Upload
manojit
View
216
Download
0
Embed Size (px)
Registered Charity Number 207890
Accepted Manuscript
This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.
Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.
To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.
More information about Accepted Manuscripts can be found in the Information for Authors.
Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
www.rsc.org/advances
RSC AdvancesD
ownl
oade
d on
28
Sept
embe
r 20
12Pu
blis
hed
on 2
7 Se
ptem
ber
2012
on
http
://pu
bs.r
sc.o
rg |
doi:1
0.10
39/C
2RA
2230
2CView Online / Journal Homepage
RSC Advances
Cite this: DOI: 10.1039/c0xx00000x
www.rsc.org/advances
Dynamic Article Links ►
PAPER
This journal is © The Royal Society of Chemistry [year] RSC Adv, 2012, 2, 00–00 | 1
Catalysis by FeF3 in water: A green synthesis of 2-substituted 1,3-
benzazoles and 1,2-disubstituted benzimidazoles
T. Bhaskar Kumar,a,b Ch. Sumanth,
a A. V. Dhanunjaya Rao,
a Dipak Kalita,
a M. Srinivasa Rao,
a K. B.
Chandra Sekhar,b K. Shiva Kumar,
c Manojit Pal
c,*
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5
DOI: 10.1039/b000000x
FeF3 in water facilitated the reaction of 1,2-phenylenediamine / 2-aminothiophenol with 1 equivalent of alkyl/aryl aldehydes leading to
1,3-benzazoles under open air. The process afforded 1,2-disubstituted benzimidazoles when 1,2-phenylenediamine was reacted with 2
equivalent of aryl aldehydes. The methodology is operationally simple, free from the use of hazardous organic solvent and
chemoselective. The products were isolated by simple filtration and the catalyst can be recovered and recycled. 10
Introduction
Development of atom-efficient chemical process using
environmentally benign chemistry that minimizes or
eliminates the formation of by products has become a frontier 15
area of research in modern organic synthesis.1 Thus a number
of transition metal catalysts has been developed that enabled
chemical synthesis to proceed by simple addition reactions.1e
As an important class of heterocyclic compounds, 1,3-
benzazoles (A, Figure 1) i.e. benzimidazole and benzothiazole 20
are considered as privileged structures in the area of medicinal
chemistry.2 This is exemplified by a range of commonly used
drugs such as proton-pump inhibitor Omeprazole (B), TTX-
sensitive sodium channels blocker Riluzole (C), H1 receptor
antagonist Mizolastin (D), AT1 receptor antagonists 25
Telmisartan (E) and direct thrombin inhibitor Dabigatran
(Figure 1).
The most commonly used synthetic methods for accessing
benzimidazole derivatives include condensation of 1,2-
phenylenediamines with (i) carboxylic acids3,4 or their 30
derivatives5 or (ii) aldehydes followed by oxidative
cyclodehydrogenation.6,7 Similarly, 2-substituted
benzothiazoles can be synthesized8 via condensation of 2-
aminothiophenol with (i) carboxylic acids9 followed by
dehydration or (ii) aldehydes under oxidative conditions.10 35
While many of these methods are quite effective and useful
most of them however, suffer from the use of acidic or similar
reagents or hazardous organic solvents that are not
-------------------------------------------------------------------------- aCustom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, 40
Bollaram Road Miyapur, Hyderabad 500 049, India bDepartment of Chemistry, Institute of Science and Technology, JNT
University, Anantapur 515002, Andhra Pradesh, India cInstitute of Life Sciences, University of Hyderabad Campus, Gachibowli,
Hyderabad, 500046, India. 45
E-mail: [email protected]
†Electronic Supplementary Information (ESI) available: Copies of NMR
spectra for all new compounds. For ESI See DOI: 10.1039/b000000x/
50
X
N
1
2
345
6
7
1,3-Benzazoles (A)(X = NH; benzimidazole,
= S; benzothiazole)
NH
N
S
O
N
H3CO
Omeprazole (B)
S
N
NH2
F3CO
Riluzole (C)
N
N
N
F
N
N
NHO
Mizolastin(D)
N
N
N
N
HO
O
Telmisartan (E)
Figure 1. Examples of 1,3-benzazole based drugs.
environmentally compatible and produce a large amount of 55
waste. Moreover, the requirement of longer reaction time,
higher temperature and expensive reagents/catalysts are the
other drawbacks of these methodologies. In some of these
cases the formation of side products e.g. 1,2-disubstituted
benzimidazole along with the desired 2-substituted derivative 60
was also observed.
During last several years the iron salts have been reported as
promising and alternative transition-metal catalysts that
received much attention due to their low price, sustainability,
ready availability, nontoxicity, and environmental friendly 65
properties.11 More recently, in addition to its commercial use
in the production of ceramics FeF3 has also received attention
in organic synthesis.12 These include its use in chemoselective
addition of cyanide to aldehydes, synthesis of
Page 1 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
2 | RSC Adv. 2012, 2, 00–00 This journal is © The Royal Society of Chemistry [year]
polyhydroquinolines, direct thiolation of an arene C-H bond
etc. Additionally, the use of water as an inexpensive and
environmental friendly solvent in commercially available and
water stable FeF3 catalyzed reaction has also been explored.12a
This is remarkable as the use of large volumes of volatile 5
hazardous organic solvents in industrial processes posed a
serious threat to the environment. Thus, procedures involving
alternative benign solvents in reaction, isolation and
purification are of high priority in industry. These prompted
us to develop a green and atom-efficient one-pot synthesis of 10
1,3-benzazoles (benzimidazole and benzothiazole) via FeF3
catalyzed reaction in water. Herein we report our preliminary
findings on FeF3–mediated condensation of 1,2-
phenylenediamine / 2-aminothiophenol (1) with 1.0 equivalent
of alkyl/aryl aldehydes (2) leading to 1,3-benzazoles (3) in 15
open air (Scheme 1). The synthesis of 1,2-disubstituted
benzimidazoles is also presented.
