร— 10โˆ’2 2 โˆ’ 2.4 ร— 10โˆ’2 2

40 ร— 10โˆ’2

= 22.78 ร— 106๐‘/๐‘š2

The static deflection

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜=

490.5

22.78 ร— 106 = 21.53 ร— 10โˆ’6๐‘š

The natural frequency

๐‘“๐‘› =1

2๐œ‹

๐‘”

๐›ฟ๐‘ ๐‘ก=

1

2๐œ‹

9.81

21.53 ร— 10โˆ’6 = 107.4๐ป๐‘ง

Vibrations 3.23 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Ex.3.6 System with A Constant Natural Frequency

Examine how the spring-mounting system can be designed and

discuss a realization of this spring in practice

Solution

In order to realize the desired objective of constant natural

frequency regardless of the system weight, we need a

nonlinear spring whose equivalent spring constant is given by

๐‘˜ = ๐ด๐‘Š

๐ด: a constant, ๐‘Š = ๐‘š๐‘”: the weight, ๐‘”: the gravitational constant

The natural frequency

๐‘“๐‘› =1

2๐œ‹

๐‘˜

๐‘š=

1

2๐œ‹

๐‘˜๐‘”

๐‘Š=

1

2๐œ‹๐ด๐‘”๐ป๐‘ง

โŸน ๐‘“๐‘› is constant irrespective of the weight of the mass

Vibrations 3.24 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 5: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

5

ยง3.Natural Frequency and Damping Factor

Nonlinear Spring Mounting

When the side walls of a rubber cylindrical tube are

compressed into the nonlinear region, the equivalent spring

stiffness of this system approximates the characteristic given

by ๐‘˜ = ๐ด๐‘Š

For illustrative purposes, consider a spring that has the

general force-displacement relationship

๐น ๐‘ฅ = ๐‘Ž๐‘ฅ

๐‘

๐‘

๐‘Ž, ๐‘: scale factors, ๐‘: shape factor

The static deflection

๐‘ฅ0 = ๐‘๐‘Š

๐‘Ž

1/๐‘

Vibrations 3.25 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

For โ€œsmallโ€ amplitude vibrations about ๐‘ฅ0, the linear equivalent

stiffness of this spring is determined

๐‘˜๐‘’๐‘ž = ๐‘‘๐น(๐‘ฅ)

๐‘‘๐‘ฅ๐‘ฅ=๐‘ฅ0

=๐‘Ž๐‘

๐‘

๐‘ฅ๐‘œ

๐‘

๐‘โˆ’1

=๐‘Ž๐‘

๐‘

๐‘Š

๐‘

๐‘โˆ’1๐‘

The natural frequency of this system

๐‘“๐‘› =1

2๐œ‹

๐‘˜๐‘’๐‘ž

๐‘Š/๐‘”

=1

2๐œ‹

๐‘”๐‘

๐‘

๐‘Š

๐‘Ž

โˆ’1/๐‘

=1

2๐œ‹

๐‘”๐‘

๐‘

๐‘Š

๐‘Ž

โˆ’1/2๐‘

๐ป๐‘ง

Vibrations 3.26 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Representative Spring Data

Consider the representative data of a

nonlinear spring shown in the figure

Using lsqcurvefit in Matlab to identify

๐‘Ž = 2500๐‘, ๐‘ = 0.011๐‘š, ๐‘ = 2.77

โŸน ๐‘“๐‘› =1

2๐œ‹

๐‘”๐‘

๐‘

๐‘Š

๐‘Ž

โˆ’1/2๐‘

= 32.4747๐‘Šโˆ’1/3.54๐ป๐‘ง

Plot ๐‘“๐‘›(๐‘Š)

Vibrations 3.27 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Representative Spring Data

From the figure of ๐‘“๐‘›(๐‘Š)

โ€ข over a sizable portion of the load

range, the natural frequency of the

system varies within the range of 8.8%

โ€ข The natural frequency of a system with

a linear spring whose static

displacement ranges from 12 รท 5๐‘š๐‘švaries approximately from 4.5 รท 7.0๐ป๐‘งor approximately 22% about a

frequency of 5.8๐ป๐‘ง

1

2๐œ‹

9.8

0.012โ‰ˆ 4.5๐ป๐‘ง,

1

2๐œ‹

9.8

0.005โ‰ˆ 7๐ป๐‘ง

of 5.8 Hz

Vibrations 3.28 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

2.Damping Factor

Translation Vibrations: Damping Factor

For translating single dof systems, the damping factor or

damping ratio ๐œ‰ is defined as

๐œ‰ =๐‘

2๐‘š๐œ”๐‘›=

๐‘

2 ๐‘˜๐‘š=

๐‘๐œ”๐‘›

2๐‘˜

๐‘: the system damping coefficient, ๐‘๐‘ /๐‘š

๐‘˜: the system stiffness, ๐‘/๐‘š

๐‘š: the system mass, ๐‘˜๐‘”

Critical Damping, Underdamping, and Overdamping

Defining the critical damping ๐‘๐‘

๐‘๐‘ = 2๐‘š๐œ”๐‘› = 2 ๐‘˜๐‘š, ๐œ‰ = ๐‘/๐‘๐‘ (3.19)

0 < ๐œ‰ < 1: underdamped,๐œ‰ > 1: overdamped,๐œ‰ = 1: criticallydamped

Vibrations 3.29 Single DOF Systems: Governing Equations

(3.18)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Rotational Vibrations: Damping Factor

For rotating single dof systems, the damping factor or damping

ratio ๐œ‰ is defined as

๐œ‰ =๐‘๐‘ก

2๐ฝ๐œ”๐‘›=

๐‘๐‘ก

2 ๐‘˜๐‘ก๐ฝ

๐‘๐‘ก: the system damping coefficient, ๐‘๐‘š๐‘ /๐‘Ÿ๐‘Ž๐‘‘

๐‘˜๐‘ก: the system stiffness, ๐‘๐‘š/๐‘Ÿ๐‘Ž๐‘‘

๐ฝ: the system moment of inertia, ๐‘˜๐‘”๐‘š2

Vibrations 3.30 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 6: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

6

ยง3.Natural Frequency and Damping Factor

Governing Equation of Motion in Terms of Natural Frequency

and Damping Factor

Rewriting the equation of motion

๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + 2๐œ‰๐œ”๐‘›

๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐œ”๐‘›

2๐‘ฅ =๐‘“(๐‘ก)

๐‘šIf we introduce the dimensionless time ๐œ = ๐œ”๐‘›๐‘ก , then the

equation can be written

๐‘‘2๐‘ฅ

๐‘‘๐œ2 + 2๐œ‰๐‘‘๐‘ฅ

๐‘‘๐œ+ ๐‘ฅ =

๐‘“(๐œ)

๐‘˜

Vibrations 3.31 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

- Ex.3.7 Effect of Mass on the Damping Factor

A system is initially designed to be critically damped - that is,

with a damping factor of ๐œ‰ = 1. Due to a design change, the

mass of the system is increased 20% - that is, from ๐‘š to 1.2๐‘š.

Will the system still be critically damped if the stiffness and the

damping coefficient of the system are kept the same?

Solution

The damping factor of the system after the design change

๐œ‰๐‘›๐‘’๐‘ค =๐‘

2 ๐‘˜(1.2๐‘š)= 0.91

๐‘

2 ๐‘˜๐‘š= 0.91

๐‘

๐‘๐‘= 0.91

โŸน The system with the increased mass is no longer critically

damped; rather, it is now underdamped

Vibrations 3.32 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

- Ex.3.8 Effects of System Parameters on the Damping Ratio

An engineer finds that a single dof system with mass ๐‘š ,

damping ๐‘, and spring constant ๐‘˜ has too much static deflection

๐›ฟ๐‘ ๐‘ก. The engineer would like to decrease ๐›ฟ๐‘ ๐‘ก by a factor of 2,

while keeping the damping ratio constant. Determine the

different options

Solution

The problem involves vertical vibrations

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜

2๐œ‰ =๐‘

๐‘š

๐›ฟ๐‘ ๐‘ก

๐‘”= ๐‘

๐›ฟ๐‘ ๐‘ก

๐‘”๐‘š2 =1

๐‘š

๐‘2๐›ฟ๐‘ ๐‘ก

๐‘”

โŸน there are three ways that one can achieve the goal

Vibrations 3.33 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

First choice

Let ๐‘ remain constant, reduce ๐›ฟ๐‘ ๐‘ก by one-half

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜

๐›ฟ๐‘ ๐‘กโ€ฒ =

๐›ฟ๐‘ ๐‘ก

2=

๐‘š๐‘”

