25
  CCPP Start-up Curves 작성 지침 RERERENCE PROJECT : F Class GTG Combined Cycle, 2-2-1 Multi Shaft Configuration CCPP Start-up 과정에서 IP LP Steam SystemStart-up 기준으로서의 역할을 하지 않으 , HP S team SystemStart-up Time 등을 결정하는 기준 역할을 합니다. 이유는, HP SteamSTG 기동을 주도하며, HP Drum Steel두께가 가장 두꺼워 Water Temperature Change Rate가장 작기 때문입니다. Reheater단지 Tube존재하기 때문에 Ramping-up Time 등에 영향을 미치지 않으며, 온도 변화도 HP Steam System거의 동일하므로, Reheat Type CCPPStart-up Curves 성에서도 HP Steam System운전 상태만을 고려해도 문제가 없습니다. 1. Pre-warming of HRSG HP Drum Water 1) Pre-warming 설비의 필요성 HP DrumPre-warming SystemHP Drum수명 유지를 위해서 필요합니다. 특히, HP Drum Water과냉(Sub-cooled) 상태에서 Start-up하는 경우에는(예를 들어 15 oC), HP Drum WaterTemperature Change RateControl있는 방법이 없어서, 최소 HP Drum Water Temperature대기압에서의 포화온도인 100 oC 이상으로 유지하기 Pre-warming System반드시 필요합니다. Pre-warming 운전시 Drum에서의 Water Hammering 때문에 설치를 망설이거나, 설치하지 말아야 한다는 주장도 있는데, HP Drum수명 유지를 위해서는 반드시 필요합니다. Water Hammering 현상을 완화시키기 위해서는 Pre-warming위한 Sparging SteamInjecti on Flow Rate가능하면 줄여야 합니다. Pre-warming천천히 해야 합니다. REFERENCE PROJECTHP DrumPre-warming 최종 유지 온도가 185 oc이며, Pre- warmingSteam LineTemperature Control Valve(TCV)설치되어 있는데, HP Drum 도가 185 oC되는 시점부터 TCV사용해 HP Drum 온도를 185 oC일정하게 유지 하면 Injection되는 Sparging Steam Flow Rate작아 Hammering 현상이 거의 나타나지 았습니다. (180 oC에서 Open, 185 oC에서 Close 하는 형식의 Open-Close Control하며, Sparging Flow크지 않도록 TCV Opening조절함.)

CCPP StartUp Time Calc Description ForRelease 3

Embed Size (px)

DESCRIPTION

startup

Citation preview

  • CCPP Start-up Curves RERERENCE PROJECT : F Class GTG Combined Cycle, 2-2-1 Multi Shaft Configuration CCPP Start-up IP LP Steam System Start-up , HP Steam System Start-up Time . , HP Steam STG , HP Drum Steel Water Temperature Change Rate . Reheater Tube Ramping-up Time , HP Steam System , Reheat Type CCPP Start-up Curves HP Steam System . 1. Pre-warming of HRSG HP Drum Water 1) Pre-warming HP Drum Pre-warming System HP Drum . , HP Drum Water (Sub-cooled) Start-up ( 15 oC), HP Drum Water Temperature Change Rate Control , HP Drum Water Temperature 100 oC Pre-warming System . Pre-warming Drum Water Hammering , , HP Drum . Water Hammering Pre-warming Sparging Steam Injection Flow Rate . Pre-warming . REFERENCE PROJECT HP Drum Pre-warming 185 oc, Pre-warming Steam Line Temperature Control Valve(TCV) , HP Drum 185 oC TCV HP Drum 185 oC Injection Sparging Steam Flow Rate Hammering . (180 oC Open, 185 oC Close Open-Close Control, Sparging Flow TCV Opening .)

  • Sparging Steam Aux. Boiler Turn-down Ratio TCV , HP Drum 140 oC Sparging Steam Manual 185 oC , Injection Flow Rate Hammering . HP Drum Water , Pre-warming Pre-warming Water Hammering . HP Drum Pre-warming Gas Turbine HRSG Temp Match Gas Turbine Exhaust Gas Pre-warming , .