NH2
XH
+ R2OHCX
N
R2FeF3
H2O, heat
air
R
R1
R
R1
1 2 3X = NH, S
20
Scheme 1. FeF3 catalyzed synthesis of 1,3-benzazoles in water.
Results and discussion
Initially, we examined the reaction of 1,2-phenylenediamine
(1a) with p-chloro benzaldehyde (2a) in the presence of 25
FeCl3 in water at 60 oC for 7 h when the desired
benzimidazole (3a) was isolated in 75% yield (entry 1, Table
1). While the yield of 3a was increased when FeCl3.6H2O was
used in place of FeCl3 (entry 2, Table 1) the maximum yield
however was achieved using FeF3 (entry 3, Table 1) indicating 30
its most suitability for the present reaction. The use of other
catalysts e.g. NH4F and TBAF was examined but found to be
less effective (entries 4-5, Table 1). The yield of 3a was
decreased when the reaction was carried out at lower
temperature (entry 6, Table 1). The use of other solvents was 35
also examined (entries 7-8, Table 1) among which 1,4-dioxane
EtOH and MeOH was found to be effective. Nevertheless,
being inexpensive and readily available green solvent water
was chosen for further study on the present FeF3 mediated
condensation reaction. To test the recyclability of the catalyst 40
used FeF3 was recovered by simple filtration and reused in the
same reaction when 3a was isolated without significant loss of
its yield. The yield of 3a was found to be 83, 81 and 78 after
1st, 2nd and 3rd recovery and reuse of the catalyst. A
comparison of the XRD spectrum obtained for fresh FeF3 and 45
the reused catalyst indicated no change in their crystalline
nature (Fig. 2). Notably, all these reactions were carried out in
open air and therefore free from the use of inert/anhydrous
atmosphere thereby avoiding possible pressure development
in a closed reaction vessel especially in scale-up synthesis. 50
Overall, the combination of FeF3 in water was found to be
optimal for the preparation of 3a.
Table 1. The effect of reaction conditions on condensation of 1a with 2a.a
NH2
NH2
OHC ClN
HN
Cl
1a 2a 3a
Catalyst
Solventheat, air
+
Entry Catalyst (mmol) Solvent T °C; t (h)
Yield (%)b
1 FeCl3 (0.05) H2O 60; 7 75 2 FeCl3.6H2O (0.05) H2O 60; 7 81
3 FeF3 (0.02) H2O 60; 7 85 (83, 81, 78)c
4 NH4F (0.02) H2O 60; 7 50 5 TBAF (0.02) H2O 60; 7 65
6 FeF3 (0.02) H2O 25; 7 78
7 FeF3 (0.02) Toluene 110; 12 73 8 FeF3 (0.02) 1,4-Dioxane 100; 8 80
9 FeF3 (0.02) MeOH 65; 2 83
10 FeF3 (0.02) EtOH 80; 2 85
aAll the reactions were carried out by using 1,2-phenylenediamine 1a (1.0 55
mmol), aldehyde 2a (1.0 mmol), a catalyst (0.02 mmol) in a solvent (5
mL) in open air. bIsolated yields. cCatalyst was reused for additional three runs and figures within parentheses indicate the corresponding yield for
each run.
60
Fig. 2. XRD spectrum of fresh FeF3 and the reused catalyst after first
cycle.
Having the optimized reaction conditions in hand we then
examined the generality and scope of the present FeF3 65
mediated reaction in water. Thus, a range of aldehydes (2)
was initially reacted with 1a and the results are summarized in
Table 2. Various electron donating groups e.g. Cl, Br, Me, tBu
and NMe2 (entries 1-5, Table 2) or electron withdrawing
groups e.g. CF3 and COOH (entry 6 and 7, Table 2) present on 70
the aryl ring of aldehydes were well tolerated. The use of
heteroaromatic (entries 8 and 9, Table 2) and aliphatic
aldehydes (entry 10, Table 2) were also successful and
afforded the desired 2-substituted benzimidazoles in good
yields. The reaction proceeded smoothly with other 1,2-75
phenylenediamines e.g. 1b-d as well (entries 11-14, Table 2),
Page 2 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
This journal is © The Royal Society of Chemistry [year] RSC Adv., 2012, 2, 00–00 | 3
Table 2. FeF3 catalyzed synthesis of 2-substituted benzimidazoles/benzothiazoles in water (Scheme 1).a
Entry
o-phenylenedi amines /
o-aminobenzenethiol (1) Aldehyde (2) Products (3)b Yield (%)c
1
NH2
NH2 1a
OHC Cl
2a
NH
NCl
3a
85
2
1a
OHC Br
2b
NH
NBr
3b
86
3
1a
OHC
2c
NH
N
3c
88
4 1a
OHC
2d
NH
N
3d
80
5 1a OHC N
2e
NH
NN
3e
81
6
1a
OHC CF3
2f
NH
NCF3
3f
83
7 1a
OHC CO2H
2g
NH
NCOOH
3g
88
Page 3 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
4 | RSC Adv. 2012, 2, 00–00 This journal is © The Royal Society of Chemistry [year]
8
1a OOHC
2h
NH
N
O
3h
89
9
1a SOHC
2i
NH
N
S
3i
90
10
1a
OHC
2j
NH
N
3j
90
11
NH2
NH2 1b
2b
NH
N
Br
3k
84
12 1b 2g NH
NCO2H
3l
78
13
Cl
NH2
NH2 1c
2c
NH
N
Cl
3m
80
14
O2N
NH2
NH2 1d
2b
NH
N
Br
O2N
3n
75
15
SH
NH2
1e
2g
S
NCO2H
3o
92d
Page 4 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
This journal is © The Royal Society of Chemistry [year] RSC Adv., 2012, 2, 00–00 | 5
16 1e
OHC
O2N
2k
S
N
O2N
3p
92d
17 1e OHC CN
2l
S
NCN
3q
90d
18 1a OHC
2m
NH
N
3r
85
19 1a OHC
2n
NH
N
3s
81
20 1a OHC
2o
NH
N
3t
79
aAll the reactions were carried out by using 1,2-phenylenediamines/ 2-aminobenzenethiol 1 (1.0 mmol), aldehyde 2 (1.0 mmol), FeF3 (0.02 mmol) in water (5 mL) at 60 °C for 7-8 h in open air. bIdentified by 1H NMR, IR and MS. cIsolated yields. dThe reaction was carried out using 1.2 mmol of
aldehyde.
