26
©2018 Cengage. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. CHAPTER 2 Newton’s Laws CHAPTER OUTLINE Chapter Introduction: New Horizons—Old Physics 2.1 Force a. Weight b. Friction Physics to Go 2.1 LEARNING CHECK Engineering Applications: Friction: A Sticky Subject 2.2 Newton’s First Law of Motion Physics to Go 2.2 a. Centripetal Force LEARNING CHECK 2.3 Mass LEARNING CHECK 2.4 Newton’s Second Law of Motion a. Force and Acceleration Physics to Go 2.3 b. The International System of Units (SI) LEARNING CHECK 2.5 Examples: Different Forces, Different Motions a. Projectile Motion Revisited Physics to Go 2.4 b. Simple Harmonic Motion c. Falling Body with Air Resistance Physics to Go 2.5 LEARNING CHECK Mathematical Applications: Chaotic Dynamics 2.6 Newton’s Third Law of Motion Physics to Go 2.6 LEARNING CHECK 2.7 The Law of Universal Gravitation

Ch02 IM SDP2 KM - Solution Manual & Test Bank Store · two springs, or other systems to show simple harmonic motion. Drop a ping-pong ball and a golf ball simultaneously from 2 meters

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

CHAPTER  2  

Newton’s  Laws  

CHAPTER  OUTLINE     Chapter  Introduction:  New  Horizons—Old  Physics  2.1   Force     a.  Weight     b.  Friction     Physics  to  Go  2.1     LEARNING  CHECK  

Engineering  Applications:    Friction:  A  Sticky  Subject    2.2   Newton’s  First  Law  of  Motion  

Physics  to  Go  2.2  a.   Centripetal  Force  

  LEARNING  CHECK  2.3   Mass     LEARNING  CHECK  2.4   Newton’s  Second  Law  of  Motion     a.  Force  and  Acceleration     Physics  to  Go  2.3     b.  The  International  System  of  Units  (SI)     LEARNING  CHECK  2.5   Examples:    Different  Forces,  Different  Motions     a.  Projectile  Motion  Revisited     Physics  to  Go  2.4     b.  Simple  Harmonic  Motion     c.  Falling  Body  with  Air  Resistance     Physics  to  Go  2.5     LEARNING  CHECK     Mathematical  Applications:  Chaotic  Dynamics  2.6   Newton’s  Third  Law  of  Motion     Physics  to  Go  2.6     LEARNING  CHECK  2.7   The  Law  of  Universal  Gravitation  

2-­‐2    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

  a.  Orbits     Physics  to  Go  2.7     b.  Gravitational  Field     LEARNING  CHECK    2.8   Tides     LEARNING  CHECK     Profiles  in  Physics:  Isaac  Newton     SUMMARY     IMPORTANT  EQUATIONS     MAPPING  IT  OUT!     QUESTIONS     PROBLEMS     CHALLENGES      

CHAPTER  OVERVIEW  The concept of force is presented and it is argued that a force is needed to cause any change in

motion—in speed or direction. Mass is introduced again and shown also to be involved in changing motions of objects. Newton’s second law brings the above concepts together. Applications of Newton’s second law are given in example calculations. A short section presents the SI system of units. Motion examples from Chapter 1 are now analyzed further in terms of forces. Projectile motion, simple harmonic motion, and motion including air resistance are discussed. The concept of action-reaction forces and Newton’s third law are presented. Newton’s law of universal gravitation, the Cavendish experiment, orbits, and the idea of a gravitational field are explained. The chapter concludes with a discussion of the tides.

LEARNING  OBJECTIVES  A  student  who  has  mastered  this  material  should  be  able  to:  1.   Develop  a  better  understanding  of  the  specific  meaning  of  force  in  mechanics.  2.   Understand  that  gravity  causes  weight.  3.   Explain  the  mechanisms  underlying  friction,  the  laws  of  friction,  and  the  difference  

between  static  and  kinetic  friction.  4.   State  Newton’s  first  law  and  explain  the  meaning  of  net  force.  5.   Compare  mass,  inertia  and  weight  and  explain  the  differences.  6.   State  Newton’s  second  law  in  words  as  well  as  mathematically  and  be  able  to  perform  

calculations  using  it.  7.   Be  comfortable  with  the  SI  system  of  units  and  give  some  examples.  8.   Give  examples  of  free  fall.  

2-­‐3    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

9.   Explain  projectile  motion,  especially  the  fact  that  the  vertical  and  horizontal  components  are  independent.  

10.   Explain  simple  harmonic  motion.  11.   Add  air  resistance  to  a  free-­‐fall  situation  and  explain  the  changes,  and  explain  terminal  

speed.  12.   State  Newton’s  third  law  and  give  several  examples  of  action-­‐reaction  force  pairs.  13.   State  Newton’s  law  of  universal  gravitation  in  words  and  mathematical  notation.  14.   Describe  the  Cavendish  experiment.  15.   Explain  how  gravity  is  involved  in  orbits  and  relate  Newton’s  “cannon”  idea  for  a  satellite  

launch.  16.   Make  an  ellipse  with  tacks  and  a  loop  of  string.  17.   Picture  a  gravitational  field  and  explain  the  benefit  of  this  concept  over  “action  at  a  

distance.”  18.   Explain  how  tides  are  created.  19.   Give  some  details  of  Newton’s  life  and  work.    Teaching  Suggestions  and  Lecture  Hints  

The idea of weight being a force—a pull—is often new to students and must be stressed. You may not wish to dwell on friction to the extent presented in Section 2.1, although kinetic friction is mentioned by name in later chapters. See the interesting article “Soft Matter in a Tight Spot” by Steve Granick in the July 1999 Physics Today about current work on friction and lubrication—he even shows evidence that kinetic friction behaves chaotically.

Question 5 about pressing and pushing on a book resting on a table is a “must do” in class. Have everyone try this, pressing lightly at first, then harder and harder. Then try it again with a sheet of paper between your hand and the book. (When I tried this variation on my computer table using the fourth edition of this book, I couldn’t get the book to slip no matter how hard I pressed!)

Use a weak spring to show how pulling distorts it, and that the amount of stretch can be used to measure the size of a force. Show a spring-type force scale for comparison.

The key idea to bring across in connection with Newton’s first law is that a force is needed to cause any change in motion—in speed or direction. The concept of a net force and an external force may have to be explained. Describe several situations in which a centripetal force keeps something moving along a circular path. Figure 2.12 and Physics to Go 2.2 with the rock should be pointed out and used to dispense with the common misconception that the object would move radially rather than tangentially. If the students don’t get around to trying it right away, tie a rubber stopper to a weak string (strong thread) and swing it in a circle overhead. Hold a sharp knife in front of you and ask the class to predict where the stopper will go after you raise the knife so it will cut the string.

Do the “yank the tablecloth without spilling the wine” demonstration, or some variant. This is as much a demonstration of friction as it is of the third law.

2-­‐4    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

Attach a weak spring to a loaded dynamics cart and show how it speeds up or slows down when the stretched spring shows that a force is acting.

Swing a bucket of water in a circle about a horizontal axis fast enough to keep the water from falling out at the high point. You could calculate how fast the bucket had to be going.

Use a VCR to show scenes of the rotating space station in the movie 2001: A Space Odyssey. Ask the class if the space station in Star Trek: Deep Space 9 rotated.

Artificial gravity in rotating space stations can be a starting point for discussion of O’Neill’s The High Frontier (see the Suggested Readings at the end of the chapter). Or see his cover article in the September 1974 issue of Physics Today. Research with human subjects suggests that the rotation period would have to be two minutes or larger. With the recent push for human exploration of Mars, ways to manage the effects of long-duration space flight are of renewed interest.

