28
Catalytic deoxygenation 27. 8. 2015 David Kubička – VÚAnCH / UniCRE-RENTECH, [email protected]

Catalytic deoxygenation 27. 8. 2015 David Kubička – VÚAnCH / UniCRE-RENTECH, [email protected]@vuanch.cz

Embed Size (px)

Citation preview

Catalytic deoxygenation

27. 8. 2015David Kubička – VÚAnCH / UniCRE-RENTECH, [email protected]

VÚAnCh - UniCRE

Czech Republic

Ústí nad Labem; HQ & inorganic technologies

Litvínov – Chempark; UniCRE

Ústí nad Labem

Prague

Litvínov

█ More than 20 units (plug-flow

reactors…)

█ Catalyst loading: 5-250 ml

█ Testing conditions: lup to 550° C

l20 MPa

lvarious technical gases

█ Operation 24/7

█ Catalyst synthesis, scale-up, shaping

█ Detailed / advanced analytics

UniCRE – CATPRO infrastructure

[email protected]

Triglycerides to Fuels

Gre

en d

iese

l

+ CH 3O Hcat.

H 2

cat.

H 2

cat.

H 2

cat.

CH3COO R1,2,3

CH3 R1,2,3

H R1,2,3

H R1,2,3

+

+

+

+

C3H8O3

C3H8

C3H83 CO2

+

+

+3 CO

6 H2O

3 H2OC3H8 +

1)

2)

3)

4)

T, (cat.)

Organic liquid products Gases+ 5)

CR1 OO

CH2

CR2 OO

CH

CR3 OO

CH2

OLP + +Solids H2O

Kubičková, I.; Kubička, D. Waste Biomass. Valor. 2010, 1, 293-308.

Comparison of diesel fuels

ULSD Biodiesel Green Diesel

O, % 0 11 0

Density, kg/m3 840 880 780

S, ppm <10 <5 <1

LHV, MJ/kg 43 38 44

Cloud point, °C -5 -5 - +10 -20 - +20

Cetane number 51 50-65 70-90

Stability good poor good

Energy & GHG Savings

Fossil CED, GJ/t 0 26.3 – 35.5 40.3 – 42.9

GHG, t CO2eq./t 0 1.2 - 2.4 1.8 – 3.2

UOP, 1st Alternative Fuels Technology Conference, 18.2.2008, Prague

.Biodiesel (FAME) - transesterification Selected issues

Basics of triglycerides to FAME

catalyst

R3COOCH3

R2COOCH3

R1COOCH3

CH-OH

CH2-OH

CH2-OH

+CH2-O-CO-R1

CH-O-CO-R2

CH2-O-CO-R3

3 CH3-OH+

R1, R2, R3 = CnH2n-1+x, where n = 13-21, x = -6, -4, -2, or 0

Reaction conditionsT: 60°CP: 1 atmMeOH/oil: 5-6 mol/molcatalyst: NaOH, CH3ONacatNaOH/oil: 0.007 g/g

pictures from the Internet

FAME – European situation.2009-28-EC:•GHG savings.Now: 35%.2017: 50%.2018: 60%

GHG savings.RS-BD: 38%.RS-GD: 47%.SF-BD: 51%.SF-GD: 62%

data from www.ebb-eu.org (includes green diesel capacity and production), EU Directive 2009 28EC

Alternative to the traditional process .Esterfip-H•160-250 kt/y•1.5 Mt/y

.Conditions•Zn-Al catalyst•200 – 250°C

Vegetable oil

Partial evap. Partial evap.

Full evap.

R1 R2

Methyl esters (> 99%)

Glycerol (> 98%)

Methanol

Bournay, L.; Casanave, D.; Delfort, B.; Hillion, G.; Chodorge, J. Catal. Today 2005, 106, 190–192.

.Green diesel - deoxygenation Industrial processes

Commercial applications

Pretreated feedstock

Hydro-treating

H2

NExBTL Product

stabilization

Flare gases

Gasoline

Gas treating

Iso-merization

Sour water unit

H2S recovery

Sulfur recovery unit

SO2

NexBTL process (Hodge, 2006)

.NexBTL█ Neste Oil, stand-alone units

Commercial applications

Feed

Two stage reactor system

Water

Make-up hydrogen (2-3.5 wt.%)

Acid gas removal CO2

Propane & light ends

Green diesel (88-98 vol.%)

Naphtha (1-10 vol.%)

Distillation Separator

Ecofining process (Frey, 2011, UOP, 2012)

.Ecofining█ UOP / ENI, stand-alone

Commercial units

Name Technology developer

Location Company Capacity, kt/a

Status

NexBTL NesteOil FinlandFinland

SingaporeNetherlands

NesteOilNesteOil

190190

800800

20072009

20102011

Ecofining UOP/Eni USA

Italy, Venice

Diamond Green Diesel

400

300 (500)

2013

2014 (2015)

(Neste Oil, 2012, C. Perego, Liblice, 2014)

David Kubička
Aktualizovat údajedoplnit Venice, Congo, Diamond Green Diesel

Commercial applications

Atmospheric distillation

Vacuum distillation

Delayed cooking

FCC Existing HDT

Process H-BIO

Diesel

Diesel DD

Oil

Gas-oil

Diesel coke

Vacuum residue

Atmospheric residue

Vegetable oil Other fraction of diesel

H-Bio process (Costa, 2007)

.H-Bio█ Petrobras, co-processing units

Commercial applications

LGO feed

Product

Heat exchanger

Hot separator

Fired heater

Hydrotreating reactor with 4 catalyst beds

Make-up recycle H2

To amine unit

RTD

Co-processing of tall oil with LGO in Preem refinery (Egeberg et al., 2011)

