36
1 CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]

CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

1

CE 530 Molecular Simulation

Lecture 20 Phase Equilibria

David A. Kofke

Department of Chemical Engineering SUNY Buffalo

[email protected]

Page 2: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

2

Thermodynamic Phase Equilibria

¡ Certain thermodynamic states find that two (or more) phases may be equally stable •  thermodynamic phase coexistence

¡ Phases are distinguished by an order parameter; e.g. •  density •  structural order parameter •  magnetic or electrostatic moment

¡ Intensive-variable requirements of phase coexistence •  Ta = Tb

•  Pa = Pb

•  µia = µi

b, i = 1,…,C

Page 3: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

3 Phase Diagrams ¡ Phase behavior is described via phase diagrams

¡ Gibbs phase rule •  F = 2 + C – P

F = number of degrees of freedom –  independently specified thermodynamic state variables

C = number of components (chemical species) in the system P = number of phases

•  Single component, F = 3 – P

Fiel

d va

riabl

e e.

g., t

empe

ratu

re

Density variable

L+V tie line

V L S

S+V

L+S triple point

critical point

Fiel

d va

riabl

e (p

ress

ure)

Field variable (temperature)

V

L

S

critical point isobar

two-phase regions two-phase lines

Page 4: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

4 Approximate Methods for Phase Equilibria by Molecular Simulation 1.

¡ Adjust field variables until crossing of phase transition is observed •  e.g., lower temperature until condensation/freezing occurs

¡ Problem: metastability may obsure location of true transition

¡ Try it out with the LJ NPT-MC applet

Pres

sure

Temperature

V

L

S

Metastable region

Tem

pera

ture

Density

L S

S+V

L+S

isobar

L+V V Hysteresis

Page 5: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

5

Approximate Methods for Phase Equilibria by Molecular Simulation 2.

¡ Select density variable inside of two-phase region •  choose density between liquid and vapor values

¡ Problem: finite system size leads to large surface-to-volume ratios for each phase •  bulk behavior not modeled

¡ Metastability may still be a problem

¡ Try it out with the SW NVT MD applet

Tem

pera

ture

Density

L S

S+V

L+S L+V V

Page 6: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

6

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

Simulation data

Simulation data or equation of state

T constant

Pressure

Page 7: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

7

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

Simulation data or equation of state

T constant

Pressure

Page 8: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

8

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

Simulation data or equation of state

T constant

Pressure

Page 9: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

9

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

Simulation data or equation of state

T constant

Pressure

Page 10: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

10

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

×

Simulation data or equation of state

Coexistence T constant

Pressure

Page 11: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

11

Rigorous Methods for Phase Equilibria by Molecular Simulation

¡ Search for conditions that satisfy equilibrium criteria •  equality of temperature, pressure, chemical potentials

¡ Difficulties •  evaluation of chemical potential often is not easy •  tedious search-and-evaluation process

Che

mic

al p

oten

tial

×

Simulation data or equation of state

Coexistence T constant

Pressure

Pres

sure

Temperature

V L

S

+

Many simulations to get one point on phase diagram

Page 12: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

12

Gibbs Ensemble 1.

¡ Panagiotopoulos in 1987 introduced a clever way to simulate coexisting phases without an interface

¡ Thermodynamic contact without physical contact •  How?

Two simulation volumes

Page 13: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

13

Gibbs Ensemble 2.

¡ MC simulation includes moves that couple the two simulation volumes

¡ Try it out with the LJ GEMC applet

Particle exchange equilibrates chemical potential

Volume exchange equilibrates pressure

Incidentally, the coupled moves enforce mass and volume balance

Page 14: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

14

Gibbs Ensemble Formalism

¡ Partition function

¡ Limiting distribution

¡ General algorithm. For each trial: •  with some pre-specified probability, select

molecules displacement/rotation trial volume exchange trial molecule exchange trial

•  conduct trial move and decide acceptance

1

1 1 1 1 10 0

( , , ) ( , , ) ( , , )VN

GE

NQ N V T dV Q N V T Q N N V V T

== − −∑ ∫

2 1

2 1

N N NV V V

≡ −≡ −

1 21 21 2 1 1 2 23

( , ) ( , )1 1 1 1 2( , , )

N NNN NN N N U V N U VN

GEN V dV d d V d e V d eQ

β βπ − −Λ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦s sr s s s s

Page 15: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

15 Molecule-Exchange Trial Move Analysis of Trial Probabilities

¡ Detailed specification of trial moves and probabilities

Event[reverse event]