5
10
15
Table 3. FeF3 catalyzed synthesis of 1,2-disubstituted benzimidazoles in watera
NH2
NH2
+ R2OHCN
N
R2
R1
R1
1 2 4
R R
R2
2
FeF3
H2O, heat
air
Page 5 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
6 | RSC Adv. 2012, 2, 00–00 This journal is © The Royal Society of Chemistry [year]
Entry
o-phenylenedi
amine (1) Aldehyde (2) Product (4)b Yield (%)c
1
NH2
NH2 1a
OHC OH
2m
N
NOH
OH
4a
85
2
1a
OHC OH
OH
2n
N
NOH
OH
OH
OH
4b
80
3
1b
2c
N
N
4c
78
4 NH2
NH2
Cl
Cl
1f
2c
N
N
Cl
Cl 4d
77
5 1a NOHC
2o
N
N
N
N
4e
80
6 1a NH
CHO
2p N
N
HN
NH
4f
73
aAll the reactions were carried out by using 1,2-phenylenediamines 1 (1.0 mmol), aldehyde 2 (2.0 mmol), FeF3 (0.02 mmol) in water (5 mL) at 60 °C for
10 h in open air. bIdentified by 1H NMR, IR and MS. cIsolated yields.
Page 6 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
This journal is © The Royal Society of Chemistry [year] RSC Adv., 2012, 2, 00–00 | 7
To extend the scope of this methodology further we examined
the use of 2-aminothiophenol (1b) in place of 1a and the
corresponding 2-aryl substituted benzothiazoles were obtained
in good yields (entries 15–17, Table 2). Furthermore, present 5
metod afforded 2-alkyl benzimidazoles in good yields (entries
18-20, Table 2) the preparation of which was not very
convenient earlier as most of the reported methods were either
less effective or ineffective in terms of products yield.
Prompted by the fact that 1,2-disubstituted benzimidazoles 10
can be accessed by direct one-step condensation of 1,2-
phenylenediamines with aryl aldehydes13 we decided to
explore the potential of the present FeF3 catalyzed reaction in
the synthesis of these compounds in a single pot. Accordingly,
2.0 equiv of aldehyde was reacted with 1.0 equiv of 1,2-15
phenylenediamines under the condition as mentioned earlier
(entry 3, Table 1). To our satisfaction the reaction proceeded
smoothly to give the desired 1,2-disubstituted benzimidazoles
(4) in good yields (Table 3). Thus, the present methodology
can be used to prepare mono or di substituted derivatives 20
depending on the conditions employed. The experimental
procedure is simple and the product can be isolated by
filtration followed by purification through crystallization.
Mechanistically, the reaction seems to proceed via a sequence
(Scheme 2) involving the FeF3 promoted formation of Shiff 25
base of type E-2 (via the intermediate E-1) followed by
intramolecular ring closure leading to E-3. The oxidative
dehydrogenation of E-3 by air affords the desired product 3.
In the presence of 2.0 equivalent of aldehyde the diamine (1a-
b and 1f) undergoes FeF3-mediated formation of Shiff base E-30
4 [i.e. N1,N2-bis(arylidene)benzene-1,2-diamine] which on
intramolecular cyclization followed by 1,3-hydride migration
affords the 1,2-disubstituted benzimidazole 4 (Scheme 3).13
While air seems to have no role in this case its presence
however did not affect the reaction. 35
NH2
XH
+X
N
R2
1 2 3X = NH, S
N
XH
E-2
R2
R2
O
H
FeF3
N
XH
E-1
O
R2
H
FeF3H
-H2O
-FeF3
F3Fe
X
HN R2
H
O2 (air)
E-3
Scheme 2. Proposed mechanism for the fomation of 1,3-
benzazoles (3)
40
Conclusions
In conclusion, a green, efficient and simple method has been
developed for the facile and one-pot synthesis of 2-substituted
benzimidazoles / benzothiazoles and 1,2-disubstituted
benzimidazoles. The methodology involved catalysis by FeF3 45
in water that facilitated the reaction of 1,2-phenylenediamine /
2-aminothiophenol with 1 equivalent of alkyl/aryl aldehydes
NH2
NH2
+N
N
R2
1a-b & 1f2 4
R2
O
H
FeF3
N
N
R2
R2
FeF3
N
N R2
FeF3
R2
H
R2
E-4E-5
-FeF3
Scheme 3. Proposed mechanism for the fomation of 1,2-disubstituted 50
benzimidazole (4)
leading to 1,3-benzazoles under open air. The process
afforded 1,2-disubstituted benzimidazoles when 1,2-
phenylenediamine was reacted with 2 equivalent of aryl 55
aldehydes. The products were isolated by simple filtration and
the catalyst can be recovered and recycled. The operational
simplicity, excellent yields of the products, and high
chemoselectivity are the main advantages of this method, and
furthermore, this procedure is inexpensive, safer and 60
environmentally benign. The present example of first FeF3
mediated synthesis of 1,3-benzazoles / 1,2-disubstituted
benzimidazoles therefore would find wide applications.