    1) Gas Turbine Exhaust Gas Flow Temperature , HP Drum Allowable Temperature Change Rate . 100 oC , 100 oC 10 kg/cm2g Start-up Vent Valve Bypass Valve , HP Drum Allowable Temperature Change Rate .

    2) NOx Gas Turbine ,

    2 , .

    HRSG HP Drum , HP Drum Allowable Temperature Change Rate . 140 kg/cm2g REFERENCE PROJECT , HP Drum Cold Start Allowable Temperature Change Rate 3.9 oC/min. , IP Drum(27 kg/cm2g) 10 oC/min. LP Drum(7 kg/cm2g) 27.8 oC/min.. 2) Pre-warming

  • Pre-warming 10 kg/cm2g 185 oC . , 10 kg/cm2g Start-up Vent Bypass Valve . , Sparging Steam Pre-warming . 10 kg/cm2g , 185 oC , Sparging Steam . , Sparging Steam , Pre-warming . 3) Pre-warming Time

    - HP Evaporator Drum Water Steel CMC = Mw Cpw + Mstl x Cps wherein ; CMC : Combined mass multiplied by Cp of HP Evaporator/Drum Water & Steel Mw : Water mass Cpw : Water specific heat Mstl : Steel mass Cps : Steel specific heat ) Water mass = 54432 kg, Water Cp = 1 kcal/(kg-oC) Steel mass = 22680 kg, Steel Cp = 0.12 kcal/(kg-oC) CMC = 54432 x 1 + 22680 x 0.12 = 57154 kcal/oC

    - Sparging Steam HP Drum Water HA = Ms x {Hs (Hwf Hwi) / 2} wherein : HA : Heat added by sparging steam Ms : Sparging steam mass flow rate (decided by supply system) Hs : Sparging steam enthalpy

  • Hwf : Final enthalpy of HP drum water Hwi : Initial enthalpy of HP drum water ) Ms = 4536 kg/hr (sparging steam system sizing flow rate), Hs = 694 kcal/kg, Hwf = 187.6 kcal/kg(saturation water enthalpy at 185 oC), Hwi = 15.1 kcal/kg(Sub-cooled water enthalpy at 15 oC) HA = 4536 x {694 (187.6 15.1) / 2} = 2756252 kcal/hr

    - Temperature Rising Rate by Sparging TRR = HA / CMC ) TRR = 2756252 kcal/hr / 57154 kcal/oC = 48.2 oC/hr = 0.8 oC/min.

    - Pre-warming Time PWt = (Twf Twi) / TRR wherein : Twf : Final water temperature of HP drum water Twi : Initial water temperature of HP drum water ) PWt = (185 oC 15 oC) / 0.8 oC/min. = 213 min.

    ) Hot Warm Start-up Start-up HP Drum Pre-warming Pre-warming . 2. GTG Start-up through HRSG Temp Matching Load Gas Turbine Start-up Start-up Vent Valves Bypass Valves , Drain Valves . Drain Valves Steam , GTG Start-up Steam Flow , GTG Exhaust Gas Purge HP Drum Water , Firing HP Drum .

  • , Purge HP Drum Water Firing , Purge Firing HP Drum , . Steam Flow Gas Turbine Generator Synchronization HP Drum 0.7 kg/cm2g , HP Drum 0.7 kg/cm2g Start-up Vent Valves Flow . Hot Start-up HP Drum Gas Turbine 0.7 kg/cm2g , Gas Turbine Generator Synchronization Start-up Vent Valves Flow . Gas Turbine Generator Synchronization Start-up Vent Valves , Gas Turbine Generator Synchronization Start-up and Synchronization , HP Drum . Gas Turbine Generator Synchronization Gas Turbine HRSG Temperature Matching . HRSG Temperature Matching HRSG Superheater Reheater Tubes Tubes , Gas Turbine Exhaust Gas Temperature Tubes Gas Turbine . Superheater Reheater Carbon Steel , HRSG Temperature Matching Carbon Steel Creep Temperature 427 oC . RERERECNE PROJECT HRSG Temperature Matching 400 oC . HRSG Temp Matching Tubes , HRSG Start-up Mode(Cold, Warm, Hot) . 1) Gas Turbine Start-up Gas Turbine Start-up DCS APS(Automatic Plant Start-up & Shut-down) Start , Purge Cycle Firing, IGV Open to Minimum Angle Grid FSNL(Final Speed No Load) , Auto Synchronization ON Grid Synchronization Minimum Load . `