2๐‘˜=

๐‘šโ€ฒ๐‘”

๐‘˜โ€ฒComparing (a) and (b)

๐‘šโ€ฒ๐‘”

๐‘˜โ€ฒ=

๐‘š๐‘”

2๐‘˜=

๐‘š/ 2 ๐‘”

๐‘˜ 2โŸน ๐‘š โ†’ ๐‘šโ€ฒ =

๐‘š

2, ๐‘˜ โ†’ ๐‘˜โ€ฒ = ๐‘˜ 2

Check the damping ratio

2๐œ‰โ€ฒ = ๐‘๐›ฟโ€ฒ

๐‘ ๐‘ก

๐‘”๐‘šโ€ฒ2 = ๐‘๐›ฟ๐‘ ๐‘ก

2๐‘” ๐‘š/ 22 = ๐‘

๐›ฟ๐‘ ๐‘ก

๐‘”๐‘š2 = 2๐œ‰

Vibrations 3.34 Single DOF Systems: Governing Equations

Before (a)

After (b)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Second choice

Let ๐‘š remain constant, reduce ๐›ฟ๐‘ ๐‘ก by one-half

2๐œ‰ = ๐‘๐›ฟ๐‘ ๐‘ก

๐‘”๐‘š2 =1

๐‘š

๐‘2๐›ฟ๐‘ ๐‘ก

๐‘”

2๐œ‰โ€ฒ =1

๐‘š

๐‘โ€ฒ2๐›ฟ๐‘ ๐‘กโ€ฒ

๐‘”=

1

๐‘š

๐‘โ€ฒ2๐›ฟ๐‘ ๐‘ก

2๐‘”

Comparing (c) and (d)

๐‘โ€ฒ2

2= ๐‘2 โŸน ๐‘ โ†’ ๐‘โ€ฒ = ๐‘ 2

The static deflection

๐›ฟ๐‘ ๐‘กโ€ฒ =

๐‘š๐‘”

๐‘˜โ€ฒ=

๐›ฟ๐‘ ๐‘ก

2=

๐‘š๐‘”

2๐‘˜โŸน ๐‘˜ โ†’ ๐‘˜โ€ฒ = 2๐‘˜

Vibrations 3.35 Single DOF Systems: Governing Equations

Before (c)

After (d)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง3.Natural Frequency and Damping Factor

Third choice

Let ๐‘˜ remain constant, reduce ๐›ฟ๐‘ ๐‘ก by one-half

๐›ฟ๐‘ ๐‘ก =๐‘š๐‘”

๐‘˜

๐›ฟ๐‘ ๐‘กโ€ฒ =

๐›ฟ๐‘ ๐‘ก

2=

๐‘š๐‘”

2๐‘˜=

๐‘šโ€ฒ๐‘”

๐‘˜Comparing (e) and (f)

๐‘šโ€ฒ =๐‘š

2โŸน ๐‘š โ†’ ๐‘šโ€ฒ =

๐‘š

2The constant damping ratio

2๐œ‰โ€ฒ = ๐‘โ€ฒ๐›ฟโ€ฒ

๐‘ ๐‘ก

๐‘”๐‘šโ€ฒ2 = ๐‘โ€ฒ๐›ฟ๐‘ ๐‘ก

2๐‘” ๐‘š/2 2 = ๐‘โ€ฒ2๐›ฟ๐‘ ๐‘ก

๐‘”๐‘š2 = ๐‘๐›ฟ๐‘ ๐‘ก

๐‘”๐‘š2 = 2๐œ‰

โŸน ๐‘ โ†’ ๐‘โ€ฒ = ๐‘ 2

Vibrations 3.36 Single DOF Systems: Governing Equations

Before (e)

After (f)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 7: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

7

๐น ๐‘ฅ = ๐œ‡๐‘š๐‘”๐‘ ๐‘”๐‘›( ๐‘ฅ) (2.52)

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก (3.8)

ยง4.Governing Equations for Different Type of Damping

The governing equations of motion for systems with different

types of damping are obtained by replacing the term

corresponding to the force due to viscous damping with the force

due to either the fluid, structural, or dry friction type damping

Coulomb or Dry Friction Damping

Using Eq. (2.52) and Eq. (3.8), the governing equation of motion

takes the form

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐œ‡๐‘š๐‘”๐‘ ๐‘”๐‘›( ๐‘ฅ) = ๐‘“(๐‘ก)

which is a nonlinear equation because the damping

characteristic is piecewise linear

Vibrations 3.37 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘›๐‘œ๐‘›๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘Ÿ๐‘ฆ ๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’

๐น ๐‘ฅ = ๐‘๐‘‘ ๐‘ฅ2๐‘ ๐‘”๐‘› ๐‘ฅ = ๐‘๐‘‘| ๐‘ฅ| ๐‘ฅ (2.54)

๐น = ๐‘˜๐œ‹๐›ฝโ„Ž๐‘ ๐‘”๐‘› ๐‘ฅ |๐‘ฅ| (2.57)

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก (3.8)

ยง4.Governing Equations for Different Type of Damping

Fluid Damping

Using Eq. (2.54) and Eq. (3.8), the governing equation of motion

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘| ๐‘ฅ| ๐‘ฅ + ๐‘˜๐‘ฅ = ๐‘“(๐‘ก)

which is a nonlinear equation due to the nature of the damping

Structural Damping

Using Eq. (2.57) and Eq. (3.8), the governing equation of motion

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘˜๐œ‹๐›ฝโ„Ž๐‘ ๐‘”๐‘› ๐‘ฅ |๐‘ฅ| + ๐‘˜๐‘ฅ = ๐‘“(๐‘ก)

Vibrations 3.38 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘›๐‘œ๐‘›๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘Ž๐‘š๐‘๐‘–๐‘›๐‘” ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’

ยง5.Governing Equations for Different Type of Applied Forces

1.System with Base excitation

- The base-excitation model is a prototype that is useful for studying

โ€ข buildings subjected to earthquakes

โ€ข packaging during transportation

โ€ข vehicle response, and

โ€ข designing accelerometers

- The physical system of interest is represented by a single dof

system whose base is subjected to a displacement

disturbance ๐‘ฆ(๐‘ก), and an equation governing the motion of

this system is sought to determine the response of the

system ๐‘ฅ(๐‘ก)

Vibrations 3.39 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

- A prototype of a single dof system subjected to a base excitation

โ€ข The vehicle provides the base excitation ๐‘ฆ(๐‘ก) to the

instrumentation package modeled as a single dof

โ€ข The displacement response ๐‘ฅ(๐‘ก) is measured from the

systemโ€™s static-equilibrium position

Assume that no external force is applied directly to the mass;

that is, ๐‘“ ๐‘ก = 0

Vibrations 3.40 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

- The following governing equation of motion

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘

๐‘‘๐‘ฆ

๐‘‘๐‘ก+ ๐‘˜๐‘ฆ

โŸน ๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + 2๐œ‰๐œ”๐‘›

๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐œ”๐‘›

2๐‘ฅ = 2๐œ‰๐œ”๐‘›

๐‘‘๐‘ฆ

๐‘‘๐‘ก+ ๐œ”๐‘›

2๐‘ฆ

๐‘ฆ(๐‘ก) and ๐‘ฅ(๐‘ก) are measured from a fixed point ๐‘‚ located in an

inertial reference frame and a fixed point located at the

systemโ€™s static equilibrium position, respectively

Vibrations 3.41 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

- If the relative displacement is desired, the governing equation

of motion

๐‘š๐‘‘2๐‘ง

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ง

๐‘‘๐‘ก+ ๐‘˜๐‘ง = โˆ’๐‘š

๐‘‘2๐‘ฆ

๐‘‘๐‘ก2

with ๐‘ง ๐‘ก โ‰ก ๐‘ฅ ๐‘ก โˆ’ ๐‘ฆ(๐‘ก)

โŸน๐‘‘2๐‘ง

๐‘‘๐‘ก2 + 2๐œ‰๐œ”๐‘›

๐‘‘๐‘ง

๐‘‘๐‘ก+ ๐œ”๐‘›

2๐‘ง = โˆ’๐‘‘2๐‘ฆ

๐‘‘๐‘ก2

Vibrations 3.42 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 8: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