The distinction between mass and weight should be stressed again and the fact that weight is caused by something outside of an object. The concept of weightlessness in an orbiting spacecraft is very tricky to explain to students at this level (see Common Misconceptions below).

Lift, then shove a dynamics cart while describing how weight is involved in the former and mass in the latter.

Hang 1-kg and 2-kg masses from a demonstration force scale to show their weights. Also pass them around the class.

Talk about the Apollo astronauts’ experience on the Moon and how they developed their own way of “walking”. A film loop or videotape would be very useful.

I usually work out several examples and/or problems on the board. Incidentally, the momentum form of the second law is presented in Section 3.2.

DHP, page M-18, item Md-2 shows one setup using an air track and photogate timers to demonstrate the second law.

DHP, page M-16, item Mc-2 shows a classic demonstration of inertia, where you hang a heavy ball from a thread and hang another thread from the ball, and you can break the top thread with a gradually increasing downward pull, or break the bottom thread with a quick jerk.

Discuss challenges 1 and 3 at the end of the chapter (the force of a bat hitting a baseball and banked highway curves).

LAB EXERCISE. Attach a rubber stopper to one end of a 1.5-meter piece of strong fishing line. Pass the other end through a 20-cm length of glass tubing and attach it to a weight hanger. The weight of the hanger and masses supplies the centripetal force on the stopper as it is swung in a circle overhead. A small alligator clip can be used as a marker on the string below the tube so that different radii can be used. The period of rotation is measured, and from this, the speed and acceleration of the stopper. Then m times a is compared with the centripetal force. A 10-g stopper, a radius of 1 meter, and a total of 200 g supplying the centripetal force yield reasonable accuracy.

I use the term SI a great deal and try to get the students to automatically use SI units.

2-­‐5    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

The fact that the states of no motion and of uniform motion are equivalent as far as forces are concerned needs to be pointed out again. Projectile motion, simple harmonic motion, and falling body with air resistance can be treated lightly if desired. The sinusoidal graphs for simple harmonic motion do appear in later chapters.

DHP, pages M-7 to M-11, gives several demonstrations related to projectile motion. Item Mb-14 (a spring gun that launches one ball horizontally and drops one straight down at the same time) is a nice way to show that horizontal motion does not change the effect of the force of gravity.

Use a mass on a spring, a simple pendulum, a metronome, a glider on an air track attached to two springs, or other systems to show simple harmonic motion.

Drop a ping-pong ball and a golf ball simultaneously from 2 meters or more and listen to the former hit the floor later.

Figure 2.26 can lead to a discussion of physics in space. NASA has available many films of physics demonstrations in Skylab and Space Shuttle missions. Page 334 in Sport Science has a table that gives the terminal velocities of several different balls used in sports. It is interesting that a baseball can leave a pitcher’s hand fast enough to equal its terminal velocity when falling, so it is decelerating at 1 g. It must be decelerating at 1 g because the force of air resistance on the ball must be the same as when it is falling at its terminal speed (how could the ball tell the difference between being thrown at its terminal speed vs. falling at that speed?). Here, though, the force of gravity is not present to balance the air resistance force. When falling at terminal speed, the air resistance force is equal to the force of gravity, so with air resistance only (at the same speed), the acceleration is the same magnitude as when you have gravity only.)

LAB EXERCISE. A calibration curve for an inertial balance can be plotted after the periods of known masses are measured. One can plot period versus time, or compute the frequencies and plot them.

Even though chaos is mentioned only briefly in Section 2.5, fun can be had with computer programs dealing with fractals and chaotic dynamical systems. Added fun can be had with actual devices that exhibit chaos—see for example Appendix C, “Chaotic Toys” in Chaotic and Fractal Dynamics, an Introduction for Applied Scientists and Engineers by Francis C. Moon (1992, Wiley) for several interesting ideas.

The fact that a wall or other passive object can exert a force is a new and important concept for students.

In addition to the demonstrations with dynamics carts shown in Figure 2.33, you might look at the many action-reaction and thrust demonstrations in DHP, pages M-17 to M-25.

Discuss Challenge 5 (the tiny gravitational force between two people). The concepts of an inverse square force and a field are important and will be seen again in

Chapter 7. The text relates Newton’s reasoning about gravity being an inverse square law early in Section 2.7 (the Moon is 60 times farther away from the center of the Earth than something on the Earth’s surface is from the center of the Earth, and the acceleration of the Moon is 1/3600th—

2-­‐6    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

1/60th squared—of the acceleration of, say, a falling apple) but does not go into the more difficult problem of proving that it does not matter that the mass of the Earth is spread throughout the interior of a huge planet. It is quite remarkable that at the Earth’s surface, with the ground right under your feet and nearby soil attracting you much more strongly (in a relative sense) than matter at places inside and on the far side of the Earth—each bit pulling in a different direction—that the overall effect is exactly the same as if all the matter in the Earth were concentrated at its center. (It might be interesting to have students chase down people who can do calculus and are willing to show them the details of the proof.) The Profiles in Physics makes brief mention of Newton’s use of the calculus to prove this, but more clarification is probably needed.

Use a string and a volunteer’s fingers instead of tacks to draw elliptical orbits on the chalkboard as in Physics to Go 2.7. Show that the ellipse is difficult to distinguish from a circle unless the two foci are rather far apart.

Discuss Challenges 6, 7, 8, and 9. Challenge 8 on the stationing of a geosynchronous communication satellite is very interesting and practical. Use the internet to download some “live” (well, 30 minute or so “old”) weather satellite images of your region.

You may have students who have never experienced tides, so a simple description of the phenomenon might be in order. Have some students find (or make) friends who live near the coast and call to ask them about the tides.

The following websites contain valuable simulations you can use for physics exercises:

http://phet.colorado.edu/en/simulations/category/physics  http://www.physicslessons.com/iphysics.htm  http://physics-­‐animations.com/Physics/English/index.htm  http://jersey.uoregon.edu/vlab/  http://www.physicslessons.com/iphysics.htm      Links  to  Specific  Animations:  http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/VertCircular/VertCircular.html    http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/TwoBall

sGravity/TwoBallsGravity.html http://www.upscale.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/SHM/TwoSHM.ht

ml http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/Damped

SHM/DampedSHM.html

2-­‐7    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/Circular2SHM/Circular2SHM.html

http://physics-animations.com/Physics/English/mech.htm

COMMON  MISCONCEPTIONS  What?—When there isn’t force, objects can still move with constant velocity? How can the net force of a car be zero if it is moving? Newton’s first law can lead to confusion if students place it in an unintended context. They

might be misled by the need to exert a force on an object to bring it up to speed from rest. But Newton’s first law does not refer to an object’s history, only what is going on right now. If no forces are acting the object simply coasts at constant velocity. They also may be unwittingly thinking of a concept closer to that of energy or momentum when they mistakenly use the term force.

Strongly tied to this confusion is what E. (“Joe”) Redish calls Newton’s Zeroth Law of Motion: “At a time t, an object only responds to forces that are exerted on it itself at time t.” (Am. J. Phys., July 1999, p. 571). Students need to see that if a force acts on an object over a time interval, the object will accelerate during that time interval, but if the force stops, so will the acceleration. So a car must have a net force acting on it while it is speeding up, but not after it has reached and maintains cruising speed. Similarly, an object going in a circle must have a net force on it all the time, because it always has a centripetal acceleration. (If the force were to quit, then the object would necessarily instantly quit moving in a circle and head off in a straight line.)

If a skier is going downhill at a constant speed there’s no force exerted because there’s no acceleration, right? The only flaw in the above question is that it should say “no net force exerted”—there are

clearly forces exerted on the skier by the snow surface (partly frictional, partly supportive), gravity, and air resistance, but they add vectorially to zero (I’m assuming the hill has a constant slope—otherwise constant speed wouldn’t imply constant velocity and therefore zero acceleration).