Probability[reverse probability]

Select box A[select box B]

1/21/2

Select molecule k[select molecule k]

1/NA[1/(NB+1)]

Move to rnew

[move back to rold]ds/1

[ds/1]

Accept move[accept move]

min(1,χ)[min(1,1/χ)]

Forward-step trial probability

Scaled volume

1 min(1, )2 A

dN

χ× ×s

Reverse-step trial probability

11 min(1, )2 1B

dN χ× ×

+s

χ is formulated to satisfy detailed balance

Page 16: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

16

Molecule-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

πi πij πj πji =

Limiting distribution

Forward-step trial probability

1 min(1, )2 A

dN

χ× ×sReverse-step trial probability

11 min(1, )2 1B

dN χ× ×

+s

3( , ) ( , )( , , )N NA BA BA B A A B B

NN NN N N U V N U VN

A A A BAGEN V dV d d V d e V d eQ

β βπ − −Λ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦s sr s s s s

Page 17: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

17

Molecule-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

πi πij πj πji =

Forward-step trial probability

1 min(1, )2 A

dN

χ× ×sReverse-step trial probability

11 min(1, )2 1B

dN χ× ×

+s

1 11 11 1

3 3

min(1, )min(1, )2 2( 1)

old newA B A BB A BN N N NN N N NU U

A AB BA AN GE N GE

A B

de V d V d dV e V d V d dVdN NQ Q

β βχχ − +− +− −

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ +⎢ ⎥Λ Λ⎣ ⎦ ⎣ ⎦

ss s s ss

Limiting distribution

3( , ) ( , )( , , )N NA BA BA B A A B B

NN NN N N U V N U VN

A A A BAGEN V dV d d V d e V d eQ

β βπ − −Λ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦s sr s s s s

Page 18: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

18

Molecule-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

1 11 11 1

3 3

min(1, )min(1, )2 2( 1)

old newA B A BB A BN N N NN N N NU U

A AB BA AN GE N GE

A B

de V d V d dV e V d V d dVdN NQ Q

β βχχ − +− +− −

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ +⎢ ⎥Λ Λ⎣ ⎦ ⎣ ⎦

ss s s ss

πi πij πj πji =

Forward-step trial probability

1 min(1, )2 A

dN

χ× ×sReverse-step trial probability

11 min(1, )2 1B

dN χ× ×

+s

1 11

old newU U B

A A B

Ve eN V N

β βχ− −=+

1totUB A

A B

V N eV N

βχ − Δ=+ Acceptance probability

Page 19: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

19

Volume-Exchange Trial Move Analysis of Trial Probabilities

¡ Take steps in λ = ln(VA/VB)

¡ Detailed specification of trial moves and probabilities

Event[reverse event]

Probability[reverse probability]

Step to λnew

[step to λold]dλ/Δdλ/Δ

Accept move[accept move]

min(1,χ)[min(1,1/χ)]

Forward-step trial probability

min(1, )dλ χ×Δ

Reverse-step trial probability

1min(1, )dχ

λ ×Δ

( )1 1

1A B A B

VA AV V V V

A A BV

d dV dV

dV V V d

λ

λ

= + =

=

Page 20: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

20

Volume-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

πi πij πj πji =

Limiting distribution

Forward-step trial probability

Reverse-step trial probability

31 1( , ) ( , )( , , )

N NA BA BA B A A B BN

N NN N N U V N U VNA A BAGE

dN V d d d V d e V d eVQ

β βλπ λ + +− −Λ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦s sr s s s s

min(1, )dλ χ×Δ

1min(1, )dχ

λ ×Δ

Page 21: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

21

Volume-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

πi πij πj πji =

1 11 11 1,,,,

3 3

min(1, )min(1, )newold

A BA BA B B N NN NN N UN NUB jA jB iA i

N GE N GE

de V d V de V d V d dQ Q

ββχλλ χ

+ ++ + −−

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥Δ Δ⎣ ⎦ ⎢ ⎥Λ Λ ⎣ ⎦

s ss s

Limiting distribution

Forward-step trial probability

Reverse-step trial probability

31 1( , ) ( , )( , , )