8

ยง5.Governing Equations for Different Type of Applied Forces

2.System with Unbalanced Rotating Mass

- Assume that the unbalance generates a force that acts on the

systemโ€™s mass. This force, in turn, is transmitted through the

spring and damper to the fixed base

- The unbalance is modeled as a mass ๐‘š0 that rotates with an

angular speed ๐œ”, and this mass is located a fixed distance ๐‘’from the center of rotation

Vibrations 3.43 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

- From the free-body diagram (FBD) of the unbalanced mass ๐‘š0

๐‘๐‘ฅ = โˆ’๐‘š0( ๐‘ฅ โˆ’ ๐œ–๐œ”2๐‘ ๐‘–๐‘›๐œ”๐‘ก)

๐‘๐‘ฆ = ๐‘š0๐œ–๐œ”2๐‘๐‘œ๐‘ ๐œ”๐‘ก

- From the FBD of mas ๐‘€

๐‘€๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘๐‘ฅ

โŸน (๐‘€ + ๐‘š0)๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘š0๐œ–๐œ”

2๐‘ ๐‘–๐‘›๐œ”๐‘ก

โŸน๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + 2๐œ‰๐œ”๐‘›

๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐œ”๐‘›

2๐‘ฅ =๐น(๐œ”)

๐‘š๐‘ ๐‘–๐‘›๐œ”๐‘ก

where ๐‘š = ๐‘€ + ๐‘š0, ๐œ”๐‘› = ๐‘˜/๐‘š, ๐น ๐œ” = ๐‘š0๐œ–๐œ”2

- The static displacement of the spring

๐›ฟ๐‘ ๐‘ก =๐‘€ + ๐‘š0 ๐‘”

๐‘˜=

๐‘š๐‘”

๐‘˜

Vibrations 3.44 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

3.System with Added Mass Due to a Fluid

- The equation of motion of the system

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก + ๐‘“1(๐‘ก)

๐‘ฅ(๐‘ก) : measured from the unstretched position of the spring

๐‘“(๐‘ก) : the externally applied force

๐‘“1(๐‘ก) : the force exerted by the fluid on the mass due to the

motion of the mass

Vibrations 3.45 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง5.Governing Equations for Different Type of Applied Forces

- The force generated by the fluid on the rigid body

๐‘“1 ๐‘ก = โˆ’๐พ0๐‘€๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 โˆ’ ๐ถ๐‘“

๐‘‘๐‘ฅ

๐‘‘๐‘ก

๐‘€ : the mass of the fluid displaced by the body

๐พ0 : an added mass coefficient

๐ถ๐‘“ : a positive fluid damping coefficient

- The governing equation of motion

๐‘š + ๐พ0๐‘€๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐ถ๐‘“

๐‘‘๐‘ฅ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“ ๐‘ก

๐พ0๐‘€ : the added mass due to the fluid

Vibrations 3.46 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Consider a system with ๐‘ degrees of freedom that is described

by a set of ๐‘ generalized coordinates ๐‘ž๐‘– , ๐‘– = 1,2,โ€ฆ๐‘. In terms

of the chosen generalized coordinates, Lagrangeโ€™s equations

have the form

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ž๐‘—โˆ’

๐œ•๐‘‡

๐œ•๐‘ž๐‘—+

๐œ•๐ท

๐œ• ๐‘ž๐‘—+

๐œ•๐‘‰

๐œ•๐‘ž๐‘—= ๐‘„๐‘— , ๐‘— = 1,2,โ€ฆ , ๐‘

๐‘ž๐‘— : generalized coordinate

๐‘ž๐‘— : generalized velocity

๐‘‡ : the kinetic energy of the system

๐‘‰ : the potential energy of the system

๐ท : the Rayleigh dissipation function

๐‘„๐‘— : the generalized force that appears in the ๐‘—๐‘กโ„Ž equation

Vibrations 3.47 Single DOF Systems: Governing Equations

(3.41)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The generalized force ๐‘„๐‘— that appears in the ๐‘—๐‘กโ„Ž equation

๐‘„๐‘— =

๐‘™

๐น๐‘™

๐œ• ๐‘Ÿ๐‘™๐œ•๐‘ž๐‘—

+

๐‘™

๐‘€๐‘™

๐œ•๐œ”๐‘™

๐œ• ๐‘ž๐‘—

๐น๐‘™, ๐‘€๐‘™ : the vector representations of the externally

applied forces and moments on the ๐‘™๐‘กโ„Ž body

๐‘Ÿ๐‘™ : the position vector to the location where the force

๐น๐‘™ is applied

๐œ”๐‘™ : the ๐‘™๐‘กโ„Ž bodyโ€™s angular velocity about the axis

along which the considered moment is applied

Vibrations 3.48 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 9: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

9

ยง6.Lagrangeโ€™s Equations

Linear Vibratory Systems

For vibratory systems with linear characteristics

๐‘‡ =1

2

๐‘—=1

๐‘

๐‘›=1

๐‘

๐‘š๐‘—๐‘› ๐‘ž๐‘— ๐‘ž๐‘›

๐‘‰ =1

2

๐‘—=1

๐‘

๐‘›=1

๐‘

๐‘˜๐‘—๐‘›๐‘ž๐‘—๐‘ž๐‘›

๐ท =1

2

๐‘—=1

๐‘

๐‘›=1

๐‘

๐‘๐‘—๐‘› ๐‘ž๐‘— ๐‘ž๐‘›

๐‘š๐‘—๐‘› : the inertia coefficients

๐‘˜๐‘—๐‘› : the stiffness coefficients

๐‘๐‘—๐‘› : the damping coefficients

Vibrations 3.49 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Single Degree-Of-Freedom

The case of a single degree-of-freedom system, ๐‘ = 1, the

Lagrangeโ€™s equation

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ž1โˆ’

๐œ•๐‘‡

๐œ•๐‘ž1+

๐œ•๐ท

๐œ• ๐‘ž1+

๐œ•๐‘‰

๐œ•๐‘ž1= ๐‘„1

where the generalized force is obtained from

๐‘„1 =

๐‘™

๐น๐‘™

๐œ• ๐‘Ÿ๐‘™๐œ•๐‘ž1

+

๐‘™

๐‘€๐‘™

๐œ•๐œ”๐‘™

๐œ• ๐‘ž1

Vibrations 3.50 Single DOF Systems: Governing Equations

(3.44)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Linear Single Degree-Of-Freedom Systems

The expressions for the system kinetic energy, the system

potential energy, and the system dissipation function reduce to

๐‘‡ =1

2

๐‘—=1

1

๐‘›=1

1

๐‘š๐‘—๐‘› ๐‘ž๐‘— ๐‘ž๐‘› =1

2๐‘š11 ๐‘ž1

2 โ‰ก1

2๐‘š๐‘’ ๐‘ž1

2

๐‘‰ =1

2

๐‘—=1

1

๐‘›=1

1

๐‘˜๐‘—๐‘›๐‘ž๐‘—๐‘ž๐‘› =1

2๐‘˜11๐‘ž1

2 โ‰ก1

2๐‘˜๐‘’๐‘ž1

2

๐ท =1

2

๐‘—=1

1

๐‘›=1

1

๐‘๐‘—๐‘› ๐‘ž๐‘— ๐‘ž๐‘› =1

2๐‘11 ๐‘ž1

2 โ‰ก1

2๐‘๐‘’ ๐‘ž1

2

๐‘š๐‘’, ๐‘˜๐‘’, ๐‘๐‘’ : the equivalent mass, stiffness, and damping

From Lagrangeโ€™s equation

๐‘š๐‘’ ๐‘ž1 + ๐‘๐‘’ ๐‘ž1 + ๐‘˜๐‘’๐‘ž1 = ๐‘„1

Vibrations 3.51 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

(3.46)

ยง6.Lagrangeโ€™s Equations

To obtain the governing equation of motion of a linear vibrating

system with viscous damping

โ€ข Obtains expressions for the system kinetic energy ๐‘‡ ,

system potential energy ๐‘‰, and system dissipation function ๐ท

โ€ข Identify the equivalent mass ๐‘š๐‘’, equivalent stiffness ๐‘˜๐‘’,

and equivalent damping ๐‘๐‘’

โ€ข Determine the generalized force

โ€ข Apply the governing equation

๐‘š๐‘’ ๐‘ž1 + ๐‘๐‘’ ๐‘ž1 + ๐‘˜๐‘’๐‘ž1 = ๐‘„1

โ€ข Determine the system natural frequency

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’, ๐œ‰ =

๐‘๐‘’

2๐‘š๐‘’๐œ”๐‘›=

๐‘๐‘’