What is the difference between a vector and a force? Will a force produce a vector? A force is one particular example of a vector quantity. I think this questioner is suffering from

attempting to learn the general concept of a vector before seeing some examples. How can a ball have inertia if it is still? Can there be inertia with an object that is standing still? Inertia, just like mass, is a very elusive concept. I see very little distinction between inertia and

mass until relativity is discussed. Mass is an invariant, yet objects get harder and harder to accelerate as their speeds approach the speed of light, so I would like to say their inertia increases at relativistic speeds even though their mass stays constant.

2-­‐8    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

Thinking of inertia as a “resistance” to changes in motion simply does not satisfactorily address questions regarding what it is. Perhaps spending some time simply struggling with the concept will convey the deep issue it really is. Encourage research into this subject.

I don’t really understand inertia. How can someone hold a brick on their head and have someone hit it with a sledgehammer and have it not hurt? Perhaps this demonstration should be preceded (or followed, if you prefer suspense) by hanging

the brick from a rope and hitting it on the side with the hammer. If the brick is massive enough, the hammer will more or less bounce off, and it will be clear that a person’s head on the far side would be in little danger. You need something a lot bigger than a chimney brick if you want to hit it with a sledgehammer! Experiment carefully.

When I begin discussing Newton’s third law, I always start by pushing hard on the demonstration table (it’s bolted down). The students can easily be convinced that the table pushes back just as hard on me. Then I use a movable chair or desk and push gently on it (not hard enough to move it). I ask the students about the chair’s force on me, and they say it is the same strength as my push. Then I push hard enough to actually move the chair—how do the forces compare now? Most of them confidently report that now I am pushing harder than the chair is pushing back. They are very surprised when I tell them they are wrong—that the forces are still the same size.

I understand Newton’s 3rd law the best, I think. It’s neat how you can be pushing a huge wall and the reason it doesn’t move is basically because it’s pushing on you too. This is wrong. The reason the wall doesn’t move is because its attachments are able to exert

forces on the wall equal and opposite to your push. If you push hard enough (with some sort of help, obviously) the wall will move.

If the Moon pulls on the Earth as hard as the Earth pulls on the Moon why isn’t the Earth’s orbit around the Sun affected by the Moon? It is. The Earth and Moon actually both orbit about the center of mass of the Earth-Moon

system once a month. This point is actually beneath the Earth’s surface, so the Earth’s true motion looks more like a wobble than an orbit, but this motion is fundamentally involved in causing the tides.

I don’t understand the part where the author talks about the third law with the ball falling towards Earth. How can the ball exert a force on the Earth when there is air between the ball and the Earth? How can the Earth exert an equal force as a ball? The force the ball exerts on the Earth is a gravitational force, no more (or less) mysterious than

the gravitational force the Earth exerts on the ball. It does seem strange that a tiny ball can pull on the Earth just as strongly as the enormous Earth pulls on the ball. Is it at all comforting to note that the effect of the Earth’s gravity on the ball (an acceleration of 9.8 m/s2) is much more dramatic than the effect of the ball’s gravity on the Earth (an acceleration, but one that is immeasurably small because of the Earth’s huge mass)?

2-­‐9    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

G is so small! Does it really make that much of a difference in calculations? I once had my algebra students compare the cost (per ounce) of different kinds of pop in order

to discover which brand was the best deal. One of them reacted to the tiny values (1.28 cents/oz for cheap cola vs. 2.56 cents/oz for brand name colas in convenience stores, for example), saying something like “who cares about pennies?” —totally missing the point that the differences really add up when you purchase in quantity. The same goes for the gravitational constant, G. It needs to emphasized that its small value does imply a kind of “weakness” about gravity (you need a lot of mass to see any effect at all), but on the other hand, one could say that we just happened to choose inconvenient force, mass, and length units when defining newtons, kilograms, and the meter, all of which conspire to require a tiny G value to make Newton’s law of gravitation work out right. New units could be invented that would make a G value of 1 possible (you could leap ahead for a moment and talk about the definition of the ampere). But make the point that the value of G, even though its numerical size depends on the above factors, is a deep universal fact of nature—something worth pondering.

It says that the only force on a spacecraft in orbit is gravity and that the objects inside are weightless. I don’t understand. If there’s gravity, why is everything weightless? We are stuck with two meanings of the term “weight”—weight as the force exerted by gravity

on an object (the one we try to convey in physics) vs. weight as the force supporting an object as it sits on a bathroom scale, for instance. If you are simply standing motionless on a scale, the downward force of gravity is exactly balanced by the equal strength upward force of the scale—there seems little point in fussing a lot about the distinction between the two. We may as well think of the scale force as representing the weight. But this is a very specific situation. In orbit I suppose you could glue your feet to a bathroom scale and push yourself toward a wall of your ship, feet first—the scale would register a force as you made contact with the wall, and the strength and duration of the force would vary depending on whether you bent your knees to soften the blow or had them “locked” as well as whether or not you decide to “kick off” from the wall in some way. Here the scale force is indeed what causes your acceleration during your impact with the wall—it has nothing to do with gravity at all. After you break contact with the wall the scale will read zero—you are “weightless” in the second sense above. Yet all this while gravity has been acting on you—you are definitely not “weightless” in the first sense. The point is that in orbit, gravity gives rise to a centripetal acceleration, whereas on the Earth’s surface, it gives rise to a contact force that counters the gravitational force. It is hard not to think of this contact force as “weight”, and that’s what leads to all the confusion.

I don’t understand why if gravity is the only force acting upon a spacecraft, you are weightless. Wouldn’t gravity pull you down? Gravity does pull you down—it is causing the centripetal acceleration that both you and your

craft experience. “Down” must be thought of as “toward the center of the Earth,” however, not “pulled out of orbit” or something.

2-­‐10    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

In section 2.8 it talks about shooting a cannonball into orbit. Why do things stay in orbit? Why don’t they go like this? They can! To achieve a perfectly circular orbit

the launch velocity has to be a very precise value—if it’s slower than that the cannonball will fall to the ground (as shown in Figure 2.40). Any faster and the trajectory will curve outward as shown here. But even then, there are two possibilities: the orbit can curve back around following an ellipse or (if the cannonball is launched fast enough) it can continue outward forever following a hyperbolic path.

Is the gravitational force on a person in space zero because of weightlessness? The premise is in error—the gravitational force

is not zero on a person in space (though it might be vanishingly small way out in deep space, far from any other masses). Also, weightlessness is not a cause of anything, just a characterization of a particular situation.

When an object reaches terminal speed does the object’s speed and air resistance equal out? No. The forces of gravity and of air resistance upon the object are equal in strength. It doesn’t

make sense to compare a speed with air resistance (a force). Terminal velocity is basically your highest speed. Not quite. If you fall from rest, your terminal velocity will be the highest speed you attain, but

it is possible to throw something downward fast enough so that the air resistance force is larger than the force of gravity at the start, slowing the fall to terminal velocity.

I’m a little confused on how the tides work. When the water is closer to the Moon and is “heaping up,” does that mean the tide is out? “Out” as in “the tide is out” means that the water has flowed oceanward—“out” away from the

beach, meaning low tide. “Out” as in “pulled out into a bulge” means upward, away from the Earth’s surface. At the location of a bulge, the tide would high, or “in.”

Does the space shuttle shut off its engines in orbit? Yes. But often movies show spaceships with engines blazing continuously. I enjoy finding

physics flubs in science fiction shows that demonstrate misunderstandings such as this one (some of my students thought this rather weird).