.Preem refinery█ Haldor Topsoe, co-processing

units

Stand-alone vs. co-processing & challenges

.Stand-alone█ Investment intensive█ Flexible

lPremium products (green diesel x green jet)

.Co-processing█ Directly or revamp█ Low flexibility

lEN590 constraintsLow temperature properties

(CFPP)Sulfur

lBy-products (CO, CO2, CH4, C3H8, H2O)

lCatalyst deactivation

.Deoxygenation of triglycerides Fundamental aspects

+ 3 H2

CH2-O-CO-C17H33

CH-O-CO-C17H33

CH2-O-CO-C17H33

CH2-O-CO-C17H35

CH-O-CO-C17H35

CH2-O-CO-C17H35

+ 12 H 2

3 C18H38

3 C17H35COOH

- 6

H2O

3 C17H36

hydrogenation

hydrodeoxygenation

hydrodecarboxylation

- C3H8

+ 3 H2

+ 9

H2

+ 3 H2

- C3 H

8 ; - 3 CO2

- C 3H 8

; - 6 H 2

O

+ 6 H2

- 3 H2O3 C17H35CH2OH

- 3 H2 O

+ 3 H2

3 C17 H

35 CO

OH

- 3 H2 O

3 C17H35COOC18H37

Reaction pathways in deoxygenation

█ Initial hydrogenation of double bonds

█ HDO (H2O), HDC (CO2) accompanied by CO2 hydrogenation

█ Mechanism determines H2 consumption

Collect Czech Chem Commun 2008, 73 1015

X

David Kubička
Upravit schema z estru vznika nC18 a kyselina

Key aspects

.Reaction pathways█ Product selectivity█ Hydrogen consumption

.Raw materials quality█ Cost█ Deactivation

.Active phase selection█ Noble metals catalysts – decarboxylation

█ Sulfided (hydrotreating) catalysts – HDO and HDC

Dealing with H2 consumption

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110

Yield HC, %

Yie

ld C

17

, %

NiMo

Ni

Mo

Appl. Cat A: Gen. 372 (2010) 199–208

CS II – Triglycerides – Green diesel

Kubička, D. Collect. Czech. Chem. Commun. 2008, 73, 1015–1044

.Support influence█ Active phase

█ Modifying active phase properties

Dealing with H2 consumption

Appl. Cat. B: Environ. 145 (2014) 101-107

Deactivation of sulfided catalysts

Sulfur depletion Feedstock impurities

RO

RO-S

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

RO

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

DMDS pulse

0

20

40

60

80

100

120

0 24 48 72 96 120 144 168

Time-on-stream, h

Yie

ld o

f HC

, %

NRORRO-I

RRO-II

WRO

Appl. Cat A: Gen. 394 (2011) 9–17

mmol/kg M eq. P

NRO 6.003 6.070

RRO-I 0.237 <0.016

RRO-II 0.197 0.023

WRO 2.035 1.224

Deactivation of sulfided catalysts

Sulfur depletion Feedstock impurities

RO

RO-S

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

RO

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

DMDS pulse

0

10

20

30

40

50

60

70

80

90

100

0 24 48 72 96 120 144 168

Time-on-stream, h

Yie

ld o

f HC

, %

TGROG

RO

Appl. Cat A: Gen. 394 (2011) 9–17

mmol/kg M eq. P

RO 0.197 0.023

ROG* 0.279 3.351

TG 0.444 10.009

Deactivation of sulfided catalysts

Sulfur depletion Feedstock impurities

RO

RO-S

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

RO

50

55

60

65

70

75

80

85

90

95

100

0 24 48 72 96 120 144 168 192 216 240 264 288

Time-on-stream, h

Yie

ld o

f HC

, %

DMDS pulse

0

1

2

3

4

5

6

7

8

9

0 24 48 72 96 120 144 168

Time-on-stream, h

Yie

ld o

f Est

ers,

%

TG

ROG RO

0

5

10

15

20

25

30

35

40

45

0 24 48 72 96 120 144 168

Time-on-stream, h

Yie

ld o

f Aci

ds, %

TG

ROG

RO

Appl. Cat A: Gen. 394 (2011) 9–17

. Feedstock – price / quality /

availability

.Hydrogen consumption – HDO / HDC

. Single step hydrogenation /

isomerization

.Full refinery integration

. Robust non-sulfided catalysts

Challenges

Acknowledgements

█ N. Žilková, J. Vlk – mesoporous materials█ L. Kaluža – NiMo, Ni, Mo catalysts█ P. Priecel, L. Čapek – NiMo catalysts with

different Ni coordination

█ P. Šimáček, J. Chudoba – GC-MS identification█ J. Horáček, F. Homola – deoxygenation

experiments█ R. Bulánek, M. Setnička – active-phase–support

interactions

█ FT-TA3/074, P106/12/G015, CZ.1.05/2.1.00/03.0071

THANK YOU!

Contacts

Areál Chempark, Záluží 1, Litvínov, Postal Code 436 70

UniCRE is a part ofResearch Institute of Inorganic ChemistryRevoluční 1521/84, Ústí nad Labem, Postal Code 400 01Reg. No.: 62243136, TAX ID No.: CZ62243136Phone: +420 475 309 211, +420 475 309 222e-mail: [email protected], www.vuanch.czRegistered in the Commercial Register at the Regional Courtin Ústí n. L., Part B, File 664Banking information: 7009 411/0100, KB Ústí n. L.

the presentation was part of the projectUniCRE – Unipetrol Centre for Research and EducationSupported under the Operational Programme of Research and Development for InnovationNo. CZ.1.05/2.1.00/03.0071From EU and the Ministry of Education, Youth and Sports funds