2 ๐‘˜๐‘’๐‘š๐‘’

Vibrations 3.52 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.9 Motion of A Linear Single Degree-Of-Freedom System

Obtain the governing equation for the mass-damper-spring

system

Solution

Identify the following

๐‘ž1 = ๐‘ฅ, ๐น๐‘™ = ๐‘“(๐‘ก) ๐‘—, ๐‘Ÿ๐‘™ = ๐‘ฅ ๐‘—, ๐‘€๐‘™ = 0

Determine the generalized force

๐‘„1 =

๐‘™

๐น๐‘™

๐œ• ๐‘Ÿ๐‘™๐œ•๐‘ž1

+ 0 = ๐‘“ ๐‘ก ๐‘—๐œ•๐‘ฅ ๐‘—

๐œ•๐‘ฅ= ๐‘“(๐‘ก)

The system kinetic energy ๐‘‡, system potential energy ๐‘‰, and

system dissipation function ๐ท

๐‘‡ =1

2๐‘š ๐‘ฅ2, ๐‘‰ =

1

2๐‘˜๐‘ฅ2, ๐ท =

1

2๐‘ ๐‘ฅ2

Vibrations 3.53 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Identify the following

๐‘ž1 = ๐‘ฅ, ๐น๐‘™ = ๐‘“(๐‘ก) ๐‘—, ๐‘Ÿ๐‘™ = ๐‘ฅ ๐‘—, ๐‘€๐‘™ = 0

Determine the generalized force

๐‘„1 =

๐‘™

๐น๐‘™

๐œ• ๐‘Ÿ๐‘™๐œ•๐‘ž1

+ 0 = ๐‘“ ๐‘ก ๐‘—๐œ•๐‘ฅ ๐‘—

๐œ•๐‘ฅ= ๐‘“(๐‘ก)

The system kinetic energy ๐‘‡, system potential energy

๐‘‰, and system dissipation function ๐ท

๐‘‡ =1

2๐‘š ๐‘ฅ2, ๐‘‰ =

1

2๐‘˜๐‘ฅ2, ๐ท =

1

2๐‘ ๐‘ฅ2

โŸน ๐‘š๐‘’ = ๐‘š, ๐‘˜๐‘’ = ๐‘˜, ๐‘๐‘’ = ๐‘

The governing equation

๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฆ

๐‘‘๐‘ก+ ๐‘˜๐‘ฅ = ๐‘“(๐‘ก)

Vibrations 3.54 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 10: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

10

ยง6.Lagrangeโ€™s Equations

- Ex.3.10 Motion of A System that Translates and Rotates

Obtain the governing equation of motion for โ€œsmallโ€ oscillations

about the upright position

Solution

Choose the generalized coordinate

๐‘ž1 = ๐œƒ, ๐น๐‘™ = 0, ๐‘€๐‘™ = ๐‘€ ๐‘ก ๐‘˜, ๐œ”๐‘™ = ๐œƒ๐‘˜

The generalized force

๐‘„1 =

๐‘™

๐‘€๐‘™ โˆ™๐œ•๐œ”๐‘™

๐œ• ๐‘ž1= ๐‘€ ๐‘ก ๐‘˜ โˆ™

๐œ• ๐œƒ๐‘˜

๐œ• ๐œƒ= ๐‘€(๐‘ก)

Vibrations 3.55 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐ฝ๐บ =1

2๐‘š๐‘Ÿ2

ยง6.Lagrangeโ€™s Equations

The potential energy

๐‘‰ =1

2๐‘˜๐‘ฅ2 =

1

2๐‘˜(๐‘Ÿ๐œƒ)2=

1

2๐‘˜๐‘Ÿ2๐œƒ2

โŸน the equivalent stiffness

The kinetic energy of the system

๐‘‡ =1

2๐‘š ๐‘ฅ2 +

1

2๐ฝ๐บ ๐œƒ2

โŸน ๐‘‡ =1

2๐‘š๐‘Ÿ2 + ๐ฝ๐บ ๐œƒ2 =

1

2

3

2๐‘š๐‘Ÿ2 ๐œƒ2

โŸน the equivalent mass of the system

Vibrations 3.56 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ

๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘˜๐‘–๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ

๐‘˜๐‘’ = ๐‘˜๐‘Ÿ2

๐‘š๐‘’ =3

2๐‘š๐‘Ÿ2

ยง6.Lagrangeโ€™s Equations

The dissipation function

๐ท =1

2๐‘ ๐‘ฅ2 =

1

2๐‘(๐‘Ÿ ๐œƒ)2=

1

2(๐‘๐‘Ÿ2) ๐œƒ2

โŸน the equivalent damping coefficient

๐‘๐‘’ = ๐‘๐‘Ÿ2

The governing equation of motion3

2๐‘š๐‘Ÿ2 ๐œƒ + ๐‘๐‘Ÿ2 ๐œƒ + ๐‘˜๐‘Ÿ2๐œƒ = ๐‘€(๐‘ก)

Natural frequency and damping factor

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’=

๐‘˜๐‘Ÿ2

3๐‘š๐‘Ÿ2/2=

2๐‘˜

3๐‘š

๐œ‰ =๐‘๐‘’

2๐‘š๐‘’๐œ”๐‘›=

๐‘๐‘Ÿ2

2(3๐‘š๐‘Ÿ2/2) 2๐‘˜/3๐‘š=

6

6๐‘˜๐‘š

Vibrations 3.57 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.11 Inverted Pendulum

Obtain the governing equation of motion for โ€œsmallโ€ oscillations

about the upright position

Solution

The total rotary inertia of the system

๐ฝ๐‘‚ = ๐ฝ๐‘‚1+ ๐ฝ๐‘‚2

๐ฝ๐‘‚1: mass momentof inertia of ๐‘š1 about point๐‘‚

๐ฝ๐‘‚2: massmomentof inertiaof thebaraboutpoint๐‘‚

๐ฝ๐‘‚1=

2

5๐‘š1๐‘Ÿ

2 + ๐‘š1๐ฟ12

๐ฝ๐‘‚2=

1

12๐‘š2๐ฟ2

2 + ๐‘š2

๐ฟ2

2

2

=1

3๐‘š2๐ฟ2

2

Vibrations 3.58 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Choosing ๐‘ž1 = ๐œƒ as the generalized coordinate, the system

kinetic energy takes the form

๐‘‡ =1

2๐ฝ๐‘‚ ๐œƒ2 =

1

2๐ฝ๐‘‚1

+ ๐ฝ๐‘‚2 ๐œƒ2

=1

2

2

5๐‘š1๐‘Ÿ

2 + ๐‘š1๐ฟ12 +

1

3๐‘š2๐ฟ2

2 ๐œƒ2

For small ๐œƒ โŸน ๐‘ฅ1 โ‰ˆ ๐ฟ1๐œƒ

The system potential energy

๐‘‰ =1

2๐‘˜๐‘ฅ1

2 โˆ’1

2๐‘š1๐‘”๐ฟ1๐œƒ

2 โˆ’1

2๐‘š2๐‘”

๐ฟ2

2๐œƒ2

=1

2๐‘˜๐ฟ1

2 โˆ’ ๐‘š1๐‘”๐ฟ1 โˆ’ ๐‘š2๐‘”๐ฟ2

2๐œƒ2

๐ท =1

2๐‘ ๐‘ฅ1

2 =1

2๐‘๐ฟ1

2 ๐œƒ2

Vibrations 3.59 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

The dissipation function

ยง6.Lagrangeโ€™s Equations

The equivalent inertia, the equivalent stiffness, and the

equivalent damping properties of the system

๐‘‡ =1

2

2

5๐‘š1๐‘Ÿ

2 +๐‘š1๐ฟ12 +

1

3๐‘š2๐ฟ2

2 ๐œƒ2

๐‘‰ =1

2๐‘˜๐ฟ1

2 โˆ’ ๐‘š1๐‘”๐ฟ1 โˆ’ ๐‘š2๐‘”๐ฟ2

2๐œƒ2

๐ท =1

2๐‘ ๐‘ฅ1

2 =1

2๐‘๐ฟ1

2 ๐œƒ2

The governing equation of motion ๐‘š๐‘’ ๐œƒ + ๐‘๐‘’