What exactly moves a rocket forward in space? What does the thrust push against?

2-­‐11    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

The thrust pushes against the rocket! Of course, the question may imply a mistaken belief that the thrust needs a way to get “leverage” or a sort of “foothold” on some external medium, which is not the case. This is a good place to discuss the idea of a system again. When the rocket and its exhaust are considered together, the system as a whole doesn’t get anywhere—it just spreads out—the rocket going forward and the exhaust particles going backward (and the forces are all internal). Thinking of the rocket by itself is actually more complicated.

CONSIDER  THIS—  Where does gravity come from and why is it there? How is the Earth pulling on the Moon? I don’t think questions of this type should be ducked. Instead, point out that this sort of curiosity

and wonder is exactly what drives physicists. (Good luck finding the answers.) How come gravity pulls harder on objects with greater mass? This is actually a very deep question. It is fascinating that gravity pulls harder in exact

proportion to how much more massive the object is—that’s why everything free falls (near the Earth’s surface) with an acceleration of 9.8 m/s2.

If gravity affects a person with a larger mass more, and the force of gravity works on them harder, why can’t smaller people consistently jump higher and farther than big people? Are there maybe too many variables in people for this to hold true? Investigate this directly with a bunch of large and small student volunteers.

Since we’re on the subject of forces, what would happen if all the people in China jumped at the same time and landed at the same exact moment? This invites experimentation: How high can people jump?; calculation—what force do they

exert on the Earth during a jump?; and a bit of research—how many people are there in China? Collect the answers, then do F = ma for the Earth. Getting the force exerted during a jump really brings together a lot of material: Use the free-fall equations to calculate the jumper’s initial velocity from their jump height. Then time the jump—more specifically, time from when they first start pushing up with their legs to when their feet leave the floor (videotaping the jump and counting video frames works well). Use this time plus the initial velocity to get the average acceleration. From that get the average net force on the jumper from Newton’s second law. This net force is how much the force of their legs exceeds their weight, so it must be added to their weight to get the force generated by their legs. Newton’s third law then says the same strength force acts on the Earth. Multiplying by the number of people in China will give the force on the Earth, and F = ma can again be applied using the Earth’s mass this time. The result will be tiny, of course—a good demonstration of the enormity of the Earth, but hopefully also a demonstration that physics can provide explicit quantitative answers to many questions.

2-­‐12    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

Several students pointed out to me that even landing with a parachute is not exactly a soft landing (the text mentions a landing speed of 10 mph, another I checked said 25 mph). Urge your students to make some phone calls to skydiving outfits to get a fuller story. To get a real feel for how hard such landings are, compute the height of a table you might jump from in order to hit the floor with these speeds (it is a little scary). Chapter 3 shows how to do this calculation using energy conservation.

Consider two satellites in orbit around Earth. Both are in the same orbit, but on opposite sides of the Earth. Both satellites have a limited amount of maneuvering fuel available. What kinds of maneuvers would be done to get these satellites close enough to each other to “link up”? When the maneuvering is done, they will be in the same orbit as the beginning. The operation must be done as quickly as possible, with a minimum of fuel use. What would be a likely approach? I have a feeling the requirements “as quickly as possible” and “minimum of fuel use” are

incompatible (and too vague). This is a very difficult problem. Nevertheless, it could be used to motivate detailed study of real space missions. Request a press kit for a space shuttle mission—I found it a trivial matter to get the phone number for Johnson Space Center in Houston from Directory Assistance and got a lot of free information with just a phone call (OK, two phone calls).

If you were in the space shuttle and some outside force pushed the shuttle (you, floating in midair inside, still), would you stay in the same place as the shuttle moved until some part in the interior hit you, or would you float in the same spot in relation to the interior? The wall would move over and hit you. I often wonder if some television reporters mistakenly

think the other answer makes sense—I have seen them act as if they expect astronauts doing untethered EVA’s in the shuttle’s cargo bay to be suddenly whisked away if they drift a bit too far out. Impossible. Now, if one of their little maneuvering thrusters got stuck on—that would be another matter.

How does a probe that is in orbit fall out of orbit and then tumble to Earth? Air resistance in low Earth orbit is slight, but not zero. Over time the orbit slowly decays lower

into gradually thicker atmosphere where the air resistance is greater, speeding up the rate of decay until the reentry. Communication satellites in much higher geosynchronous orbits do not suffer this fate. By the way, the fact that geosynchronous orbits have to be above the equator of a planet is often missed (especially on sci fi shows). Have the students try to see why there is no other possibility. Are weather satellites geosynchronous? If they are, and therefore orbit above the equator, can we not get weather photos of the polar regions of the Earth, then?

Since there is always air resistance why do physicists ignore it when they study projectile motion? Wouldn’t whatever they find be wrong because they didn’t take air resistance into account? The book keeps wanting to “ignore air resistance”, or “ignore gravity” or “ignore friction.” Well, those things do exist and do play a part in daily life. Why calculate

2-­‐13    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

things or talk about things that don’t really happen on Earth? I don’t care to talk about imaginary probabilities. This point was addressed back in Chapter 1. To get a handle on the more difficult real-life

problems, we have to start simple. Also, more fundamental behavior may be hidden by real-life complexity. Stripping that away may lead to better understanding. The first question is correct, though—ignore air resistance in a real-life situation and you will go wrong.

Find out more about the history of friction and lubrication. Research friction, wear, and lubricants in modern engineering and biomechanics. Look into how car braking systems work. Try searches for anti-lock and ABS brakes and tribology.

Investigate the conflict between Newton and others like Hooke and Leibniz.

2-­‐14    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

ANSWERS  TO  MAPPING  IT  OUT!  1.  Universal  gravitation  concepts:  

•   Every  object  exerts  a  gravitational  force  on  every  other  object  via  the  gravitational  field  it  creates.  

•   Gravitational  forces  between  masses  are  •   proportional  to  each  object’s  mass,  •   inversely  proportional  to  the  square  of  the  distance  between  them,  

•   given  by  the  formula   1 22 .GmmFd

=  

•   G  was  measured  by  Cavendish  using  a  torsion  balance.  •   G  =  6.67  ⋅  10–11  N·∙m2/kg2.  

•   Earth’s  mass  (6  ⋅  1024  kg)  can  be  computed  from  G  and  g.  •   Every  planet  has  a  different  “g.”  •   Orbits  of  planets  and  comets  (and  everything  else)  around  the  Sun  are  ellipses.  •   Achieving  Earth  orbit  is  like  throwing  a  projectile  horizontally  at  just  the  right  speed  

(about  7,900  m/s).    Here’s  an  attempt  at  prioritizing—     Law  of  universal  gravitation;  mass  creates  a  gravitational  field;  the  field  obeys  an  inverse  

square  law;  gravity  is  one  of  the  four  fundamental  forces.     The  gravity  force  between  a  pair  of  objects  (weight  is  an  example)  is  proportional  to  each  

mass  in  the  pair;  gravity  can  be  measured  with  a  Cavendish  torsion  balance;  it  reveals  G  =  6.67  ⋅  10–11  N·∙m2/kg2.  G  and  g  are  related;  every  planet  has  its  own  “g.”  

  Orbits:  satellite  orbits  imagined  in  Newton’s  ‘cannon’  thought-­‐experiment;  orbital  velocities  can  be  calculated;  orbits  of  planets,  comets,  etc.,  are  ellipses  with  the  Sun  at  one  focus.  

  Tides:  on  Earth,  primarily  due  to  Moon’s  gravity  and  the  fact  it  is  different  on  the  near  and  far  sides  of  the  Earth;  neap  and  spring  tides  are  due  to  Sun’s  added  influence.  

2-­‐15    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

2.  