  • Gas Turbine Exhaust Gas Flow Temperature APS Gas Turbine , Gas Turbine Gas Turbine Start-up Curves . Purge Cycle Start HRSG Purge Cycle . Purge Cycle HRSG Gas Turbine Cycle, Gas Turbine Start-up Device(SFC, Motor ) Gas Turbine 23% Speed . NFPA Purge Volume HRSG Gas Volume 5 Volume , REFERENCE PROJECT Purge Time 11 . Purge Cycle HRSG HRSG , .

    - HP Evaporator Drum Water Steel CMC : CMC : Combined mass multiplied by Cp of HP Evaporator/Drum Water & Steel (Pre-warming Time CMC ) CMC = 57154 kcal/oC

    - Heat removed by Air HRA = Ma x Cpa x (Twf Ta) / 2 wherein : Ma : Gas turbine purge air mass flow(Gas Turbine Data ) Cpa : Specific heat of air Twf : HP drum water temperature before GT start Ta : Ambient air temperature ) Ma = 120512 kg/hr, Cpa = 0.24 kcal/(kg-oC) Twf = 185 oC, Ta = 15 oC

  • HRA = 120512 x 0.24 x (185 15) = 2463269 kcal/hr

    - HP Drum Water Temperature Drop Rate during Purge Cycle TDR = HRA / CMC ) TDR = 2463269 / 57154 = 43.1 oC/hr = 0.72 oC/min.

    Firing through Synchronization Purge Cycle Gas Turbine(GT) Speed 13% Firing . GT IGV Angle 43 28 , GT Speed (Acceleration) GT Exhaust Gas . GT Speed 66% Starting Device Disengage GT Exhaust Gas , GT Speed 90% GT IGV Angle 43 GT Exhaust Gas . FSNL Synchronization . GT Exhaust Flow Rate GT Speed IGV . Gas Turbine Speed & Output, Exhaust Flow & Temp, IGV Angle Gas Turbine GT Start-up Curve . HP Steam , HP Drum , . GT Exhaust , FSNL Synchronization HP Drum .

    - FSNL Synchronization GT Exhaust Gas Enthalpy Gas Turbine GT Exhaust Gas FSNL Synchronization GT Exhaust Gas GT Exhaust Gas Enthalpy . (Flue Gas Enthalpy Software ) Tgf, Tgs : GT exhaust gas temp at FSNL and Synchronization respectively Hgf, Hgs : GT exhaust gas enthalpy at FSNL and Synchronization respectively

  • ) GT Exhaust Gas Composition(volume %) : N2 = 74.6, Ar = 0.9, O2 = 12.7, CO2 = 3.8, H2O = 8 Tgf = 420 oC (GT Exhaust Gas Temp at FSNL) Tgs = 450 oC (GT Exhaust Gas Temp at Synchronization) Hgf = 104.6 kcal/kg at Tgf (15 oC ) Hgs = 112.7 kcal/kg at Tgs (15 oC )

    - HP Evaporator Outlet Gas Enthalpy GT Start-up , Pinch Design Pinch . Firing Pinch Design Pinch HP Evaporator Outlet Gas Temperature Enthalpy . Tgevap = Twf + Dpinch Wherein, Tgevap : HP evaporator outlet gas temperature Twf : HP drum water temperature before GT start DPinch : HP evaporator design pinch value Hgevap = Gas enthalpy at Tgevap ) HP drum water temp FSNL Pre-warming , Pre-warming . , FSNL Synchronization Tgevap . ) Twf = 185 oC, DPinch = 8.9 oC Tgevap = 185 + 8.9 = 193.9 oC Hgevap = 44.7 kcal/kg (15 oC )

    - Heat added to HP Evaporator Water by Gas (FSNL Synchronization ) HAEVAP = (Mgf + Mgs) / 2 x {(Hgf + Hgs) / 2 Hgevap}