๐œƒ + ๐‘˜๐‘’๐œƒ = 0

Natural frequency

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’=

๐‘˜๐ฟ12 โˆ’ ๐‘š1๐‘”๐ฟ1 โˆ’ ๐‘š2๐‘”๐ฟ2/2

๐ฝ๐‘‚1+ ๐ฝ๐‘‚2

๐‘˜๐‘’ can be negative, which affects the stability of the system

Vibrations 3.60 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

โŸน๐‘š๐‘’ =2

5๐‘š1๐‘Ÿ

2 +๐‘š1๐ฟ12 +

1

3๐‘š2๐ฟ2

2

โŸน๐‘˜๐‘’ =๐‘˜๐ฟ12 โˆ’๐‘š1๐‘”๐ฟ1 โˆ’๐‘š2๐‘”

๐ฟ2

2

โŸน ๐‘๐‘’ = ๐‘๐ฟ12

Page 11: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

11

ยง6.Lagrangeโ€™s Equations

โ€ข Natural Frequency of Pendulum System

Now locate the pivot point ๐‘‚ on the top, the

equivalent stiffness of this system

๐‘˜๐‘’ = ๐‘˜๐ฟ12 + ๐‘š1๐‘”๐ฟ1 + ๐‘š2๐‘”

๐ฟ2

2and the natural frequency of this system

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’=

๐‘˜๐ฟ12 + ๐‘š1๐‘”๐ฟ1 + ๐‘š2๐‘”๐ฟ2/2

๐ฝ๐‘‚1+ ๐ฝ๐‘‚2

If ๐‘š2 โ‰ช ๐‘š1, ๐‘Ÿ โ‰ช ๐ฟ1, and ๐‘˜ = 0, then

๐œ”๐‘› =๐‘š1๐‘”๐ฟ1 1 + ๐‘š2๐ฟ2/๐‘š1๐ฟ1

๐‘š1๐ฟ12 1 + 2๐‘Ÿ2/5๐ฟ1

2 โ†’๐‘”

๐ฟ

โ†’ the natural frequency of a pendulum composed of a rigid,

weightless rod carrying a mass a distance ๐ฟ1 from its pivot

Vibrations 3.61 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.12 Motion of A Disk Segment

Derive the governing equation of motion of a disk segment

Solution

The position vector from the fixed point ๐‘‚ to the

center of mass ๐บ

๐‘Ÿ = โˆ’๐‘…๐œƒ + ๐‘๐‘ ๐‘–๐‘›๐œƒ ๐‘– + (๐‘… โˆ’ ๐‘๐‘๐‘œ๐‘ ๐œƒ) ๐‘—

The absolute velocity of the center of mass ๐‘Ÿ = โˆ’ ๐‘… โˆ’ ๐‘๐‘๐‘œ๐‘ ๐œƒ ๐œƒ ๐‘– + ๐‘๐‘ ๐‘–๐‘›๐œƒ ๐œƒ ๐‘—

Selecting the generalized coordinate ๐‘ž1 = ๐œƒ ,

the system kinetic energy

๐‘‡ =1

2๐ฝ๐บ ๐œƒ2 +

1

2๐‘š ๐‘Ÿ โˆ™ ๐‘Ÿ

โŸน ๐‘‡ =1

2๐ฝ๐บ ๐œƒ2 +

1

2๐‘š ๐‘…2 + ๐‘2 โˆ’ 2๐‘๐‘…๐‘๐‘œ๐‘ ๐œƒ ๐œƒ2

Vibrations 3.62 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Taylor series expansion

๐‘๐‘œ๐‘ ๐œƒ = ๐‘๐‘œ๐‘  ๐œƒ0 + ๐œƒ โ‰ˆ ๐‘๐‘œ๐‘ ๐œƒ0 โˆ’ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ0 โˆ’1

2 ๐œƒ2๐‘๐‘œ๐‘ ๐œƒ0 + โ‹ฏ

๐‘ ๐‘–๐‘›๐œƒ = ๐‘ ๐‘–๐‘› ๐œƒ0 + ๐œƒ โ‰ˆ ๐‘ ๐‘–๐‘›๐œƒ0 โˆ’ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ0 โˆ’1

2 ๐œƒ2๐‘ ๐‘–๐‘›๐œƒ0 + โ‹ฏ

ยง6.Lagrangeโ€™s Equations

Choosing the fixed ground as the datum, the system potential

energy

๐‘‰ = ๐‘š๐‘” ๐‘… โˆ’ ๐‘๐‘๐‘œ๐‘ ๐œƒ

Small Oscillations about the Upright Position

Express the angular displacement as

๐œƒ(๐‘ก) = ๐œƒ0 + ๐œƒ(๐‘ก)

Since ๐œƒ0 = 0 , and small ๐œƒ , using ๐‘ ๐‘–๐‘›๐œƒ โ‰ˆ ๐œƒ ,

๐‘๐‘œ๐‘ ๐œƒ โ‰ˆ 1 โˆ’1

2 ๐œƒ2, rewrite the energy functions

๐‘‡ โ‰ˆ1

2๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2 ๐œƒ2, ๐‘‰ โ‰ˆ ๐‘š๐‘” ๐‘… โˆ’ ๐‘ +

1

2๐‘š๐‘”๐‘ ๐œƒ2

Vibrations 3.63 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The equivalent inertia of the system

๐‘‡ โ‰ˆ1

2๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2 ๐œƒ2

The potential energy is not in standard form because of the

constant term ๐‘š๐‘” ๐‘… โˆ’ ๐‘

๐‘‰ โ‰ˆ ๐‘š๐‘” ๐‘… โˆ’ ๐‘ +1

2๐‘š๐‘”๐‘ ๐œƒ2

However, since the datum for the potential energy is not

unique, we can shift the datum for the potential energy from

the fixed ground to a distance (๐‘… โˆ’ ๐‘) above the ground

๐‘‰ =1

2๐‘š๐‘”๐‘ ๐œƒ2

Then, the equivalent stiffness can be defined

๐‘˜๐‘’ = ๐‘š๐‘”๐‘

Vibrations 3.64 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

โŸน ๐‘š๐‘’ = ๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2

ยง6.Lagrangeโ€™s Equations

The governing equation

๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2 ๐œƒ + ๐‘š๐‘”๐‘ ๐œƒ = 0

Natural Frequency

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’

=๐‘š๐‘”๐‘

๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2

=๐‘”

๐ฝ๐บ + ๐‘š ๐‘… โˆ’ ๐‘ 2

๐‘š๐‘

Vibrations 3.65 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.13 Translating System with a Pre-tensioned/compressedSpring

Derive the governing equation of motion for vertical

translations ๐‘ฅ of the mass about the static

equilibrium position of the system

Solution

The equation of motion will be derived for

โ€œsmallโ€ amplitude vertical oscillations; that is,

๐‘ฅ/๐ฟ โ‰ช 1

The horizontal spring is pretensioned with a tension, which is

produced by an initial extension of the spring by an amount ๐›ฟ0

๐‘‡1 = ๐‘˜1๐›ฟ0

The kinetic energy of the system

๐‘‡ =1

2๐‘š ๐‘ฅ2

Vibrations 3.66 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 12: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

12

Binomial expansion 1 + ๐‘ฅ ๐‘› = 1 + ๐‘›๐‘ฅ +1

2๐‘›(๐‘› โˆ’ 1)๐‘ฅ2 + โ‹ฏ

ยง6.Lagrangeโ€™s Equations

The potential energy of the system

๐‘‰ =1

2๐‘˜1 ๐›ฟ0 + โˆ†๐ฟ 2

๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘˜1

+1

2๐‘˜2๐‘ฅ

2

๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ÿ๐‘–๐‘›๐‘” ๐‘˜2

โˆ†๐ฟ : the change in the length of the spring with

stiffness ๐‘˜1 due to the motion ๐‘ฅ of the mass

โˆ†๐ฟ = ๐ฟ2 + ๐‘ฅ2 โˆ’ ๐ฟ = ๐ฟ 1 + (๐‘ฅ/๐ฟ)2โˆ’ ๐ฟ

Assume that |๐‘ฅ/๐ฟ| โ‰ช 1, using binomial expansion

1+(๐‘ฅ/๐ฟ)2= 1+(๐‘ฅ/๐ฟ)2 1/2 = 1+1

2(๐‘ฅ/๐ฟ)2+

1

8(๐‘ฅ/๐ฟ)4+โ‹ฏ

โŸน โˆ†๐ฟ โ‰ˆ ๐ฟ 1+(๐‘ฅ/๐ฟ)2/2 โˆ’ ๐ฟ = ๐ฟ(๐‘ฅ/๐ฟ)2/2

โŸน ๐‘‰ =1

2๐‘˜1 ๐›ฟ0 +

๐ฟ

2

๐‘ฅ

๐ฟ

2 2

+1

2๐‘˜2๐‘ฅ

2

Vibrations 3.67 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ž1โˆ’