 

ANSWERS  TO  QUESTIONS  1.   Force  is  a  push  or  a  pull  that  usually  causes  distortion  and/or  acceleration.  Examples:  

weight  (force  of  gravity)  pulling  down  on  everything,  force  of  friction  between  you  and  your  seat,  force  of  friction  holding  nails  and  screws  in  desks,  cabinets,  walls,  etc.,  and  so  on.  

2.   Weight  is  the  force  of  gravity  acting  on  a  body.  An  object  is  truly  weightless  only  if  there  is  no  other  body  around  to  exert  a  gravitational  force  on  it.  

3.   The  two  forces  acting  on  the  book  are  the  force  of  air  resistance  acting  toward  the  rear  of  the  car  and  a  force  of  static  friction  between  the  car’s  roof  and  the  book  acting  forward.  

Net force

which may be

yields

Simple Harmonic

Mot ion

Constant

and

Opposite to velocity

yields

Straight line motion

wi th

Pe rpendicular to velocity

yields

Pa rallel to velocity

yields

Decreasing accelerat ion

and

Terminal speed

Decreasing speed

Proport ional to and opposite to displacement

Circular motion

Proport ional to and opposite to velocity

yields

Straight line motion

Incr easing speed

wi th

2-­‐16    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

4.   Static  friction  is  the  type  of  friction  that  acts  when  there  is  no  relative  motion  between  two  bodies.  Kinetic  friction  acts  when  there  is  relative  motion  between  two  bodies  in  contact.  One  example  of  both  acting  at  the  same  time  is  a  moving  car:  static  friction  acts  between  the  road  and  the  tires,  and  kinetic  friction  acts  between  the  air  and  the  outside  of  the  car.  (See  page  49.)  

5.   There  are  friction  forces  at  both  contact  surfaces—between  the  hand  and  the  book  on  top,  and  between  the  book  and  the  table  underneath.  If  the  friction  force  between  the  hand  and  the  book  is  larger  than  that  between  the  table  and  the  book,  the  book  will  be  dragged  along  by  the  hand.  In  this  case  static  friction  acts  between  the  book  and  the  hand,  and  kinetic  friction  acts  between  the  table  and  the  book.  

  In  the  case  where  the  book  stays  put  and  the  hand  slips,  it’s  very  tempting  to  think  that  the  friction  between  the  book  and  the  hand  is  less  than  that  between  the  book  and  the  table.  But  that  is  not  true—the  two  friction  forces  must  be  equal!    The  book  is  motionless,  so  it  has  zero  acceleration  and  therefore  zero  net  force.  The  two  friction  forces  (acting  in  opposite  directions)  must  exactly  cancel  each  other.  Here  static  friction  acts  between  the  book  and  the  table,  and  kinetic  friction  acts  between  the  hand  and  the  book.  

  Do  several  trials  with  your  hand  and  a  real  book.  Press  gently  at  first  so  your  hand  slips,  then  gradually  increase  the  pressure.  In  successive  trials  where  the  book  does  not  move,  the  static  friction  between  the  book  and  table  simply  grows  in  strength  to  match  the  increasing  kinetic  friction  force  applied  by  your  hand.  When  you  reach  the  pressure  where  the  book  begins  to  slide,  your  hand  is  exerting  a  friction  force  larger  than  the  maximum  possible  static  friction  force  between  the  book  and  table  at  that  pressure.  

6.   An  external  force  is  one  caused  by  something  outside  of  the  body  under  consideration.  An  internal  force  can’t  accelerate  an  object  because,  by  Newton’s  third  law,  any  internal  force  acting  in  some  direction  on  one  part  of  a  body  would  produce  an  equal  but  opposite  force  acting  on  another  part.  The  two  forces  would  cancel  each  other.  

7.   Because  the  applied  forces  are  of  the  same  magnitude  (for  this  question  a  magnitude  of  1),  the  combined  forces  of  Player  A  and  the  other  teammate  on  Player  B  will  the  same  as  a  single  force  1.41  (the  square  root  of  2)  times  as  strong  on  B  toward  the  southeast.  What  B’s  subsequent  motion  will  be  depends  on  whether  he  was  already  moving  (how  fast  and  in  what  direction)  or  not  moving,  how  massive  he  is,  whether  other  forces  in  addition  to  the  two  mentioned  also  act  on  B,  and  how  long  the  forces  continue  to  act.  Only  in  the  simple  case  of  B  being  at  rest  when  the  other  players  hit  him  can  we  say  he  will  go  toward  the  southeast.  Newton’s  second  law  can  be  applied  to  solve  for  the  motion  in  all  the  other  cases,  with  more  work  involved.  

      Diagram  to  support  the  answer:  

2-­‐17    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

            Force  by  player  A  (FA)  green  vector                 Force  by  player  B  (FB)  red  vector                                                                                                                                                                        FA  (east)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FR  (Southeast)        FB(south)                                                    

                                                                                                                                                           

                                                                                                                                                                                                                   8.   A  steady  centripetal  force  causes  an  object  to  move  along  a  circular  path.  If  the  force  

disappears,  the  object  moves  in  a  straight  line  with  constant  speed,  its  direction  being  that  in  which  it  was  traveling  at  the  instant  the  force  disappeared.  (See  page  44.)  

9.   Constant  speed  and  heading  together  imply  constant  velocity  and  therefore  zero  acceleration.  Newton’s  second  law  then  says  the  net  force  on  the  train  car  is  zero.  

2-­‐18    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

10.   Mass  is  an  intrinsic  property  of  a  body  that  determines  its  acceleration  when  a  net  force  acts  on  it.  Weight  is  a  force  acting  on  a  body  caused  by  something  outside  the  body,  like  the  Earth.  Weight  depends  on  where  an  object  is—mass  does  not.  (See  page  48.)  

11.   To  accelerate  the  ball  during  the  act  of  throwing,  the  astronaut’s  hand  will  have  to  apply  the  same  force  to  the  ball  in  orbit  as  on  the  ground,  because  Newton’s  second  law  says  this  force  depends  only  on  the  mass  of  the  ball  and  the  acceleration,  both  of  which  will  be  the  same  in  orbit  as  on  the  ground  for  an  identical  horizontal  throw.  The  same  goes  for  the  force  during  the  catching  process,  so  throwing  and  catching  will  “feel”  the  same  in  orbit  as  on  the  ground.  

  What’s  missing  in  orbit  are  the  friction  and  support  forces  of  the  ground  on  the  astronauts,  so  repeated  throws  or  catches  in  orbit  will  make  each  astronaut  move  away  from  the  other  at  an  increasing  speed.  They  will  start  spinning  head-­‐over-­‐heels  slowly  as  well,  if  they  catch  and  throw  at roughly head level in the usual way.

12. The track is shaped in such a way that it is accelerating the roller coaster downward. Riders would feel “negative g's.” One shape that would cause this is a steep hill: the track slants upward, then quickly slants downward.

13.   If  the  propeller  exerts  the  same  forward  force  on  the  craft  in  both  cases,  it  won’t  matter  whether  it  pushes  from  behind  or  pulls  from  the  front—the  motion  of  the  plane  or  boat  will  be  the  same.  

14.   The  rocket’s  mass  decreases  as  its  fuel  is  consumed.  The  same  net  force  acting  on  a  smaller  mass  results  in  a  larger  acceleration.  

15.   The  SI  is  a  system  of  units  within  the  metric  system  that  is  internally  consistent.  The  units  in  the  answer  of  any  legitimate  calculation  are  SI,  provided  the  units  of  the  input  quantities  are  also  SI.  

16.   The  watch  and  the  arrow  hit  the  ground  at  the  same  time.  The  acceleration  of  the  arrow  is  the  same  as  that  of  the  watch  because  horizontal  motion  does  not  affect  vertical  motion.  