  • wherein : HAEVAP : Heat added to HP evaporator water by gas Mgf, Mgs : GT exhaust gas flow at FSNL and Synchronization respectively Time_f, Time_s : Time at FSNL and Synchronization respectively Hgf, Hgs : GT exhaust gas enthalpy at FSNL and Synchronization respectively Hgevap = Gas enthalpy at Tgevap ) Mgf = 860 t/h, Mgs = 990 t/h, Hgf = 104.6 kcal/kg, Hgs = 112.7 kcal/kg Hgevap = 44.7 kcal/kg HAEVAP = (860 + 990) / 2 x {104.6 + 112.7} / 2 44.7} = 59.2e+6 kcal/hr

    - Temperature Rising Rate TRR1 = HAEVAP / CMC / 60 * HAEFF wherein ; TRR1 : Temperature rising rate CMC : Combined mass multiplied by Cp of HP Evaporator/Drum Water & Steel (Pre-warming Time CMC ) HAEFF : Effectiveness of heat added ) CMC = 57154 kcal/oC, HAEFF = 0.15 TRR1 = 59.2e+6 / 57154 / 60 * 0.15 = 2.6 oC/min. ) GT Firing HRSG , GT HRSG Casing Structure . , GT HRSG HP Evaporator Water Steel , Effectiveness of Heat Added . Effectiveness 15% .

    2) HRSG Temperature Matching HRSG Pre-warming GTG Synchronization HRSG HP Drum Water

  • 0.7 kg/cm2g , GTG Synchronization HRSG HP Start-up Vent Valves HP Steam Flow . HRSG HP Drum Pre-warming , HP Start-up Vent Valves Opening , GTG Exhaust Gas , Steady-status HRSG Temperature Matching Steam Flow . , HP Start-up Vent Valves Opening HP Steam HRSG Temperature Matching Steam Flow , GTG HRSG Temperature Matching Bypass Valves HRSG HP Drum Floor Pressure , HP Steam HP Steam , HP Steam Flow HRSG Temperature Matching Steam Flow . , HRSG HP Steam Steady-status HP Steam Flow . HP Steam , HP Steam HP Drum Evaporator Water/Steel . , HRSG Temperature Matching Load HP Steam 10 kg/cm2g , Steady-state HP Steam Flow 72 ton/hr , 3.9 oC/min. HP Drum Water HP Steam Flow 50 ton/hr. 22 ton/hr HP Steam Flow HP Drum Evaporator Water/Steel . HP Drum Water , HP Steam Flow . HRSG HP Drum Water Pre-warming , Hot Start-up , GTG Synchronization 5 3.9 oC/min. HP Drum Water HRSG Temperature Matching HP Steam Flow , Drum HP Steam Flow . Cold Start-up , 10 kg/cm2g 3.9 oC/min. , HP Steam Flow .

    - UA Calculation from Design Conditions

  • Q = U x A x LMTD HRSG . Q , U , A , LMTD Log Mean Temperature Difference. U , , Design Conditions UA , UA Design UA . UA = Q / LMTD wherein : UA : Heat transfer area(A) multiplied by overall heat transfer coefficient(U) LMTD : Log mean temperature difference ) Design Conditions HP superheater outlet steam : Ms = 185.5 t/h, Ps = 131.4 atg, Ts = 567 oC, Hs = 839.1 kcal/kg HP evaporator inlet feedwater : Mf = 185.5 t/h, Pf = 139 atg, Tf = 332 oC, Hf = 367.4 kcal/kg, Tsat at Pf = 335.1 oC GTG exhaust gas : Mgi = 1636 t/h, Tgi = 603 oC, Hgi = 155.1 kcal/kg HP evaporator exit gas : Mge = 1636 t/h, Tge = 344 oC, Hge = 84.3 kcal/kg Heat transferred by gas : Qgas = Mgi x (Hgi Hge) = 1636 x (155.1 84.3) = 115,884 Mcal/hr Heat received by HP steam : Qs = Ms x (Hs Hf) = 185.5 x (839.1 367.4) = 87,506 Mcal/hr HP steam heat ratio to gas : Rq = Qs / Qgas = 87,506 / 115,884 = 0.755 ) Gas HP Steam , Reheater .