๐œ•๐‘‡

๐œ•๐‘ž1+

๐œ•๐ท

๐œ• ๐‘ž1+

๐œ•๐‘‰

๐œ•๐‘ž1= ๐‘„1 (3.44)

ยง6.Lagrangeโ€™s Equations

Chose the generalize coordinate ๐‘ž1 = ๐‘ฅ

๐‘‡ =1

2๐‘š ๐‘ฅ2

โŸน๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ฅ=

๐‘‘

๐‘‘๐‘ก๐‘š ๐‘ฅ = ๐‘š ๐‘ฅ

๐œ•๐‘‡

๐œ•๐‘ฅ= 0,

๐œ•๐ท

๐œ• ๐‘ฅ= 0, ๐‘„ = 0

๐‘‰ =1

2๐‘˜1 ๐›ฟ0 +

๐ฟ

2

๐‘ฅ

๐ฟ

2 2

+1

2๐‘˜2๐‘ฅ

2

โŸน๐œ•๐‘‰

๐œ•๐‘ฅ=๐‘˜1 ๐›ฟ0 +

๐ฟ

2

๐‘ฅ

๐ฟ

2 2๐‘ฅ

๐ฟ+๐‘˜2๐‘ฅ= ๐‘˜1 +

๐‘˜1๐›ฟ0

๐ฟ๐‘ฅ+

๐‘˜1

2

๐‘ฅ3

๐ฟ2โ‰ˆ ๐‘˜2 +

๐‘‡1๐ฟ

๐‘ฅ

Vibrations 3.68 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The governing equation of motion

๐‘š ๐‘ฅ + ๐‘˜2 +๐‘‡1

๐ฟ๐‘ฅ = 0

The natural frequency

๐œ”๐‘› = ๐‘˜๐‘’/๐‘š๐‘’ = ๐‘˜2 + ๐‘‡1/๐ฟ /๐‘š

If the spring of constant ๐‘˜1 is compressed instead of being in

tension, then we can replace ๐‘‡1 by โˆ’๐‘‡1 , and the natural

frequency

๐œ”๐‘› = ๐‘˜๐‘’/๐‘š๐‘’ = ๐‘˜2 โˆ’ ๐‘‡1/๐ฟ /๐‘š

The natural frequency ๐œ”๐‘› can be made very low by adjusting

the compression of the spring with stiffness ๐‘˜1. At the same

time, the spring with stiffness ๐‘˜2 can be made stiff enough so

that the static displacement of the system is not excessive

Vibrations 3.69 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.14 Equation of Motion for a Disk with An Extended Mass

Determine the governing equation of motion

and the natural frequency for the system

Solution

The velocity of ๐‘š

๐‘ฃ๐‘š =๐‘‘ ๐‘Ÿ๐‘š๐‘‘๐‘ก

=๐‘‘

๐‘‘๐‘ก๐‘ฅ + ๐ฟ๐‘ ๐‘–๐‘›๐œƒ ๐‘– + ๐ฟ โˆ’ ๐ฟ๐‘๐‘œ๐‘ ๐œƒ ๐‘—

= โˆ’๐‘… ๐œƒ + ๐ฟ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘– + ๐ฟ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ ๐‘—

Vibrations 3.70 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The kinetic energy of the system ๐‘‡ = ๐‘‡๐‘‘ + ๐‘‡๐‘

๐‘‡๐‘‘ =1

2๐‘š๐‘‘ ๐‘ฅ2 +

1

2๐ฝ๐บ ๐œƒ2

=1

2๐‘š๐‘‘๐‘…2 ๐œƒ2 +

1

2๐ฝ๐บ ๐œƒ2

๐‘‡๐‘ =1

2๐‘š๐‘ฃ๐‘š

2

=1

2๐‘š โˆ’๐‘… ๐œƒ + ๐ฟ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘– + ๐ฟ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ ๐‘—

2

=1

2๐‘š(๐‘…2 + ๐ฟ2 โˆ’ 2๐ฟ๐‘…๐‘๐‘œ๐‘ ๐œƒ) ๐œƒ2

โ‰ˆ1

2๐‘š ๐ฟ โˆ’ ๐‘… 2 ๐œƒ2

โŸน ๐‘‡ = ๐‘‡๐‘‘ + ๐‘‡๐‘ =1

2๐‘š ๐ฟ โˆ’ ๐‘… 2 + ๐‘š๐‘‘๐‘…2 + ๐ฝ๐บ ๐œƒ2 โ‰ก

1

2๐‘š๐‘’

๐œƒ2

Vibrations 3.71 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The potential energy of the system

๐‘‰ =1

2๐‘˜๐‘ฅ2 + ๐‘š๐‘”(๐ฟ โˆ’ ๐ฟ๐‘๐‘œ๐‘ ๐œƒ)

=1

2๐‘˜๐‘…2๐œƒ2 + ๐‘š๐‘”๐ฟ 1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ

โŸน ๐‘‰ =1

2๐‘˜๐‘…2๐œƒ2 +

1

2๐‘š๐‘”๐ฟ๐œƒ2 ๐‘๐‘œ๐‘ ๐œƒ โ‰ˆ 1 โˆ’

๐œƒ2

2

=1

2๐‘˜๐‘…2 + ๐‘š๐‘”๐ฟ ๐œƒ2 โ‰ก

1

2๐‘˜๐‘’๐œƒ

2

The dissipation function

๐ท =1

2๐‘ ๐‘ฅ2 =

1

2๐‘๐‘…2 ๐œƒ2 โ‰ก

1

2๐‘๐‘’

๐œƒ2

๐‘š๐‘’ ๐œƒ + ๐‘๐‘’

๐œƒ + ๐‘˜๐‘’๐œƒ = 0,๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’=

๐‘˜๐‘…2 + ๐‘š๐‘”๐ฟ

๐‘š(๐ฟ โˆ’ ๐‘…)2+๐‘š๐‘‘๐‘…2 + ๐ฝ๐บ

Vibrations 3.72 Single DOF Systems: Governing Equations

The governing equation

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 13: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

13

ยง6.Lagrangeโ€™s Equations

- Ex.3.15 Micro-Electromechanical System

Determine the governing equation of motion and the natural

frequency for the micro-electromechanical system

Solution

The potential energy

๐‘‰ =1

2๐‘˜๐‘ก๐œ‘

2 +1

2๐‘˜ ๐‘ฅ0 ๐‘ก โˆ’๐‘ฅ1

2 +1

4๐‘š2๐‘”(๐ฟ2 โˆ’๐ฟ1)๐œ‘

2

=1

2๐‘˜๐‘ก๐œ‘

2 +1

2๐‘˜ ๐‘ฅ0 ๐‘ก โˆ’๐ฟ2๐œ‘

2 +1

4๐‘š2๐‘”(๐ฟ2 โˆ’๐ฟ1)๐œ‘

2

The kinetic energy

๐‘‡ =1

2๐ฝ0 ๐œ‘2 +

1

2๐‘š1 ๐‘ฅ1

2 =1

2๐ฝ0 +๐‘š1๐ฟ2

2 ๐œ‘2 โ‰ก1

2๐‘š๐‘’ ๐œ‘2

Dissipation function

Vibrations 3.73 Single DOF Systems: Governing Equations

๐ท =1

2๐‘ ๐‘ฅ2

2 =1

2๐‘๐ฟ1

2 ๐œ‘2 โ‰ก1

2๐‘๐‘’ ๐œ‘2

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

๐‘‰ =1

2๐‘˜๐‘ก๐œ‘

2 +1

2๐‘˜ ๐‘ฅ0 ๐‘ก โˆ’ ๐ฟ2๐œ‘

2 +1

4๐‘š2๐‘”(๐ฟ2 โˆ’ ๐ฟ1)๐œ‘

2

The potential energy is not in the standard form โŸน the

governing equation must be derived from Lagrangeโ€™s equation๐œ•๐‘‰

๐œ•๐œ‘= ๐‘˜๐‘ก + ๐‘˜๐ฟ2

2 +1

2๐‘š2๐‘”(๐ฟ2 โˆ’ ๐ฟ1) ๐œ‘ โˆ’ ๐‘˜๐ฟ2๐‘ฅ0 ๐‘ก

= ๐‘˜๐‘’๐œ‘ โˆ’ ๐‘˜๐ฟ2๐‘ฅ0 ๐‘ก

The governing equation of motion

๐‘š๐‘’ ๐œ‘ + ๐‘๐‘’ ๐œ‘ + ๐‘˜๐‘’๐œ‘ = ๐‘˜๐ฟ2๐‘ฅ0(๐‘ก)