17.   For  a  mass  oscillating  vertically,  as  in  Figure  2.24,  the  force  varies  continuously  from  the  maximum  (directed  downward)  at  the  high  point  of  the  motion,  to  zero  at  the  equilibrium  point,  to  the  maximum  (directed  upward)  at  the  low  point.  The  size  of  the  force  is  proportional  to  the  distance  from  the  equilibrium  position.  By  Newton’s  second  law,  the  acceleration  undergoes  the  same  variation.  

18.   If  a  0.5-­‐kg  object  hanging  from  a  spring  stretches  it  by  0.30  m,  we  know  the  weight  (force)  F  =  mg.    We  can  use  the  equation  on  page  60, F kd=  to  solve  for  the  spring  constant  k.  

   

20.5 kg 9.8 m/s 4.9 N4.9 N 16.33 N/m

0.30 m

F mgFF kd kd

= = × =

= ⇒ = = =  

  Now,  how  much  will  the  spring  be  stretched  if  a  1-­‐kg  object  is  suspended  from  it?  

2-­‐19    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

  9.8 N 0.6 m16.33 N/m

FF kd dk

= ⇒ = = =    

   19.   As  the  speed  of  a  falling  body  increases  due  to  the  force  of  gravity,  the  size  of  the  force  of  

air  resistance  (acting  upward)  increases  as  well.  Therefore  the  net  force  decreases.  This  continues  as  the  speed  increases  until  the  force  of  air  resistance  is  the  same  size  as  the  force  of  gravity  and  the  net  force  is  zero.  Then  the  acceleration  is  zero,  and  the  speed  is  constant,  equal  to  the  terminal  speed.  

20.   The  ping-­‐pong  ball  decelerates  initially  because  the  force  of  air  resistance  is  greater  than  the  weight.  After  it  slows  down  to  its  terminal  speed  (20  mph),  it  falls  at  that  speed  until  it  hits  the  ground.  

21.   When  sitting,  the  two  forces  on  you  are  the  force  of  gravity  (weight)  pulling  downward  and  the  force  of  the  chair  pushing  upward.  The  equal  and  opposite  force  to  that  of  the  Earth’s  gravity  on  you  is  the  pull  (also  due  to  gravity)  that  your  body  exerts  on  the  Earth.  For  the  chair,  it  is  your  downward push (caused by contact) that is the equal and opposite force.

22. The road exerts a force upward (supporting the car so gravity doesn't accelerate it downward) and a force forward (the equal and opposite force to the force of the tires pushing backward).

23. Your legs exert a downward force  on  the  ground.  The  ground  exerts  an  equal  and  opposite  force  on  you  and  that  force  accelerates  you  upward.  

24.   They  move  the  same  in  the  two  cases.  By  the  third  law  of  motion,  the  forces  are  always  equal  and  opposite,  no  matter  which  skater  initiates  a  force.  

25.   Cavendish  balanced  two  masses  on  a  rod  suspended  by  a  thin  wire.  Two  larger  masses  were  placed  next  to  them  so  that  the  gravitational  forces  acting  on  the  two  smaller  masses  caused  the  wire  to  twist.  Cavendish  used  the  amount  of  twist  to  measure  the  size  of  the  gravitational  force  acting  on  each  mass.  (See  Figure  2.39.)  

26.   (a)    The  first  part  of  the  question  deals  only  with  Newton’s  law  of  universal  gravitation,  which  states  that  the  force  is  proportional  to  the  masses  of  both  objects.  Because  the  container  of  marbles  weighs  more  than  the  container  of  Styrofoam  beads,  the  container  with  the  marbles  has  a  greater  mass  than  the  container  of  Styrofoam  beads.  Therefore  the  gravitational  force  between  the  container  of  marbles  and  Earth  is  greater  than  the  gravitational  force  between  the  container  of  Styrofoam  beads  and  Earth.  However,  the  gravitational  force  between  the  two  containers  is  the  same  (equal  and  opposite)  for  each  container.  Therefore,  the  answer  to  this  part  of  the  question  depends  on  your  frame  of  reference.  

2-­‐20    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

  (b)    The  containers  both  experience  the  same  acceleration  due  to  gravity  (g  =  a  constant).  When  the  two  containers  are  released,  they  will  reach  the  ground  at  the  same  time,  as  demonstrated  by  Galileo  when  he  dropped  the  two  objects  from  the  leaning  tower  in  Pisa.  

27.   The  weight  of  everything  on  Earth  would  increase  a  billion  times,  so  buildings  would  collapse,  people  would  be  pulled  to  the  ground  and  be  killed  as  internal  organs  would  suddenly  weigh  tons,  satellites  would  be  pulled  into  much  lower  orbits,  the  air  pressure  would  increase  dramatically  and  crush  many  things.  Overall  it  would  be  a  catastrophe.    

28.   Events  that  involve  jumping  or  throwing  things  for  distance  would  be  greatly  enhanced  and  records  for  distance  would  be  broken!  Swimming,  bicycling  (on  level  terrain),  and  similar  races  would  not  be  affected  very  much.  Running  races  might  be  adversely  affected  because  the  runner  would  go  high  in  the  air  with  each  step  and  perhaps  would  not  be  able  to  keep  up  a  fast  pace.  

29.   Tides  are  caused  by  the  gravitational  pull  of  the  Moon  on  the  Earth  and  its  oceans.  Because  the  water  on  the  side  of  the  Earth  closest  to  the  Moon  experiences  a  stronger  force  and  the  water  on  the  opposite  of  the  Earth  experiences  a  weaker  force,  tidal  bulges  appear.  As  the  Earth  rotates,  parts  of  its  surface  are  alternately  in  a  tidal  bulge  (resulting  in  high  tide)  and  between  the  bulges  (low  tide).  

30.   What  matters  is  the  difference  in  the  gravitational  forces  on  the  near  and  far  sides  of  the  Earth—the  size  of  the  Earth  is  a  much  more  substantial  fraction  of  the  Earth-­‐Moon  distance  than  it  is  of  the  Earth-­‐Sun  distance,  so  it  makes  a  bigger  difference  (due  to  the  1/r2  dependence)  for  the  Moon’s  gravity  than  the  Sun’s  gravity.  The  Moon’s  gravity  is  about  7%  weaker  on  the  far  side  of  the  Earth  compared  to  the  near  side,  while  the  Sun’s  gravity  only  varies  about  0.02%  over  this  range.  But  this  is  only  part  of  the  answer  because  this  effect  is  largely  compensated  for  by  the  Sun  being  much  more  massive  than  the  Moon  (7%  of  the  Moon’s  gravity  is  roughly  only  double  0.02%  of  the  Sun’s  gravity).  A  full  explanation  of  the  tides  must  include  the  motion  of  the  Earth  about  the  Earth-­‐Moon  center  of  mass.  See  the  special  topic  on  pp.  273-­‐75  of  University  Physics  by  Harris  Benson  for  a  good  discussion.  

31.   (a)    Newton’s  second  law  is  best  for  calculating  the  net  force  on  a  car  as  it  slows  down.     (b)    The  law  of  universal  gravitation  is  best  for  calculating  the  force  exerted  on  a  satellite  by  

Earth.     (c)    Newton’s  second  law  (F  =  ma    ⇒  W  =  mg)  shows  the  mathematical  relationship  

between  mass  and  weight.     (d)    Newton’s  first  law  explains  the  direction  that  a  rubber  stopper  takes  after  the  string  

that  was  keeping  it  moving  in  a  circle  overhead  is  cut.     (e)    Newton’s  third  law  explains  why  a  gun  recoils  when  fired.     (f)    Newton’s  third  law  can  be  used  to  explain  why  a  wing  on  an  airplane  is  lifted  upward  as  

it  moves  through  the  air.  

2-­‐21    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

32.   For  this  question,  we  use  Newton’s  second  law,  F  =  ma.  Because  the  slope  of  a  force  versus  acceleration  graph  is  defined  as  the  rise  (force)  divided  by  the  run  (acceleration),  we  know  the  slope  of  each  graph  is  the  mass  (m  =  F/a).  You  are  then  asked  to  rank  the  figures  according  the  mass  of  the  object,  from  smallest  to  largest.  By  inspection,  you  can  see  the  slope  of  Figure  2  is  largest,  which  thus  corresponds  to  the  largest  mass.  Also  by  inspection,  we  see  that  Figures  1  and  4  have  the  same  slope,  which  is  less  than  that  of  Figures  2  and  3,  and  therefore  have  the  smallest  mass.  Figure  3  has  a  slope  greater  than  Figures  1  and  3,  but  less  than  the  slope  of  Figure  2.  

   Figure  Number   Mass   Rank  

1   Smallest   1  2   Largest   3  3   In  between  largest  and  smallest   2  4   Smallest   1  

 33.    The  key  to  answering  the  question  is  the  statement  that  the  car/trailer  systems  are  moving  “at  constant,  albeit  different”  speeds.  This  means  for  each  car/trailer  combination  there  is  no  change  in  speed  and  therefore  no  acceleration.  If  there  is  no  acceleration,  then  there  is  no  net  force  acting  on  the  car/trailer  combination.  If  there  were  a  net  force,  the  car/trailer  combination  would  be  speeding  up  or  slowing  down.  Here  are  two  quotes  from  the  text  that  support  this  conclusion:  “Upon  first  reading  Newton’s  first  law  does  not  seem  to  be  terribly  profound.  Obviously,  an  object  will  remain  stationary  unless  a  net  force  causes  it  to  move.  But  the  law  also  states  that  anything  that  is  already  moving  with  a  certain  velocity  will  not  speed  up,  slow  down,  or  change  direction  unless  a  net  force  acts  on  it….A  car  traveling  at  a  constant  velocity  has  zero  net  force  acting  on  it  because  the  various  forces  (including  air  resistance  and  gravity)  cancel  each  other…”  (page  50);  “The  acceleration  of  a  stationary  object  or  of  one  moving  with  uniform  motion  (constant  velocity)  is  zero.  By  the  second  law,  this  means  that  the  net  force  is  also  zero  (see  Figure  2.20).  It  is  that  simple.  When  the  net  force  on  a  body  is  zero,  we  say  that  it  is  in  equilibrium,  whether  it  is  stationary  or  moving  with  constant  velocity…”  (page  57).    34.    An  object  with  mass  m  is  attached  to  a  spring  with  spring  constant  k  and  is  stretched  to  the  right  by  0.20  m  and  released.  Rank  the  oscillation  periods  of  the  mass-­‐spring  combinations  shown  in  the  Table  below  from  shortest  to  longest.  We  use  the  following  equation  for  the  frequency  of  oscillation  for  a  mass-­‐spring  combination.  

2-­‐22    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

1 0.1592

k kfm mπ

= =  

Combination   Spring  Constant  k     Mass  m   Frequency  f    

Period  T   Rank  

(a)   0.5  N/m   0.25  kg   0.22486  s-­‐1   4.447212  s   2  (b)   0.5  N/m   0.50  kg   0.159  s-­‐1   6.289308  s   3  (c)   0.5  N/m   1.00  kg   0.11243  s-­‐1   8.894425  s   4  (d)   1.0  N/m   0.25  kg   0.318  s-­‐1   3.144654  s   1  (e)   1.0  N/m   0.50  kg   0.22486  s-­‐1   4.447212  s   2  

 

ANSWERS  TO  EVEN  NUMBERED  PROBLEMS  2.   The  mass  m  of  a  child  who  weighs  300  N  is  30.6  kg,  or  2.1  slugs.  4.   The  mass  of  a  1,130-­‐kg  elephant  has  a  weight  in  newtons  and  pounds  of     (a)    11,074  N     (b)    2,491.65  lb  6.   The  net  force  on  the  motorcycle  is  F  =  -­‐1,500  N.  8.   The  mass  m  of  an  object  subjected  to  a  force  of  60  N  with  a  resulting  acceleration  of  4  m/s2  

is  m  =  15  kg.  10.   Passengers  on  the  Kingda  Ka  roller  coaster  are  accelerated  uniformly  to  a  speed  of  57  m/s  

(128  mph)  in  just  3.5  s.     (a)    The  acceleration  experience  by  the  passengers  is  a  =  16.3  m/s2,  or  1.7  g’s.     (b)    The  force  on  a  65-­‐kg  passenger  is  F  =  1,059.5  N,  or  238.2  lb.  12.   A  jet  aircraft  with  a  mass  of  4,500  kg  has  an  engine  that  exerts  a  thrust  of  60,000  N.     (a)    The  jet’s  acceleration  at  take-­‐off  is  a  =  13.3  m/s2.     (b)    The  jet’s  speed  after  it  accelerates  for  8  s  is  v  =  106.4  m/s.     (c)    The  jet  travels  a  distance  d  =  425.6  m  in  8  s.  

2-­‐23    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

14.   An  80-­‐kg  sprinter  who  accelerates  uniformly  from  0  m/s  to  9  m/s  in  3  s     (a)    has  acceleration  a  =  3  m/s2     (b)    experiences  a  force  of  F  =    240  N     (c)    travels  a  distance  d  =  13.5  m  16.   A  catapult  accelerates  an  18,000-­‐kg  jet  from  0  to  70  m/s  in  2.5  s.     (a)    The  acceleration  of  the  jet  is  a  =  28  m/s2,  or  2.9  g’s.     (b)    The  jet  travels  a  distance  d  =  87.5  m  while  accelerating.     (c)    The  catapult  exerts  a  force  F  =  504,000  N  on  the  jet.  18.   An  airplane  built  to  withstand  a  maximum  acceleration  of  6g  has  a  mass  of  1,200  kg.  A  

force  of  70,560  N  is  necessary  to  cause  this  acceleration.  20.   A  600-­‐kg  race  car  rounds  a  curve  of  radius  400  m  at  60  m/s.     (a)    The  car’s  centripetal  acceleration  is  a  =  9  m/s2,  or  0.918  g's.     (b)    The  centripetal  force  acting  on  the  car  is  F  =  5,400  N.  22.   A  0.1-­‐kg  ball  is  attached  to  a  string  and  whirled  around  in  a  circle  overhead.  The  string  

breaks  if  the  force  on  it  exceeds  60  N.  When  the  radius  of  the  circle  is  1  m,  the  maximum  speed  of  the  ball  is  v  =  24.5  m/s.  

24.   A  centripetal  force  of  200  N  acts  on  a  1,000-­‐kg  satellite  moving  with  a  speed  of  5,000  m/s  in  a  circular  orbit  around  a  planet.  The  radius  of  its  orbit  is  125,000,000  m.  

26.   At  a  distance  of  10,000  miles  from  Earth’s  center,  the  gravitational  force  on  a  space  probe  is  600  lb.  The  force  on  the  probe  

  (a)    at  20,000  miles  from  Earth’s  center  is  150  lb     (b)    at  30,000  miles  from  Earth’s  center  is  66.7  lb     (c)    at  100,000  miles  from  Earth’s  center  is  6  lb  28.   A  mass  of  m=0.75  kg  is  attached  to  a  relaxed  spring  with  k=2.5  N/m.  The  mass  rests  on  a  

horizontal,  frictionless  surface.  If  the  mass  is  displaced  by  d=0.33  m,  what  is  the  magnitude  of  the  force  exerted  on  the  mass  by  the  spring?  

  (2.5 N/m)(0.33 m) 0.825 NF kd= = =     If  the  mass  is  released  to  execute  simple  harmonic  motion  along  the  surface,  with  what  

frequency  will  it  oscillate?  

  -12.5 N/m0.159 0.290 s 0.290 Hz0.75 kg

f = = =  

2-­‐24    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

ANSWERS  TO  CHALLENGES  1.   The  force  on  a  baseball  as  it  collides  with  a  bat  is  not  transmitted  from  the  person  swinging  

the  bat.  This  is  a  collision  between  two  objects  moving  in  opposite  directions.  As  soon  as  their  surfaces  are  in  contact,  the  forces  arise  because  of  Newton’s  first  law—they  can’t  occupy  the  same  space,  so  they  have  to  change  their  speed,  which  requires  forces.  As  the  ball  and  bat  deform  each  other,  their  stiffness  causes  equal  and  opposite  forces  to  act.  

2.   Two  forces,  one  equal  to  15  N  pulling  to  the  left  and  another  equal  to  40  N  pulling  to  the  right,  act  on  a  50-­‐kg  crate  resting  on  a  horizontal  surface.  

  (a)    The  net  force  acting  on  the  crate  is  40  N  –  15N  =  25  N.  

  (b)    The  horizontal  acceleration  of  the  crate  is  2

2net force 25 kg m/s 0.5 m/smass 50 kg

a ⋅= = = .  

  c)    The  horizontal  speed  of  the  crate  after  5  s  if  it  starts  from  rest  is  ( )( )20.5 m/s 5 s =2.5 m/s.at= =v  

  (d)    The  crate  travels  distance   ( )( )( )22 212 0.5 0.5 m/s 5 s = 6.25 md at= =  during  this  time.  

3.   The  centripetal  force  necessary  to  keep  a  car  on  a  flat  road  is  supplied  by  the  static  friction  between  the  tires  and  the  road  (Figure  2.19),  and  the  force  acting  downward  on  the  road  is  the  weight  of  the  car  (W  =  mg).  On  a  banked  curve,  there  is  a  component  of  the  weight  acting  to  hold  the  car  on  the  curve  (similar  to  the  force  acting  on  a  block  on  an  inclined  plane  in  Figure  2.5).  

4.   Two  equal  and  opposite  forces  cancel  each  other  if  they  are  acting  on  the  same  object.  In  the  carriage-­‐horse  example,  one  400-­‐N  force  acts  on  the  carriage  and  the  other  acts  on  the  horse.  The  actual  motion  of  the  horse  and  carriage  depends  on  the  net  force  exerted  on  each.  The  frictional  forces  acting  between  the  road  and  the  horse  and  between  the  road  and  the  carriage  have  to  be  taken  into  account.  In  this  case,  the  latter  force  is  less  than  400  N  so  there  is  a  net  force  on  the  carriage  and  it  accelerates.  

5.   The  force  acting  between  two  70-­‐kg  people  standing  1  m  apart  is  given  by  the  following.  

 ( )( )( )

( )

11 2 2

2

7

6.67 10 N m /kg 70 kg 70 kg

1 m

3.3 10 N

F−

× ⋅=

= ×

 

6.   Because  of  the  Earth’s  rotation,  objects  on  its  surface  (except  at  the  poles)  are  moving  to  the  east.  The  closer  they  are  to  the  equator,  the  higher  their  speed.  So  objects  launched  towards  the  east  from  near  the  equator  require  a  bit  less  fuel  to  reach  orbital  speed  since  they  have  a  running  start.  For  example,  rockets  sitting  on  the  launch  pad  in  Florida  are  already  moving  400  m/s  towards  the  east.  

2-­‐25    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

7.   Why  are  the  rockets  used  to  put  satellites  and  spacecraft  into  orbit  usually  launched  from  the  equator?  Two  factors  are  involved  here,  both  caused  by  the  Earth’s  rotation.  The  main  factor  is  that  part  of  the  gravitational  force  acting  on  objects  is  needed  as  a  centripetal  force  because  objects  are  moving  in  circles  around  the  Earth’s  axis.  The  closer  an  object  is  to  the  Earth’s  equator,  the  higher  its  speed  and  the  greater  the  centripetal  force  required.  The  remaining  gravitational  force  causes  objects  to  accelerate  while  falling.  The  second  factor  is  that  the  rotation  makes  the  Earth  bulge  at  the  equator  so  that  objects  successively  closer  to  the  equator  are  farther  away  from  the  Earth’s  center.  In  particular,  objects  at  the  Earth’s  equator  are  about  13  miles  farther  from  its  center  than  objects  at  the  poles.  By  the  universal  law  of  gravitation,  the  gravitational  force  is  therefore  less  strong  near  the  equator  so  that  falling  bodies  have  lower  acceleration  there.  

8.   A  200-­‐kg  communications  satellite  is  placed  into  a  circular  orbit  around  Earth  with  a  radius  of   74.23 10 m×  (26,300  miles)  

  (a)    The  gravitational  force  on  the  satellite  is  

 ( )( )( )

( )11 2 2 24

27

6.67 10 N m /kg 200 kg 6 10 kg

4.23 10 m

44.7 N.

F−× ⋅ ×

=

 

  (b)    The  speed  v  of  the  satellite  is  calculated  from  the  centripetal  force  F.  

  ( )( )

22

72

2 6 2 2

44.7 N 4.23 10 m200 kg

9.46 10 m /s3,075 m/s

m FrFr m

= ⇒ =

×=

= ×=

v v

v

vv

 

  (c)    Show  that  the  period  of  the  satellite  is  1  day.  

  ( )( )( )7

8

3

circumference

2 3.14 4.23 10 m23,075 m/s

2.66 10 m 86,388 s3.075 10 m/s

1 day 24 h 60 min 60 s 86,400 s

d tdt

rt π

=

= =

×= =

×= =×

= × × =

v

v v

v  

  (The  discrepancy  is  due  to  round  off  error.)  

2-­‐26    

©2018  Cengage.  May  not  be  scanned,  copied,  or  duplicated,  or  posted  to  a  publicly  accessible  website,  in  whole  or  in  part.  

 

9.   Calculate  the  mass  of  the  Earth  as  outlined  in  Section  2.7.  

 ( )( )

2

2

22 6

11 2 2

14 2 224

11 2 2

9.8 m/s 6.4 10 kg6.67 10 N m /kg

4.014 10 m kg /s 6.0 10 kg6.67 10 N m /kg

GM gRg MR G

M −

= ⇒ =

×=

× ⋅× ⋅= ≅ ×

× ⋅

 

10.   Is  there  a  contradiction  between  the  law  of  universal  gravitation  and  the  statement  that  the  gravitational  force  acting  on  a  falling  body  near  Earth’s  center—its  weight—is  constant?  Yes,  there  is  a  contradiction,  but  as  a  practical  matter  it  can  be  ignored.  When  we  consider  real  life  free-­‐fall  problems  we  usually  think  of  motion  near  the  surface  of  the  Earth  over  vertical  distances  on  the  order  of  meters.  The  r  in  the  law  of  universal  gravitation  is  the  distance  from  the  falling  body  to  the  center  of  the  Earth,  which  is  thousands  of  miles.  The  range  of  variation  of  r  during  the  free  fall  is  so  small  compared  to  r  itself  that  we  can  treat  r  as  constant  in  our  approximate  calculations  and  introduce  very  little  error.  

  The  exact  calculation  can  be  done  using  more  sophisticated  mathematics  or  a  computer  program.