  • . LMTD = {(Tgi Ts) (Tge Tf)} / ln{(Tgi Ts) / (Tge Tf)} = {(603 567) (344 332)} / ln{(603 567) / (344 332)} = 21.8 oC UA based on Qgas = Qgas / LMTD = 115,884 / 21.8 = 5,305 Mcal/(hr-oC) Design Pinch = Tge Tsat at Pf = 344 335.1 = 8.9 oC Design Approach = Tsat at Pf Tf = 335.1 332 = 3.1 oC

    - Off-design Steady-state Performance based on Constant UA ) Pinch Approach Design . Pinch Approach Design , , . LMTD_Q = LMTD)_T wherein : LMTD_Q : LMTD calculated based on heat transfer LMTD_T : LMTD calculated based on HP steam temperature presumed )Off-design Conditions for HRSG Temperature Matching Load at 10 atg HP Drum Pressure GTG exhaust gas : Mgi = 1050 t/h, Tgi = 400 oC, Hgi = 99.2 kcal/kg HP drum pressure : Pdrum = 10 atg, Tsat at Pdrum = 183.2 oC HP evaporator exit gas : Mge = 1636 t/h, Tge = Tsat at Pdrum + Design Pinch = 183.2 + 8.9 = 192.1 oC, Hge = 44.7 kcal/kg Heat transferred by gas :

  • Qgas = Mgi x (Hgi Hge) = 1050 x (99.2 44.7) = 57,262 Mcal/hr LMTD_Q = Qgas / UA = 57,262 / 5,305 = 10.8 oC HP superheater outlet steam temperature presumed, Ts = 391 oC : HP evaporator inlet feedwater temperature, Tf = Tsat at Pdrum Design Approach = 183.2 3.1 = 180.1 oC LMTD_T = {(Tgi Ts) (Tge Tf)} / ln{(Tgi Ts) / (Tge Tf)} = {(400 391) (192.1 180.1)} / ln{(400 391) / (192.1 180.1)} = 10.4 oC Therefore, LMTD_Q = LMTD_T and HP superheater outlet steam temperature, Ts = 391 oC is OK. HP superheater outlet steam : Ps = 9 atg(estimated), Ts = 391 oC, Hs = 775.2 kcal/kg HP evaporator inlet feedwater : Pf(= Pdrum) = 10 atg, Tf = 180.1 oC, Hf = 182.4 kcal/kg Heat received by HP steam : Qs = Qgas x Rq = 57,262 x 0.755= 43,239 Mcal/hr HP steam generated, Ms = Qs / (Hs Hf) = 43,239 / (775.2 182.4) = 72.9 t/h

    - Heat Reduction by Temperature Ramping Qred = CMC x TRR2 wherein ; Qred : Heat reduction by temperature ramping TRR2 : Temperature rising rate CMC : CMC : Combined mass multiplied by Cp of HP Evaporator/Drum Water & Steel (Pre-warming Time CMC )

  • ) CMC = 57154 kcal/oC, TRR2 = 3.9 oC/min. Qred = 57,154 / 1000 x 3.9 x 60 = 13,373 Mcal/hr

    - HP Steam Flow at Temperature Ramping Qs_ramp = Qs Qred Ms = Qs_ramp / (Hs Hf) wherein : Qs_ramp : HP steam flow at temperature ramping ) Qs_ramp = 43,239 - 13,373 = 29,866 Mcal/hr Ms = 29,866 / (775.2 182.4) = 50.4 t/h

    3. HRSG Pressure Building-up to Floor Pressure GTG HRSG Temperature Matching , Allowable HP Drum Temperature Ramping Rate HP Steam Pressure Floor Pressure . Bypass Valves , HP Start-up Vent Valves , Condenser , Floor Pressure Bypass Valves Bypass Valve Desuperheater . , Floor Pressure STG Temperature Matching Start-up Time . Hot Start-up STG Temperature Matching HP Steam Bypass Valve Desuperheater , Bypass Valves , STG Temperature Matching . HRSG Temperature Matching HP( Reheat) Steam Carbon Steel Creep Temperature , Bypass Valves Carbon Steel, Bypass Valve Desuperheater Bypass Valves .( .)

  • , GTG HRSG Temperature Matching Bypass Valves Minimum Opening , HP Drum Temperature Ramping Rate Control Mode Bypass Valves HP Steam Pressure Control Floor Pressure , HP Start-up Vent Valves . , HP Steam Bypass Valve Desuperheater Minimum Volume Flow Bypass Valve Desuperheater AUTO Control . 1) Floor Pressure 2-2-1 CCPP , Floor Pressure GTG 1 NOx Load Floor Pressure . 50% Load , GTG 1 50% Load STG Inlet Governor Valves Throttling Floor Pressure , Load STG Inlet Governor Valves Full Open Sliding Pressure . Floor Pressure Inlet Governor Valve Throttling Loss , STG , .

    - STG , STG .

    - , Floor Pressure , HRSG HP Drum Thermal Stress , HRSG .

    Floor Pressure STG Inlet , Start-up Curve Drum Drum Floor Pressure . HP Steam HP Drum , HP Superheater STG , Start-up Curve . , Temperature Ramping Rate Start-up Curve HP Drum Pressure . ) Floor Pressure, Pfl = 55 atg

  • 2) Allowable HP Drum Temperature Ramping Rate Drum, Thermal Stress Temperature Ramping Rate , Start-up Mode . HP Drum Temperature Ramping Rate Start-up Curve Govern . REFERENCE PROJECT HRSG Start-up Mode Allowable Temperature Ramping Rate .

    - HP drum : Cold & Warm = 3.9 oC/min., Hot = 100 oC/min. - IP drum : Cold & Warm = 10 oC/min., Hot = 100 oC/min. - LP drum : Cold & Warm = 27.8 oC/min., Hot = 100 oC/min ) 100 oC/min. .

    REFERENCE PROJECT HRSG Start-up Mode .

    (unit : kg/cm2g) Hot Start Warm Start Cold Start

    - HP : > 63.8 > 3.51 < 3.51

    - IP : > 7.67 > 0.707 < 0.707

    - LP > 3.51 > 0.707 < 0.707 ) HP drum temperature ramping rate, TRR3 = 3.9 oC/min. 3) Pressure Building-up to Floor Pressure GTG Synchronization 5 HP Drum Temperature Ramping Rate HRSG Temperature Matching HP Steam Flow . HP Start-up Vent Valves Bypass Valves HP Drum Pressure Allowable HP Drum Temperature Ramping Rate Floor Pressure .

  • .

    - Lead GTG : HRSG Temperature Matching Load . - Lead HRSG HP Drum Temp : GTG Synchronization HP Drum Temp

    Allowable HP Drum Temperature Ramping Rate Floor Pressure .

    - Lead HRSG HP Drum Press : HP Drum Temp

    . - Lead HRSG HP Steam Flow : GTG Synchronization HP Steam Flow, Floor

    Pressure HP Steam Flow Linear . , Flows HP Drum Temperature Ramping Rate Flow. Floor Pressure HP Steam Flow HRSG Temperature Matching HP Steam Flow .

    - Lead HRSG HP Steam Temp : Steam Flow HP Steam Temp

    Linear . Floor Pressure , Temperature Ramping , Floor Pressure Constant Pressure , 3 Constant Floor Pressure HP Steam Flow Linear . 4. STG Temperature Matching , GTG STG Temperature Matching , HRSG HP Drum Pressure Temperature, HP Steam Flow Floor Pressure STG Temperature Matching HP Steam Pressure, Flow, Temperature . STG Temperature Matching Load 3 , Linear . Floor Pressure STG Temperature Matching HP Steam Pressure, Flow, Temperature HRSG Temperature Matching HP Steam .

  • 4. STG Lead Piping Warming-up STG Roll-up STG STG . Bypass Valves Pressure Control , STG Lead Piping Warming-up Valves Steam . Cold Start-up STG Lead Piping Warming-up Time Start-up Time . Warming-up STG Lead Piping STG . IP Steam Turbine Hot Reheat Steam IP Steam Turbine Hot Reheat Piping Warming-up Time , HP Steam Turbine HP Turbine Inlet Piping Warming-up Time . HP Turbine HP Steam Floor Pressure , Warming-up Valves , IP Turbine , Hot Reheat Steam Floor Pressure , Warming-up Valves . Warming-up Valves Steam (Choked Flow), Warming-up Valves Steam . Steam Line Warming-up Drain Valves . Drain Valves Drain Condenser , Condenser Atmospheric Drain Tank . Drain Valves , Drain Valves . , Drain Valves Discharge Piping Discharge Piping 15 oC . Drain Valves STG Lead Piping Warming-up , STG Lead Pipng STG Vent Valves Warming-up Time , Make-up Water . STG Sensing STG , STG Lead Piping Warming-up Drain Valves Vent Valves STG