The natural frequency

๐œ”๐‘› =๐‘˜๐‘’

๐‘š๐‘’=

๐‘˜๐‘ก + ๐‘˜๐ฟ22 + ๐‘š2๐‘”(๐ฟ2 โˆ’ ๐ฟ1)/2

๐ฝ0 + ๐‘š1๐ฟ22

Vibrations 3.74 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

Ex.3.16 Slider Mechanism

Obtain the equation of motion of the slider mechanism

Solution

The geometric constraints on the motion

๐‘Ÿ2 ๐œ‘ = ๐‘Ž2 + ๐‘2 โˆ’ 2๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘ (a)

โŸน ๐‘Ÿ ๐œ‘ =๐‘Ž๐‘

๐‘Ÿ(๐œ‘) ๐œ‘๐‘ ๐‘–๐‘›๐œ‘

๐‘Ÿ ๐œ‘ ๐‘ ๐‘–๐‘›๐›ฝ = ๐‘๐‘ ๐‘–๐‘›๐œ‘ (b)

๐‘Ž = ๐‘Ÿ ๐œ‘ ๐‘๐‘œ๐‘ ๐›ฝ + ๐‘๐‘๐‘œ๐‘ ๐œ‘ (c)

โŸน ๐‘Ÿ ๐œ‘ ๐‘๐‘œ๐‘ ๐›ฝ โˆ’ ๐‘Ÿ ๐œ‘ ๐›ฝ๐‘ ๐‘–๐‘›๐›ฝ โˆ’ ๐‘ ๐œ‘๐‘ ๐‘–๐‘›๐œ‘ = 0

โŸน ๐›ฝ = ๐‘Ÿ ๐œ‘ ๐‘๐‘œ๐‘ ๐›ฝ โˆ’ ๐‘ ๐œ‘๐‘ ๐‘–๐‘›๐œ‘

๐‘Ÿ(๐œ‘)๐‘ ๐‘–๐‘›๐›ฝ=

๐œ‘

๐‘Ÿ2(๐œ‘)๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘ โˆ’ ๐‘2

Vibrations 3.75 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

System Kinetic Energy

๐‘‡ =1

2๐ฝ๐‘š๐‘ +๐ฝ๐‘š๐‘’ ๐œ‘2 +

1

2๐ฝ๐‘š๐‘™

๐›ฝ2 +1

2๐‘š๐‘  ๐‘Ÿ2 +

1

2๐‘š๐‘ ๐‘Ÿ

2 ๐›ฝ2

๐ฝ๐‘š๐‘ =1

3๐‘š๐‘๐‘

2

๐ฝ๐‘š๐‘’ =1

3๐‘š๐‘’๐‘’

2

๐ฝ๐‘š๐‘™ =1

3๐‘š๐‘™๐‘™

2

๐‘š ๐œ‘ โ‰ก ๐ฝ๐‘š๐‘ + ๐ฝ๐‘š๐‘’ + ๐ฝ๐‘š๐‘™ + ๐‘š๐‘ ๐‘Ÿ2

๐‘Ž๐‘๐‘๐‘œ๐‘ ๐œ‘ โˆ’ ๐‘2

๐‘Ÿ2(๐œ‘)

2

+ ๐‘š๐‘ 

๐‘Ž๐‘๐‘ ๐‘–๐‘›๐œ‘

๐‘Ÿ(๐œ‘)

2

โŸน ๐‘‡ =1

2๐‘š(๐œ‘) ๐œ‘2

Vibrations 3.76 Single DOF Systems: Governing Equations

where

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ž1โˆ’

๐œ•๐‘‡

๐œ•๐‘ž1+

๐œ•๐ท

๐œ• ๐‘ž1+

๐œ•๐‘‰

๐œ•๐‘ž1= ๐‘„1 (3.44)

ยง6.Lagrangeโ€™s Equations

System Kinetic Energy

๐‘‡ =1

2๐‘š(๐œ‘) ๐œ‘2

System Potential Energy

๐‘‰ =1

2๐‘˜๐‘Ÿ2(๐œ‘) +

1

2๐‘˜๐‘‘ ๐‘‘ ๐‘ก โˆ’ ๐‘’๐œ‘ 2

Equation of motion

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐œ‘=

๐‘‘

๐‘‘๐‘ก๐‘š(๐œ‘) ๐œ‘ = ๐‘š(๐œ‘) ๐œ‘,

๐œ•๐‘‡

๐œ•๐œ‘= ๐‘šโ€ฒ ๐œ‘ ๐œ‘2

๐œ•๐‘‰

๐œ•๐œ‘= ๐‘˜๐‘Ÿ ๐œ‘ ๐‘Ÿโ€ฒ ๐œ‘ + ๐‘˜๐‘‘๐‘’2๐œ‘ โˆ’ ๐‘˜๐‘‘๐‘’2๐‘‘(๐‘ก)

โŸน ๐‘š ๐œ‘ ๐œ‘ +1

2๐‘šโ€ฒ ๐œ‘ ๐œ‘2 + ๐‘˜๐‘Ÿ ๐œ‘ ๐‘Ÿโ€ฒ ๐œ‘ + ๐‘˜๐‘‘๐‘’2๐œ‘ = ๐‘˜๐‘‘๐‘’2๐‘‘(๐‘ก)

Vibrations 3.77 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.17 Oscillations of A Crankshaft

Obtain the equation of motion of the crankshaft

Solution

โ€ข Kinematics

The position vector of the

slider mass ๐‘š๐‘

๐‘Ÿ๐‘ƒ = ๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ + ๐‘™๐‘๐‘œ๐‘ ๐›พ ๐‘– + ๐‘‘ ๐‘—

The position vector of the center of mass ๐บ of the crank

๐‘Ÿ๐บ = ๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ + ๐‘Ž๐‘๐‘œ๐‘ ๐›พ ๐‘– + ๐‘Ÿ๐‘ ๐‘–๐‘›๐œƒ + ๐‘Ž๐‘ ๐‘–๐‘›๐›พ ๐‘—

From geometry

๐‘Ÿ๐‘ ๐‘–๐‘›๐œƒ = ๐‘‘ + ๐‘™๐‘ ๐‘–๐‘›๐›พ

The slider velocity

๐‘ฃ๐‘ƒ = ๐‘Ÿ๐‘ƒ = โˆ’๐‘Ÿ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ โˆ’ ๐‘™ ๐›พ๐‘ ๐‘–๐‘›๐›พ ๐‘– = โˆ’๐‘Ÿ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ +๐‘ก๐‘Ž๐‘›๐›พ๐‘๐‘œ๐‘ ๐œƒ ๐‘–

Vibrations 3.78 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

โŸน ๐‘Ÿ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ = ๐‘™ ๐›พ๐‘๐‘œ๐‘ ๐›พ โŸน ๐›พ =๐‘Ÿ

๐‘™

๐‘๐‘œ๐‘ ๐œƒ

๐‘๐‘œ๐‘ ๐›พ ๐œƒ

Page 14: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

14

ยง6.Lagrangeโ€™s Equations

The velocity of the center of mass ๐บ of the crank

๐‘ฃ๐บ = โˆ’๐‘Ÿ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ โˆ’ ๐‘Ž ๐›พ๐‘ ๐‘–๐‘›๐›พ ๐‘– + ๐‘Ÿ ๐œƒ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘Ž ๐›พ๐‘๐‘œ๐‘ ๐›พ ๐‘—