Experimental section 65
General methods: Unless stated otherwise, reactions were
performed under nitrogen atmosphere using oven dried
glassware. Reactions were monitored by thin layer
chromatography (TLC) on silica gel plates (60 F254),
visualizing with ultraviolet light or iodine spray. Flash 70
chromatography was performed on silica gel (230-400 mesh)
using distilled hexane, ethyl acetate, dichloromethane. 1H
NMR and 13C NMR spectra were determined in DMSO-d6
solution by using 400 or 100 MHz spectrometers,
respectively. Proton chemical shifts (δ) are relative to 75
tetramethylsilane (TMS, δ = 0.00) as internal standard and
expressed in ppm. Spin multiplicities are given as s (singlet),
d (doublet), t (triplet) and m (multiplet) as well as b (broad).
Coupling constants (J) are given in hertz. Infrared spectra
were recorded on a FT-IR spectrometer. Melting points were 80
determined using melting point B-540 apparatus and are
uncorrected. MS spectra were obtained on a mass
spectrometer. HRMS was determined using waters LCT
premier XETOF ARE-047 apparatus. The catalyst FeF3 (light
Page 7 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
8 | RSC Adv. 2012, 2, 00–00 This journal is © The Royal Society of Chemistry [year]
green color powder; purity 98%; CAS No: 7783-50-8) used is
commercially available.
General procedure for the preparation of compound 3a-t
A mixture of 1,2-phenylenediamine/ 2-aminobenzenethiol 1 (1 5
mmol), adehyde 2 (1 mmol for the preparation of
benzoimidazole, 1.2 mmol for the preparation of
benzothiazoles), FeF3 (0.02 mmol), and water (5 mL) was
heated at 50-60 °C for 7-8 h. After completion of the reaction
(indicated by TLC), the mixture was cooled to room 10
temperature and filtered. The solid obtained was treated with
cold water (10 mL) and filter under vacuum. The crude
product was recrystallized from ethanol to afford the desired
product.
15
2-(4-Chlorophenyl)-1H-benzo[d]imidazole (3a)
White solid; mp 291-292 °C (lit14 290-292 °C); 1H NMR
(DMSO-d6, 400 MHz): δ 12.99 (bs, 1H), 8.19 (d, J = 8.0 Hz,
2H), 7.65 (q, J = 8.0 Hz, 3H), 7.54 (d, J = 8.0 Hz, 1H), 7.21
(t, J = 8.0 Hz, 2H); 13C NMR (DMSO-d6, 100 MHz): δ 150.1, 20
143.7, 135.0, 134.4, 129.0 (3C), 128.1 (2C), 122.7, 121.9,
118.9, 111.4; IR (KBr): 3051, 1586, 1490, 1448, 1429, 1272,
831, 745, 728 cm-1; HRMS (ESI): calcd for C13H10N2Cl
(M+H)+ 229.0533, found 229.0525; MS (ESI): m/z ([M+H]+):
229.1 25
2-(4-Bromophenyl)-1H-benzo[d]imidazole (3b)
White solid; mp 295-296 °C (lit6c 291–294 °C); 1H NMR
(DMSO-d6, 400 MHz) δ 13.02 (br s, 1H), 8.13-8.11 (m, 2H),
7.77 (d, J = 6.80 Hz, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.53 (s, 30
1H), 7.23-7.18 (m, 2H); 13C NMR (DMSO-d6, 100 MHz): δ
150.0, 143.5, 134.7, 131.8 (2C), 129.0, 128.4 (2C), 123.1
(2C), 121.7, 118.7, 111.4; IR (KBr): 2846, 2745, 1447, 1427,
1274, 1011, 963, 828, 745 cm-1; HRMS (ESI): calcd for
C13H10N2Br (M+H)+ 273.0027, found 273.0033; MS (ESI): 35
m/z ([M+H]+): 273.1
2-(4-(Tert-butyl)phenyl)-1H-benzo[d]imidazole (3c)
White solid; mp 255-257 °C (lit15 250-251°C); 1H NMR
(DMSO-d6, 400 MHz) δ 12.82 (s, 1H), 8.10 (d, J = 8.0 Hz, 40
2H), 7.64 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.51
(d, J = 8.0 Hz, 1H), 7.22-7.15 (m, 2H), 1.33 (s, 9H); 13C NMR
(DMSO-d6, 100 MHz) δ 152.5, 151.3, 143.8, 134.9, 127.4,
126.2 (2C), 125.7 (2C), 122.3, 121.5, 118.7, 111.2, 34.5, 30.9
(3C); IR (KBr): 3696, 2959, 1431, 1269, 968, 840, 739 cm-1; 45
HRMS (ESI): calcd for C17H19N2 (M+H)+ 251.1548, found
251.1546; MS (ESI): m/z ([M+H]+): 251.3.