  • Sensor (Downstream) . , Warming-up Valves , STG Sensor . Warming-up Drain Valves( Vent Valves) STG Sensor , . , STG Inlet Governor Valves Emergency Stop Valves Seat Drain Valves , STG Valves , Seat Drain Valves STG Lead Piping Warming-up . HRSG STG , STG STG Metal Temperature STG STG Roll-up Start . , IP Turbine Start REFERENCE PROJECT , STG Cold Start-up Hot Reheat 378 oC, HRSG Hot Reheat 378 oC STG Hot Reheat 228 oC STG Roll-up Start . Cold Start-up Mode IP Turbine 220 oC , 228 oC IP Turbine . Piping Steam Warming-up . , Piping Warming Steam , Piping Piping , Piping Warming Steam , Piping Warming Steam . , Piping 15 oC, Warming-up Steam 6.5 atg, 400 oC, Piping 15 oC 6.5 atg 167.1 oC , , Warming-up Valve . , . STG Lead Piping Warming-up Time . 1) Temperature Rise to Saturation Temperature

    - Energy required to raise Pipe Steel Temp

  • E1 = Mp x Cpp x (Tsat Ti) wherein : E1 : Energy required to raise pipe steel temp Mp : Pipe steel mass Cpp : Specific heat of pipe steel Tsat : Saturation temp at inlet steam pressure Ti : Pipe initial temp ) Pipe Steel Mass Bypass Inlet ST Inlet . HRSG Bypass Inlet Bypass Steam . ) Mp = 15000 kg, Cpp = 0.12 kcal/(kg-oC), Tsat = 167 oC at 6.5 atg, Ti = 15 oC E1 = 15000 x 0.12 x (167 15) = 273,600 kcal

    - Pipe Warming-up Time to Saturation Temp Time1 = E1 / Mws / (Hsatg Hsatl) wherein : Time1 : Pipe warming-up time to saturation temp Mws : Warming-up steam flow rate Hsatg : Saturation steam enthalpy at inlet steam pressure Hsatl : Saturation water enthalpy at inlet steam pressure ) Warming-up steam flow rate Warming-up Valves . Warming-up Valves (Choked Flow), , . Warming-up Warming-up Valves , Inlet . ) Mws = 3500 kg/hr, (Hsatg Hsatl) = 491.6 kcal/kg at 6.5 atg

  • Time1 = 273,600 / 3500 / 491.6 x 60 = 9.5 min.

    2) Temperature Rise to Final Piping Temperature

    - Energy required to raise Pipe Steel Temp E2 = Mp x Cpp x (Tf Tsat) wherein : E2 : Energy required to raise pipe steel temp Tf : Pipe final temp ) Tf = 228 oC E2 = 15000 x 0.12 x (228 - 167) = 109,800 kcal

    - Average Temperature of Pipe Warming-up Outlet Steam Tavg = (Tf Tsat) / 2 wherein : Tavg : Average temp of pipe warming-up outlet steam Tf : Pipe final temp ) Outlet steam temp Pipe temp . 5 oC , . ) Tf = 228 oC, Tsat = 167 oC Tavg = (228 167) / 2 = 197.5 oC

    - Pipe Warming-up Time to Pipe Final Temp

    Time2 = E2 / Mws / (Hs Havg) wherein :

  • Time2 : Pipe warming-up time to pipe final temp Hs : Inlet steam enthalpy Havg : Steam enthalpy at Tavg and inlet steam pressure ) Mws = 3500 kg/hr, Hs = 780.7 kcal/kg, 400 oC at 6.5 atg, Havg = 677.5 kcal/kg, 197.5 oC at 6.5 atg Time2 = 109,800 / 3500 / (780.7 677.5) x 60 = 18.2 min.