N NA BA BA B A A B BN

N NN N N U V N U VNA A BAGE

dN V d d d V d e V d eVQ

β βλπ λ + +− −Λ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦s sr s s s s

min(1, )dλ χ×Δ

1min(1, )dχ

λ ×Δ

Page 22: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

22

Volume-Exchange Trial Move Analysis of Detailed Balance

Detailed balance

πi πij πj πji =

Forward-step trial probability

Reverse-step trial probability

1 1 1 1, ,, ,

old newA B A BN N N NU U

B i B iA i A ie V V e V Vβ βχ+ + + +− −=

1 1A Btot

N Nnew newUA B

old oldA B

V V eV V

βχ+ +

− Δ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Acceptance probability

1 11 11 1,,,,

3 3

min(1, )min(1, )newold

A BA BA B B N NN NN N UN NUB jA jB iA i

N GE N GE

de V d V de V d V d dQ Q

ββχλλ χ

+ ++ + −−

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥Δ Δ⎣ ⎦ ⎢ ⎥Λ Λ ⎣ ⎦

s ss s

min(1, )dλ χ×Δ

1min(1, )dχ

λ ×Δ

Page 23: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

27

Gibbs Ensemble Limitations ¡ Limitations arise from particle-exchange requirement

•  Molecular dynamics (polarizable models) •  Dense phases, or complex molecular models

•  Solid phases N = 4n3 (fcc)

¡ and sometimes from the volume-exchange requirement too

?

Page 24: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

28

Approaching the Critical Point ¡ Critical phenomena are difficult to capture by molecular simulation ¡ Density fluctuations are related to compressibility ¡ Correlations between fluctuations important to behavior

•  in thermodynamic limit correlations have infinite range •  in simulation correlations limited by system size •  surface tension vanishes

Pres

sure

Density

L+V V L S

S+V

L+S

C isotherm

0Pρ∂∂ = 1 1

T

VV P P

ρκρ

∂ ∂⎛ ⎞ ⎛ ⎞= − = →∞⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠2ρσ κ∝ →∞

Page 25: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

29

Critical Phenomena and the Gibbs Ensemble

¡ Phase identities break down as critical point is approached •  Boxes swap “identities” (liquid vs. vapor) •  Both phases begin to appear in each box

surface free energy goes to zero

Page 26: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

30

Gibbs-Duhem Integration

¡ GD equation can be used to derive Clapeyron equation

•  equation for coexistence line ¡ Treat as a nonlinear first-order ODE

•  use simulation to evaluate right-hand side

¡ Trace an integration path the coincides with the coexistence line

Fiel

d va

riabl

e (p

ress

ure)

Field variable (temperature)

V

L

S

critical point

∂ln p∂β

⎛⎝⎜

⎞⎠⎟σ

= − ΔhΔZ

Page 27: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

31

lnp

β lnp

lnp

β

β

GDI Predictor-Corrector Implementation ¡ Given initial condition and slope

(= –Δh/ΔZ), predict new (p,T) pair.

¡ Evaluate slope at new state condition…

¡ …and use to correct estimate of new (p,T) pair

Page 28: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

32

GDI Simulation Algorithm

¡ Estimate pressure and temperature from predictor ¡ Begin simultaneous NpT simulation of both phases at the

estimated conditions ¡ As simulation progresses, estimate new slope from ongoing

simulation data and use with corrector to adjust p and T ¡ Continue simulation until the iterations and the simulation

averages converge ¡ Repeat for the next state point

Each simulation yields a coexistence point. Particle insertions are never attempted.

Page 29: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

33

GDI Sources of Error ¡ Three primary sources of error in GDI method

1

Stochastic error

lnp

β

2

Uncertainty in slopes due to uncertainty in simulation averages

Quantify via propagation of error using confidence limits of simulation averages

Finite step of integrator

•  Smaller step •  Integrate series with

every-other datum • Compare predictor and

corrector values

Stability

•  Stability can be quantified

• Error initial condition can be corrected even after series is complete

1

2

1

2 True curve

? Incorrect initial condition

Page 30: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

34

GDI Applications and Extensions

¡ Applied to a pressure-temperature phase equilibria in a wide variety of model systems •  emphasis on applications to solid-fluid coexistence

¡ Can be extended to describe coexistence in other planes •  variation of potential parameters

inverse-power softness stiffness of polymers range of attraction in square-well and triangle-well variation of electrostatic polarizability

•  as with free energy methods, need to identify and measure variation of free energy with potential parameter

•  mixtures

A Uβ βλ λ

∂ ∂=∂ ∂

Page 31: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

35

Semigrand Ensemble ¡ Thermodynamic formalism for mixtures

¡ Rearrange

¡ Legendre transform

•  Independent variables include N and Δµ2 •  Dependent variables include N2

must determine this by ensemble average ensemble includes elements differing in composition at same total N

¡ Ensemble distribution

( ) 1 1 2 2Ud PdVd A dN dNβ βµ βµβ β +− +=

( ) 1 1 2 2 1 2

1 2 2

( ) ( )Ud A d N N dNd

dUd P N dN

dVVdPβ ββ βµ β µ µ

βµ β µβ β= + + + −

+ + Δ−=−

1 2 1 2dN dNβµ βµ+ −

( )( )

2 2

1 2 2

( )d Y d A NdP N NUd V ddβ

β β β µβµ β µβ

≡ − Δ

= + − Δ−

( ) 2 2 23

( , , )1 12 !

, ,N N

NE p r N NN N

h NN e eβ β µπ − + Δ

Υ=r p

Page 32: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

36

GDI/GE with the Semigrand Ensemble

¡ Governing differential equation (pressure-composition plane)

2

2 ,

ln

T

xpZσβ µ

⎛ ⎞ Δ∂ =⎜ ⎟∂ Δ Δ⎝ ⎠

0.10

0.09

0.08

0.07

0.06

Pres

sure

1.00.80.60.40.20.0Mole Fraction of Species 2

Gibbs Ensemble Gibbs-Duhem Integration

σ11 = 1 ε11 = 1σ12 = 1 ε12 = 0.75σ22 = 1 ε22 = 1

Simple LJ Binary

Page 33: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

37

GDI with the Semigrand Ensemble ¡ Freezing of polydisperse hard spheres

•  appropriate model for colloids ¡ Integrate in pressure-polydispersity plane

¡ Findings •  upper polydisersity bound to freezing •  re-entrant melting

1.4

1.3

1.2

1.1

1.0

0.9

Den

sity

0.70.60.50.40.30.20.10.0Polydispersity

c1 = 1

c2 = 1

solid

fluid

22 / 2( / )sat

dp md V N

νν

Δ⎛ ⎞ =⎜ ⎟ Δ⎝ ⎠

Composition (Fugacity)

Diameter

m2 (ν)

Page 34: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

38

Other Views of Coexistence Surface ¡ Dew and bubble lines ¡ Residue curves ¡ Azeotropes

•  semigrand ensemble •  formulate appropriate differential equation

•  integrate as in standard GDI method right-hand side involves partial molar properties

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ∂

∂−⎟⎟⎠

⎞⎜⎜⎝

⎛Δ∂

⎟⎟⎠

⎞⎜⎜⎝

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎠⎞⎜

⎝⎛∂∂

−⎟⎠⎞⎜

⎝⎛∂∂

+⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ ΔΔΔΔ

ββ

µββµββµβµβ

µβµβ

βββ

βµβ

,

1

,

1

,

1

,

1

,

1

,

1

)(

PP

azeo

sat

PP

azeo XY

ddP

PY

PXYX

dd

)( VL

VL

azeo

sat

vvhh

ddP

−−−=⎟

⎟⎠

⎞⎜⎜⎝

ββ

Page 35: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

39

Tracing of Azeotropes ¡ Lennard-Jones binary, variation with intermolecular

potential •  σ11 = 1.0; σ12 = 1.05; σ22 = variable •  ε11 = 1.0; ε12 = 0.90; ε22 = 1.0 •  T = 1.10

0.0425

0.0445

0.0465

0.0485

0.0505

0.0525

0.0545

0 0.1 0.2 0.3 0.4 0.5X2, Y2

Coe

xist

ence

pre

ssur

e, P

*

Page 36: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture20.ppt.pdf · CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke ... • Molecular dynamics (polarizable

40

Summary ¡ Thermodynamic phase behavior is interesting and useful ¡ Obvious methods for evaluating phase behavior by

simulation are too approximate ¡ Rigorous thermodynamic method is tedious ¡ Gibbs ensemble revolutionized methodology

•  two coexisting phases without an interface ¡ Gibbs-Duhem integration provides an alternative to use in

situations where GE fails •  dense and complex fluids •  solids

¡ Semigrand ensemble is useful formalism for mixtures ¡ GDI can be extended in many ways