2-Mesityl-1H-benzo[d]imidazole (3d)
White solid; mp 252-254 °C (lit16 253-254 °C); 1H NMR 50
(DMSO-d6, 400 MHz): δ 12.4 (s, 1H), 7.61-7.58 (m, 2H),
7.20-7.17 (m, 2H), 7.00 (s, 2H), 2.31 (s, 3H), 2.06 (s, 6H); 13C
NMR (DMSO-d6, 100 MHz): δ 151.2, 138.3, 137.0 (2C),
128.7, 127.9 (3C), 121.4 (3C), 114.8 (2C), 20.8, 19.6 (2C); IR
(KBr): 3055, 2920, 2676, 1450, 1417, 1223, 851, 753 cm-1; 55
HRMS (ESI): calcd for C16H17N2 (M+H)+ 237.1392, found
237.1393; MS (ESI): m/z ([M+H]+): 237.2
4-(1H-Benzo[d]imidazol-2-yl)-N,N-dimethylaniline (3e)
Yellow solid; mp 285-286 °C (lit17 288-290 °C); 1H NMR 60
(DMSO-d6, 400 MHz): δ 12.5 (brs, 1H), 7.98 (d, J = 8.0 Hz,
2H), 7.67-7.51 (m, 2H), 7.14-7.08 (m, 2H), 6.82 (d, J = 8.0
Hz, 2H), 2.99 (s, 6H); 13C NMR (DMSO-d6, 100 MHz): δ
151.8, 150.7, 139.1 (2C), 127.3 (2C), 120.8 (2C), 116.7 (3C),
111.3 (2C), 39.1 (2C); IR (KBr): 3418, 3053, 1610, 1508, 65
1439, 1372, 1203, 819, 747 cm-1; HRMS (ESI): calcd for
C15H16N3 (M+H)+ 238.1344, found 238.1340; MS (ESI): m/z
([M+H]+): 238.2.
2-(4-(Trifluoromethyl)phenyl)-1H-benzo[d]imidazole (3f) 70
White solid; mp 262-264 °C (lit18 262-264 °C); 1H NMR
(DMSO-d6, 400 MHz) δ 13.17 (bs, 1H), 8.39 (d, J = 8.0 Hz,
2H), 7.94 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.57
(d, J = 8.0 Hz, 1H), 7.29-7.21 (m, 2H); 13C NMR (DMSO-d6,
100 MHz) δ 149.6, 143.7, 133.9, 129.6 (q, 1C, J = 32.1), 75
127.0 (4C), 125.9 (2C), 123.2, 122.0, 119.2, 111.6; IR (KBr):
3426, 1433, 1321, 1170, 1140, 1064, 850, 746 cm-1; HRMS
(ESI): calcd for C14H10N2F3 (M+H)+ 263.0796, found
263.0799; MS (ESI): m/z ([M+H]+): 263.1.
80
4-(1H-Benzo[d]imidazol-2-yl)benzoic acid (3g)
White solid, mp 327-329 °C; 1H NMR (DMSO-d6, 400 MHz):
δ 13.16 (bs, 1H), 13.02 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H), 8.05
(d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.23-7.19 (m,
2H); 13C NMR (DMSO-d6, 100 MHz): δ 166.9, 150.1, 134.4, 85
133.9, 131.5, 129.9 (2C), 129.8, 129.6 (2C), 129.4, 129.2,
126.4 (2C); IR (KBr): 3061, 2925, 1708, 1387, 1289, 1116,
737 cm-1; HRMS (ESI): calcd for C14H11N2O2 (M+H)+
239.0821, found 239.0810; MS (ESI): m/z ([M+H]+): 239.1
90
2-(Furan-2-yl)-1H-benzo[d]imidazole (3h)
Light yellow solid; mp 285-287 °C (lit14 287–288 °C); 1H
NMR (DMSO-d6, 400 MHz): δ 12.9 (s, 1H), 7.94 (s, 1H), 7.55
(s, 2H), 7.21-7.19 (m, 3H), 6.73 (s, 1H); 13C NMR (DMSO-d6,
100 MHz): δ 145.5, 144.5 (3C), 143.6, 122.1 (2C), 112.2 95
(2C), 110.4 (2C); IR (KBr): 3059, 2661, 1630, 1525, 1417,
1279, 1119, 1011, 980, 738 cm-1; HRMS (ESI): calcd for
C11H9N2O (M+H)+ 185.0715, found 185.0708; MS (ESI): m/z
([M+H]+): 185.1
100
2-(Thiophen-2-yl)-1H-benzo[d]imidazole (3i)
Light yellow solid; mp 341-342 °C (lit14 341–343 °C); 1H
NMR (DMSO-d6, 400 MHz): δ 12.90 (brs, 1H), 7.83 (d, J =
8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.56-7.54 (m, 2H),
7.24-7.18 (m, 3H); 13C NMR (DMSO-d6, 100 MHz): δ 147.0 105
(2C), 133.6, 128.7 (2C), 128.2 (2C), 126.6 (2C), 122.1 (2C);
IR (KBr): 3446, 1621, 1569, 1450, 1423, 1275, 1234, 1073,
944, 850, 742 cm-1; HRMS (ESI): calcd for C11H9N2S (M+H)+
201.0486, found 201.0481; MS (ESI): m/z ([M+H]+): 201.1 110
2-Cyclopropyl-1H-benzo[d]imidazole (3j)
White solid; mp 232- 234 °C (lit19 231-232 °C); 1H NMR
(DMSO-d6, 400 MHz): δ 12.10 (s, 1H), 7.40-7.38 (m, 2H),
7.08-7.06 (m, 2H), 2.11-2.08 (m, 1H), 1.05-1.01 (m, 4H); 13C 115
NMR (DMSO-d6, 100 MHz): δ 156.8, 121.0 (2C), 120.9 (2C),
Page 8 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
This journal is © The Royal Society of Chemistry [year] RSC Adv., 2012, 2, 00–00 | 9
108.1 (2C), 9.3, 8.6 (2C); IR (KBr): 3474, 1632, 1420, 1263,
997, 749 cm-1; HRMS (ESI): calcd for C10H11N2 (M+H)+
159.0922, found 159.0916; MS (ESI): m/z ([M+H]+): 159.1
2-(4-Bromophenyl)-6-methyl-1H-benzo[d]imidazole (3k) 5
Light yellow solid; mp 242-243 °C; 1H NMR (DMSO-d6, 400
MHz) δ 12.84 (d, J = 16.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 2H),
7.75 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.48-7.31
(m, 1H), 7.06-7.01 (m, 1H), 2.43 (s, 3H); 13C NMR (DMSO-
d6, 100 MHz): δ 149.6, 132.1, 131.9 (3C), 129.5, 128.2 (2C), 10
124.2, 123.4, 122.9, 118.5, 111.1, 21.3; IR (KBr): 3440, 3200,
2919, 1631, 1416, 1316, 1011, 830, 714 cm-1; HRMS (ESI):
calcd for C14H12N2Br (M+H)+ 287.0184, found 287.0186; MS
(ESI): m/z ([M+H]+): 287.1
15
4-(5-Methyl-1H-benzo[d]imidazol-2-yl)benzoic acid (3l) Light brown solid; mp 281-282 °C; 1H NMR (DMSO-d6, 400
MHz): δ 13.15 (s, 1H), 13.02 (s, 1H), 8.21 (d, J = 8.0 Hz,
2H), 8.05 (d, J = 8.0 Hz, 2H), 7.71-7.69 (m, 1H), 7.56-7.54
(m, 1H), 7.23-7.21 (m, 1H), 2.33 (s, 3H); 13C NMR: Not 20
available due to poor solubility. IR (KBr): 3451, 1615, 1559,
1409, 868, 789, 715 cm-1; HRMS (ESI): calcd for C15H11N2O2
(M-H)+ 251.0821, found 251.0828; MS (ESI): m/z ([M+H]+):
251.2 25
2-(4-(Tert-butyl)phenyl)-6-chloro-1H-benzo[d]imidazole
(3m) White solid, mp 252-254 °C; 1H NMR (DMSO-d6, 400 MHz):
δ 13.03 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 2H), 7.70 (s,
1H), 7.58 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.21 30
(t, J = 8.0 Hz, 1H), 1.33 (s, 9H); 13C NMR (DMSO-d6, 100
MHz): δ 152.9 (2C), 126.9 (3C), 126.3 (4C), 125.7 (2C),
122.0 (2C), 34.6, 30.9 (3C); IR (KBr): 3696, 2961, 1616,
1422, 1308, 1061, 964, 846, 809, 710 cm-1; HRMS (ESI):
calcd for C17H18N2Cl (M+H)+ 285.1159, found 285.1155; MS 35
(ESI): m/z ([M+H]+): 285.2
2-(4-Bromophenyl)-5-nitro-1H-benzo[d]imidazole (3n)
Yellow solid; mp 176-177 °C (lit20 161–164 °C); 1H NMR
(DMSO-d6, 400 MHz) δ 13.69 (brs, 1H), 8.84 (s, 1H), 8.04 (d, 40
J = 8.0 Hz, 3H), 7.93 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz,
2H); 13C NMR (DMSO-d6, 100 MHz): δ 158.5, 151.1, 135.8,
135.2, 133.4, 132.1, 132.0, 131.6, 131.4, 130.9, 128.8, 128.4,
125.1, 124.4, 118.9, 113.0, 112.8, 101.7, 98.4; (Note: A
mixture of tautomers observed); IR (KBr): 3483, 3373, 1601, 45
1488, 1340, 1069, 816, 746 cm-1; HRMS (ESI): calcd for
C13H7N3O2Br (M-H)+ 315.9722, found 315.9729; MS (ESI):
m/z ([M+H]+): 317.1.
4-(Benzo[d]thiazol-2-yl)benzoic acid (3o) 50
Light yellow solid; mp 294-295 °C (lit21 294.1-295.5 °C); 1H
NMR (DMSO-d6, 400 MHz): δ 13.26 (br s, 1H), 8.23-8.20 (m,
3H), 8.18-8.10 (m, 3H), 7.60-7.56 (m, 1H), 7.51 (t, J = 8.0
Hz, 1H); 13C NMR (DMSO-d6, 100 MHz): δ 165.8, 153.2,
136.2, 134.5, 132.8, 130.0, 127.1, 126.6 (2C), 125.7, 123.0 55
(2C), 122.2 (2C); IR (KBr): 3058, 2827, 1681, 1609, 1427,
1293, 971, 860, 755 cm-1; HRMS (ESI): calcd for C14H10NO2S
(M+H)+ 256.0432, found 256.0428; MS (ESI): m/z ([M+H]+):
256.2
60
2-(2-Nitrophenyl)benzo[d]thiazole (3p)
Light green solid; mp 128-129°C (lit22 127-129 °C); 1H NMR
(DMSO, 400 MHz) δ 8.23 (d, J = 7.2 Hz, 1H), 8.09-7.99 (m,
3H,), 7.90-7.85 (m, 2H), 7.65-7.54 (m, 2H); 13C NMR
(DMSO-d6, 100 MHz): δ 162.2, 153.0, 148.4, 135.1, 133.0, 65
131.9, 131.7, 126.8, 126.2, 126.0, 124.5, 123.2, 122.4; IR
(KBr): 3083, 1608, 1536, 1367, 1305, 1231, 973, 761 cm-1;
HRMS (ESI): calcd for C13H9N2O2S (M+H)+ 257.0385, found
257.0387; MS (ESI): m/z ([M+H]+): 257.2.