โŸน ๐‘ฃ๐บ = โˆ’ ๐‘ ๐‘–๐‘›๐œƒ +๐‘Ž

๐‘™๐‘ก๐‘Ž๐‘›๐›พ๐‘๐‘œ๐‘ ๐œƒ ๐‘Ÿ ๐œƒ ๐‘– +

๐‘

๐‘™๐‘๐‘œ๐‘ ๐œƒ ๐‘Ÿ ๐œƒ ๐‘—

โ€ข System Kinetic Energy

The total kinetic energy of the system

๐‘‡ =1

2๐ฝ๐‘‘ ๐œƒ2 +

1

2๐‘š๐บ๐‘ฃ๐บ

2 +1

2๐ฝ๐บ ๐›พ2 +

1

2๐‘š๐‘ƒ๐‘ฃ๐‘ƒ

2 โ‰ก1

2๐ฝ(๐œƒ) ๐œƒ2

๐ฝ ๐œƒ = ๐ฝ๐‘‘ + ๐‘Ÿ2๐‘š๐บ ๐‘ ๐‘–๐‘›๐œƒ +๐‘Ž

๐‘™๐‘ก๐‘Ž๐‘›๐›พ๐‘๐‘œ๐‘ ๐œƒ

2

+๐‘

๐‘™๐‘๐‘œ๐‘ ๐œƒ

2

+๐ฝ๐บ๐‘Ÿ

๐‘™

๐‘๐‘œ๐‘ ๐œƒ

๐‘๐‘œ๐‘ ๐›พ

2

+ ๐‘Ÿ2๐‘š๐‘ƒ ๐‘ ๐‘–๐‘›๐œƒ + ๐‘ก๐‘Ž๐‘›๐›พ๐‘๐‘œ๐‘ ๐œƒ 2

Vibrations 3.79 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

where,

๐›พ = ๐‘ ๐‘–๐‘›โˆ’1๐‘Ÿ

๐‘™๐‘ ๐‘–๐‘›๐œƒ โˆ’

๐‘‘

๐‘™

ยง6.Lagrangeโ€™s Equations

โ€ข Equation of Motion

The governing equation of motion has the form

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐œƒโˆ’

๐œ•๐‘‡

๐œ•๐œƒ= โˆ’๐‘€(๐‘ก)

After performing the differentiation operations

๐ฝ ๐œƒ ๐œƒ +1

2

๐œ•๐ฝ(๐œƒ)

๐œ•๐œƒ ๐œƒ2 = โˆ’๐‘€(๐‘ก)

The angle ๐œƒ can be expressed

๐œƒ ๐‘ก = ๐œ”๐‘ก + ๐œ™(๐‘ก)

Then

๐ฝ ๐œƒ ๐œ™ +1

2

๐œ•๐ฝ(๐œƒ)

๐œ•๐œƒ๐œ” + ๐œ™

2= โˆ’๐‘€(๐‘ก)

Vibrations 3.80 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.18 Vibration of A Centrifugal Governor

Derive the equation of motion of

governor by usingLagrangeโ€™sequation

Solution

The velocity vector relative to point

๐‘‚ of the left hand mass

๐‘‰๐‘š = โˆ’๐ฟ ๐œ‘๐‘๐‘œ๐‘ ๐œ‘ ๐‘– + ๐ฟ ๐œ‘๐‘ ๐‘–๐‘›๐œ‘ ๐‘—

+(๐‘Ÿ + ๐ฟ๐‘ ๐‘–๐‘›๐œ‘)๐œ”๐‘˜

The kinetic energy

๐‘‡ ๐œ‘, ๐œ‘ = 21

2๐‘š ๐‘‰๐‘š๐‘‰๐‘š

= ๐‘š โˆ’๐ฟ ๐œ‘๐‘๐‘œ๐‘ ๐œ‘ 2 + ๐ฟ ๐œ‘๐‘ ๐‘–๐‘›๐œ‘ 2 + ๐‘Ÿ + ๐ฟ๐‘ ๐‘–๐‘›๐œ‘ ๐œ” 2

= ๐‘š๐œ”2 ๐‘Ÿ + ๐ฟ๐‘ ๐‘–๐‘›๐œ‘ 2 + ๐‘š ๐œ‘2๐ฟ2

Vibrations 3.81 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

The potential energy with respect to the static equilibrium position

๐‘‰ ๐œ‘ =1

2๐‘˜ 2๐ฟ 1โˆ’๐‘๐‘œ๐‘ ๐œ‘ 2 โˆ’2๐‘š๐‘”๐ฟ๐‘๐‘œ๐‘ ๐œ‘

Using equation (3.44) with

๐‘ž1 = ๐œ‘

๐ท = 0

๐‘„1 = 0

and performing the required

operations, to obtain the following

governing equation

๐‘š๐ฟ2 ๐œ‘ โˆ’ ๐‘š๐‘Ÿ๐ฟ๐œ”2๐‘๐‘œ๐‘ ๐œ‘ โˆ’ ๐‘š๐œ”2 + 2๐‘˜ ๐ฟ2๐‘ ๐‘–๐‘›๐œ‘๐‘๐‘œ๐‘ ๐œ‘

+๐ฟ ๐‘š๐‘” + 2๐‘˜๐ฟ ๐‘ ๐‘–๐‘›๐œ‘ = 0

Vibrations 3.82 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ž1โˆ’

๐œ•๐‘‡

๐œ•๐‘ž1+

๐œ•๐ท

๐œ• ๐‘ž1+

๐œ•๐‘‰

๐œ•๐‘ž1= ๐‘„1 (3.44)

ยง6.Lagrangeโ€™s Equations

๐‘š๐ฟ2 ๐œ‘ โˆ’ ๐‘š๐‘Ÿ๐ฟ๐œ”2๐‘๐‘œ๐‘ ๐œ‘ โˆ’ ๐‘š๐œ”2 + 2๐‘˜ ๐ฟ2๐‘ ๐‘–๐‘›๐œ‘๐‘๐‘œ๐‘ ๐œ‘

+๐ฟ ๐‘š๐‘” + 2๐‘˜๐ฟ ๐‘ ๐‘–๐‘›๐œ‘ = 0

Introducing the quantities

๐›พ โ‰ก๐‘Ÿ

๐ฟ, ๐œ”๐‘

2 โ‰ก๐‘”

๐ฟ, ๐œ”๐‘›

2 โ‰ก2๐‘˜

๐‘šRewrite the equation

๐œ‘ โˆ’ ๐›พ๐œ”2๐‘๐‘œ๐‘ ๐œ‘

โˆ’ ๐œ”2 + ๐œ”๐‘›2 ๐‘ ๐‘–๐‘›๐œ‘๐‘๐‘œ๐‘ ๐œ‘

+ ๐œ”๐‘2 + ๐œ”๐‘›

2 ๐‘ ๐‘–๐‘›๐œ‘ = 0

Assume that the oscillation ๐œ‘ about ๐œ‘ = 0 are small (๐‘๐‘œ๐‘ ๐œ‘ โ‰ˆ 1,๐‘ ๐‘–๐‘›๐œ‘ โ‰ˆ ๐œ‘) to get the final equation

๐œ‘ + ๐œ”๐‘2 โˆ’ ๐œ”2 ๐œ‘ = ๐›พ๐œ”2

Vibrations 3.83 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

ยง6.Lagrangeโ€™s Equations

- Ex.3.19 Oscillations of A Rotating System

Determine the change in the equilibrium position of

the wheel and the natural frequency of the system

about this equilibrium position

Solution

The spring force = the centrifugal force

๐‘˜๐›ฟ = ๐‘š(๐‘… + ๐›ฟ)ฮฉ2 โŸน ๐›ฟ =๐‘…

๐œ”1๐‘›2

ฮฉ2 โˆ’ 1

, ๐œ”1๐‘›2 =

๐‘˜

๐‘š

For small angles of rotation, the kinetic energy

๐‘‡ =1

2

1

2๐‘š๐‘Ÿ2

๐‘ฅ

๐‘Ÿ

2

+1

2๐‘š ๐‘ฅ2 =

1

2

3

2๐‘š ๐‘ฅ2

The potential energy for oscillations about the equilibrium

position

Vibrations 3.84 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 15: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

15

ยง6.Lagrangeโ€™s Equations

The potential energy for oscillations about the equilibrium position

๐‘‰ =1

2๐‘˜๐‘ฅ2

The Lagrange equation for this undamped system

๐‘‘

๐‘‘๐‘ก

๐œ•๐‘‡

๐œ• ๐‘ฅโˆ’

๐œ•๐‘‡

๐œ•๐‘ฅ+

๐œ•๐ท

๐œ• ๐‘ฅ+

๐œ•๐‘‰

๐œ•๐‘ฅ= ๐‘„๐‘ฅ = ๐‘š๐‘ฅฮฉ2

where the centrifugal force ๐‘š๐‘ฅฮฉ2 is treated as an external force

The governing equation

3

2๐‘š ๐‘ฅ + ๐‘˜ โˆ’ ๐‘šฮฉ2 ๐‘ฅ = 0

The natural frequency

๐œ”๐‘› =๐‘˜

๐‘š=

2

3๐œ”1๐‘›

2 โˆ’ ฮฉ2

Vibrations 3.85 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Excercises

Vibrations 3.86 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien