Cg 2010 11 Intersection 01

  • Upload
    taemu

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/8/2019 Cg 2010 11 Intersection 01

    1/13

    11. Geometric Intersection:

    Ut pater, ita filius; ut mater, ita filia

    . , clipping, region reduction . Geometric Intersection special case, degenerated case point .

    11.1 Convex Polygon IntersectionProblem 11.1.1 p.261 7.16 . special case . , .

    Problem 11.1.2 point set seperable convex polygon intersection . CONVEX intersection application .

    Problem 11.1.3 convex hull n , m point inclusion separability .

    , ,

    1

  • 8/8/2019 Cg 2010 11 Intersection 01

    2/13

    Problem 11.1.4 convex hull time complexity lower bound convex hull intersection point min, max bound . maxupper bound .

    Problem 11.1.5 non-convex time complexity O(nm). nm polygon edge. 7-14 .

    Problem 11.1.6 ( |P| = n, |Q| = m ) intersection lower boundO(nm) example .

    Problem 11.1.7 (Chien, Olson and Naddor ) 7.8 convex polygon edge (racing) O(n + m) convex polygon intersection .

    .

    pp.246 . A B vector product. A B + .

    Problem 11.1.8 (2, 1, 1) (1, 2, 3) .

    2

  • 8/8/2019 Cg 2010 11 Intersection 01

    3/13

    1

    2

    3

    4

    5

    6

    7

    8

    a

    b

    c

    d

    e

    f

    g

    Figure 1: convex hull polygon racing .

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    a

    b

    c

    d

    e

    f

    g

    h

    Figure 2: Convex Hull Intersection. convex hull racing algorithm.

    3

  • 8/8/2019 Cg 2010 11 Intersection 01

    4/13

    Solution) Equation 1.1 . .

    i j ka0 a1 a2b0 b1 b2

    3 (i, j, k) .

    (a1 b2 a2 b1, a2 b0 a0 b2, a0 b1 a1 b0)

    Problem 11.1.9 Convex polygon intersection line segment intersec-tion . intersection (x, y) . pp.250 code .

    Problem 11.1.10 Denominator = 0 parallel.

    Problem 11.1.11 nm , n m O(n +m) optimal . convex . optimal , break point , nm .

    Problem 11.1.12 7.16 degenerated case . .

    4

  • 8/8/2019 Cg 2010 11 Intersection 01

    5/13

    11.2 Intersection among multiple segments

    n line segment intersection point O(n2) worst case

    lower bound . intersection point p, p order n2 output sensitive algorithm

    .

    Problem 11.2.1 line-segment intersect degenerated case. code

    .

    1. segment

    2.

    3. parallel

    Theorem 11.2.1 (Bentley-Ottman, 1979)n line segment intersection k intersection point O(k log n)

    time .

    Theorem 11.2.2 (Chazelle and Edelsbrunner, 1992, Balaban 1995)n line segment intersection k O(n log n+k) timeO(n)space .

    Problem 11.2.2 Sweep Line Sweep Line

    Queue L Segment Point(beginning, ending, intersection) .

    5

  • 8/8/2019 Cg 2010 11 Intersection 01

    6/13

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    A

    B

    C

    D

    E

    F

    G

    Figure 3: Segment to Segment Intersection.

    11.3 Extreme Point of Convex Polygon

    Problem 11.3.1 Convex polygon (with respect to y-axis) .

    Problem 11.3.2 convex hull 45 orientation bounding box

    . robust.

    Problem 11.3.3 index a b index . code Midway( ) .

    6

  • 8/8/2019 Cg 2010 11 Intersection 01

    7/13

    Problem 11.3.4 Dot(u,A) > 0

    .

    Problem 11.3.5 (Research Problem) . bounding rectangle . . vectorc c-oriented bounding rectangle .

    Problem 11.3.6 (Line-Polygon distance:) P. Query line L . L

    P . .

    minx,y

    {|x y| : x P, y L}

    xy. P(preprocessing) complexity . P static . O(log n) time algorithm.

    11.4 Extremal Polytope Queries . . Kirkpatrick O(log n) preprocessing . independent set

    extreme point locality .

    Problem 11.4.1 2 binary searching 3 polytopes .

    7

  • 8/8/2019 Cg 2010 11 Intersection 01

    8/13

    Problem 11.4.2 independent set . maximalindependent set . vertex cover.

    ab

    c

    d

    e

    f

    g

    h

    i j

    k

    l

    m

    n

    op

    Figure 4: Find an independent set for a planar graph given

    Problem 11.4.3 Plane graphPlanar graph .

    Problem 11.4.4 Planar Graph embedding sensor network localization .

    Problem 11.4.5 7.12 planar independentset .

    8

  • 8/8/2019 Cg 2010 11 Intersection 01

    9/13

    Problem 11.4.6 planar graph n vertex 1/18 n vertex vertex . ( ?)

    Problem 11.4.7 Convex polytope planar graph.

    Problem 11.4.8 algorithm 7.3 independent set n (at least) n

    18 vertex independent set

    . ( planar graph time complexity analysis .)

    Problem 11.4.9 simplified polytopes O(n).

    Problem 11.4.10 . (onemember of independent set) re-triangulate constant time .

    9

  • 8/8/2019 Cg 2010 11 Intersection 01

    10/13

    Problem 11.4.11 3 time-space GIS extremalpolytope query .

    Problem 11.4.12 Plane-Polyhedron distance. Exercises 7.5.6

    Problem 11.4.13 Finger Probing a polytope. Exercises 7.5.6.8

    11.5 Planar Point Location(PPL)

    . P P L({si, q} {si} Query point p. p s . p {si} DT nearest point . ( in a constant time,amortized version ) query point q . application programming tool . . LEDA {pi} {qj} 100 Query point p . , .

    Problem 11.5.1 Planar Point Locationformal .

    10

  • 8/8/2019 Cg 2010 11 Intersection 01

    11/13

    Problem 11.5.2 Si Vornoi Region PPL Vornoi Diagram DT . PPL polytopesinclusion .

    Problem 11.5.3 k-order Voronoi diagram .

    Problem 11.5.4 Kirkpatrick independent searching structure point location .

    Problem 11.5.5 monotone subdivision decompose , time complexity .

    Problem 11.5.6 20 Voronoi diagram monotone sub-

    division .

    11

  • 8/8/2019 Cg 2010 11 Intersection 01

    12/13

    11.6 Assignment No.11: Applying Line Segment Intersecting

    Problem 11.6.1 LEDA example Line Segment Intersection .

    Problem 11.6.2 line segment n . n = 500 1250000 . ,

    .

    Problem 11.6.3 2 (square) .

    . 2 (xa, ya), (xb, yb) . report. ( .)

    12

  • 8/8/2019 Cg 2010 11 Intersection 01

    13/13

    B

    C

    D

    E

    F

    G

    H

    K

    A

    Figure 5: .

    13