    3) STG Lead Piping Warming-up Time Time_warm = Time1 + Time2 + Time_margin wherein : Time_warm : STG lead piping warming-up time Time_margin : Marginal time for uncertainty ) , 5 Marginal Time . ) Time_warm = 9.5 + 18.2 + 5 = 32.7 min. HRSG Temperature Matching Bypass Valves , STG Lead Piping Warming-up . STG Temperature Matching STG Roll-up Start , STG Lead Piping Warming-up Warming-up STG Roll-up Start . , HRSG Temperature Matching , Warming-up Time STG Temperature Matching STG Roll-up , STG Temperature Matching STG Lead Piping Warming-up STG Roll-up . HP Drum Pre-warming STG Lead Piping Warming-up Start-up Time . 5. STG Roll-up to FSNL

  • STG Temperature Matching STG Lead Piping Warming-up , STG Control System Start-up Signal STG . Start-up Signal STG Control System STG Speed FSNL(Final Speed No Load) , Cold Start-up Soaking Time . STG Roll-up STG Start-up Curves . 6. STG Synchronization STG FSNL Soaking , STG Grid Synchronization Grid STG Minimum Load Loading . IP Steam Turbine STG , Synchronization STG , ICV to CV Transfer IP Turbine Governor Valves HP Turbine Governor . ICV to CV Transfer Transfer . REFERENCE PROJECT Cold Start-up Mode , STG Synchronization Load 3% MCR Load, ICV to CV Transfer STG Load 3% MCR Load 8% MCR Load 5% Load / min. Loading . STG Loading GTG STG Temperature Matching Load , GTG 1 STG Temperature Matching Load STG Loading . , STG Minimum Load (IP Turbine ICV to CV Transfer Load) Bypass Valves Minimum Opening . Cold Start-up STG Temperature Matching Load , Cold Start-up , . 7. STG Loading to Rated HP Steam Temperature STG Synchronization( ICV to CV Transfer) , Bypass Valves Forced Close HRSG STG , GTG Load NOx Emission Guarantee , GTG 50% Load , HP Steam

  • Temperature Rated Temperature HP Steam Temperature Ramping Rate STG Rate . REFERENCE PROJECT Cold Start-up , STG ICV to CV Transfer HP Steam Temperature 378 oC, 2.5 oC/min. Rated HP Steam Temperature 578 oC GTG Temperature Matching Mode . , GTG Load Control Loading , Temperature Matching Reference Temperature 578 oC, Temperature Matching Ramping Rate 2.5 oC/min. GTG Temperature Matching Control ON , GTG Exhaust Gas Temperature Control Mode GTG Loading. GTG Loading Control Loading , GTG Exhaust Gas Temperature Control , STG Load Hold Loading . 8. GTG Loading to 50% Load STG Loading to Rated HP Steam Temperature , GTG Load NOx Emission Guarantee , GTG 50% Load, STG STG Load Ramping Rate . 9. Lag GTG Loading to 50% Load GTG Lead GTG, Lag GTG Lead GTG 50% Load 50% Load , Lead GTG 50% Load Lag GTG Addition . Lag GTG 50% Load STG , HRSG 50% Load . , GTG Synchronization HRSG Temperature Matching , Reheat Cycle Reheat Piping Cooling Steam , Allowable HP Drum Temperature Ramping Rate HP Pressure Floor Pressure , Lag GTG Load Control 50% Load GTG Maximum Ramping Rate Ramping Rate . Lag GTG Maximum Ramping Rate , HRSG Superheat/Reheater Attemperator Temperature Control Drum Level Control .

  • 10. Lag GTG Addition Lead GTG 50% Load , 50% Load Lag GTG Isolation Valves , Lag HRSG Bypass Valves Forced Close, Lag HRSG STG . STG Loading Rate STG Lag HRSG Bypass Valves Closing Rate . 11. Both GTGs Loading to 100% Load Lag GTG Addition , Both GTGs STG Loading Rate 100% Load . , STG Loading Rate GTG Loading Rate, Lag GTG Addition Both GTGs 100% Load 7, 8 . , GTG Loading Rate , GTG 100% Load HRSG GTG Load , STG 100% Load .(STG Saturation) GTG MCR Load , STG MCR Load . , STG Saturation Time . Start-up Time , MCR Load , GTG Base Load Start-up Time . Start-up Curves . ()