70
4-(Benzo[d]thiazol-2-yl)benzonitrile (3q)
Greenish yellow solid; mp 171-173 °C (lit23 170.5-172.5 ºC); 1H NMR (DMSO-d6, 400 MHz) δ 8.28 (d, J = 8.0 Hz, 2H),
8.22 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.05 (d, J
= 8.0 Hz, 2H), 7.61 (t, J = 8.0 Hz, 1H), 7.53 (t, J = 8.0 Hz 75
1H); 13C NMR (DMSO-d6, 100 MHz): δ 165.0, 153.2, 136.4,
134.7, 133.1 (2C), 127.6 (2C), 126.8, 126.0, 123.2, 122.4,
118.1, 113.1; IR (KBr): 3422, 2227, 1480, 1315, 967, 839,
764 cm-1; HRMS (ESI): calcd for C14H9N2S (M+H)+
237.0486, found 237.0482; MS (ESI): m/z ([M+H]+): 237.1 80
2-Cyclohexyl-1H-benzo[d]imidazole (3r)
Colorless solid; mp 272- 273 °C (lit24 sublimes at 250 °C); 1H
NMR (DMSO-d6, 400 MHz): δ 12.13 (s, 1H), 7.50 (d, J = 8.0
Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.12-7.06 (m, 2H), 2.82 (d, 85
J = 8.0 Hz, 1H), 2.03-1.98 (m, 2H), 1.82-1.78 (m, 2H), 1.72-
1.67 (m, 1H), 1.64-1.53 (m, 2H), 1.44-1.35 (m, 2H), 1.30-1.25
(m, 1H); MS (ESI): m/z ([M+H]+): 200.3
2-(Pentan-3-yl)-1H-benzo[d]imidazole25 (3s) 90
Off white solid; mp 262- 264 °C; 1H NMR (DMSO-d6, 400
MHz): δ 12.17 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.40 (d, J =
8.0 Hz, 1H), 7.13-7.08 (m, 2H), 2.70 (d, J = 8.0 Hz, 1H),
1.79-1.72 (m, 4H), 0.77 (t, J = 8.0 Hz, 6H); MS (ESI): m/z
([M+H]+): 188.3 95
2-Ethyl-1H-benzo[d]imidazole26 (3t)
Light yellow solid; mp 159- 160 °C; 1H NMR (DMSO-d6, 400
MHz): δ 12.18 (bs, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.18 (d, J =
8.0 Hz, 2H), 2.81 (q, J = 8.0 Hz, 2H), 1.26 (t, J = 8.0 Hz, 100
3H); MS (ESI): m/z ([M+H]+): 146.2
General procedure for the preparation of compound 4a-4f
A mixture of 1,2-phenylenediamine 1 (1 mmol), adehyde 2 (2
mmol), FeF3 (0.02 mmol), and water (5 mL) was heated at 50-105
60 °C for 10 h. After completion of the reaction (indicated by
TLC), the mixture was cooled to room temperature and
filtered. The solid obtained was treated with cold water (10
mL) and filter under vacuum. The crude product was
recrystallized from ethanol to afford the pure product. 110
4-(1-(4-Hydroxybenzyl)-1H-benzo[d]imidazol-2-yl)phenol
(4a)
White solid; mp 254-256 °C; 1H NMR (DMSO-d6, 400 MHz):
δ 9.94 (bs, 1H), 9.38 (bs, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.58 115
(d, J = 7.6 Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6
Page 9 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
10 | RSC Adv. 2012, 2, 00–00 This journal is © The Royal Society of Chemistry [year]
Hz, 2H), 6.88-6.83 (m, 4H), 6.62 (d, J = 7.6 Hz, 2H), 5.4 (s,
2H); 13C NMR (DMSO-d6, 100 MHz): δ 158.5, 156.3, 153.3,
142.4, 135.5, 130.3 (2C), 127.2 (2C), 126.8, 121.8 (2C), 121.6
(2C), 120.5, 118.5, 115.4, 115.3, 110.7, 46.8; IR (KBr): 3253,
2803, 1611, 1515, 1443, 1266, 1244, 1170, 839 cm-1; HRMS 5
(ESI): calcd for C20H17N2O2 (M+H)+ 317.1290, found
317.1288; MS (ESI): m/z ([M+H]+): 317.2
4-(1-(3,4-Dihydroxybenzyl)-1H-benzo[d]imidazol-2-
yl)benzene-1,2-diol (4b) 10
Off white solid, mp 236-238 °C; 1H NMR (DMSO-d6, 400
MHz): δ 9.46 (bs, 1H), 9.28 (bs, 1H), 8.90-8.83 (m, 2H), 7.67
(d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.21-7.17 (m,
3H), 6.98 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.63
(d, J = 8.0 Hz, 1H), 6.39-6.31 (m, 2H), 5.36 (s, 2H); 13C NMR 15
(DMSO-d6, 100 MHz): δ 153.6, 147.1, 145.4, 145.3, 144.5,
142.6, 135.8, 127.7, 122.0, 121.8, 121.0, 120.3, 118.7, 117.1,
116.6, 115.7, 115.5, 113.4, 110.9, 47.1; IR (KBr): 3378, 1605,
1483, 1453, 1282, 1248, 1125, 759 cm-1; HRMS (ESI): calcd
for C20H17N2O4 (M+H)+ 349.1188, found 349.1176; MS 20
(ESI): m/z ([M+H]+): 349.2
1-(4-(Tert-butyl)benzyl)-2-(4-(tert-butyl)phenyl)-5-methyl-
1H-benzo[d]imidazole (4c)
White solid; mp 231-233 °C; 1H NMR (DMSO-d6, 400 MHz): 25
δ 7.66 (d, J = 8.0 Hz 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.53 (d, J
= 7.6 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.22 (s, 1H), 7.06 (d,
J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 5.52 (s, 2H), 2.38
(s, 3H), 1.31 (s, 9H), 1.21 (s, 9H); 13C NMR (DMSO-d6, 100
MHz): δ 152.9, 150.5, 141.3, 136.4, 133.5, 132.7, 128.9 (2C), 30
127.2, 125.9 (2C), 125.6 (2C), 124.1 (2C), 119.3 (2C), 110.3
(2C), 48.0, 34.8, 34.5, 31.3 (3C), 31.2 (3C), 21.8; IR (KBr):
3673, 2962, 1462, 1332, 1268, 992, 843, 809 cm-1; HRMS
(ESI): calcd for C29H35N2 (M+H)+ 411.2800, found 411.2798;
MS (ESI): m/z ([M+H]+): 411.4 35
1-(4-(Tert-butyl)benzyl)-2-(4-(tert-butyl)phenyl)-4,5-
dichloro-1H-benzo[d]imidazole (4d)
White solid; mp 231-233 °C; 1H NMR (DMSO-d6, 400 MHz):
δ 7.82 (d, J = 8.0 Hz 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.57-7.52 40
(m, 3H), 7.32 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 7.6 Hz, 2H),
5.60 (s, 2H), 1.35 (s, 9H), 1.22 (s, 9H); 13C NMR (CDCl3, 100
MHz): δ 155.7, 152.9, 150.2, 142.0, 135.8, 132.6, 128.4 (2C),
126.0, 125.3 (2C), 125.3 (3C), 125.2 (3C), 119.9, 111.9, 47.4,
33.9 (2C), 30.8 (3C), 30.7 (3C); IR (KBr): 3433, 3059, 2963, 45
1609, 1460, 1445, 1304, 1118, 838 cm-1; HRMS (ESI): calcd
for C28H31N2Cl2 (M+H)+ 465.1864, found 465.1857; MS
(ESI): m/z ([M+H]+): 465.3
2-(Pyridin-4-yl)-1-(pyridin-4-ylmethyl)-1H-50
benzo[d]imidazole (4e)
Light yellow solid; mp 188-189 °C; 1H NMR (DMSO-d6, 400
MHz) δ 8.48 (d, J = 8.0 Hz, 2H), 8.35 (d, J = 8.0 Hz, 2H),
7.48 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 6.53-6.42
(m, 3H), 6.18 (d, J = 8.0 Hz, 1H), 5.82 (s, 2H); 13C NMR 55
(DMSO-d6, 100 MHz) δ 150.5, 150.1, 150.0, 149.8, 149.5,
145.7, 142.5, 137.1, 136.1, 123.7, 123.0, 122.9, 122.6, 122.5,
121.1, 119.8, 111.1, 46.6; IR (KBr): 3415, 3036, 1603, 1414,
827, 749 cm-1; HRMS (ESI): calcd for C18H15N4 (M+H)+
287.1297, found 287.1294; MS (ESI): m/z ([M+H]+): 287.2 60
1-((1H-Indol-2-yl)methyl)-2-(1H-indol-2-yl)-1H-
benzo[d]imidazole (4f)
Light yellow solid; mp 232-234 °C; 1H NMR (DMSO-d6, 400
MHz): δ 11.7 (bs, 1H), 11.0 (bs, 1H), 8.31 (d, J = 8.0 Hz, 65
1H), 7.88 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.6
Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H),
7.25-7.16 (m, 5H), 7.04 (t, J = 7.6 Hz, 2H), 6.85 (t, J = 7.6
Hz, 1H), 5.83 (s, 2H); 13C NMR (DMSO-d6, 100 MHz): δ
149.5, 142.8, 136.3, 136.0, 135.4, 126.5, 126.4, 125.5, 123.5, 70
122.3, 121.5, 121.3 (2C), 121.2, 120.2, 118.8, 118.1 (2C),
111.8, 111.7, 110.5, 110.2, 104.8, 40.7; IR (KBr): 3418, 3047,
1617, 1569, 1452, 1391, 1242, 1013, 937, 746 cm-1; HRMS
(ESI): calcd for C24H19N4 (M+H)+ 363.1610, found 363.1604;
MS (ESI): m/z ([M+H]+): 363.2 75
Acknowledgments
The author (TBK) thanks Dr V. Dahanukar for his
encouragement. The authors thank the analytical group of 80
DRL for spectral data.
Notes and references
1. (a) B. M. Trost, Science 1991, 254, 1471. (b) R. A. Sheldon,
CHEMTECH 1994, 38. (c) R. A. Sheldon, Pure Appl. Chem.
2000, 72, 1233. (d) Trost, B. M. Acc. Chem. Res. 2002, 35, 85
695. (e) D. B. G. Williams and M. C. Lawton, Green Chem.
2008, 10, 914.
2. F. Kallashi, D. Kim, J. Kowalchick, Y. J. Park, J. A. Hunt, A.
Ali, C. J. Smith, M. L. Hammond, J. V. Pivnichny, X. Tong, S.
S. Xu, M. S. Anderson, Y. Chen, S. S. Eveland, Q. Guo, S. A. 90
Hyland, D. P. Milot, A. M. Cumiskey, M. Latham, L. B.
Peterson, R. Rosa, C. P. Sparrow, S. D. Wright and P. J.
Sinclair, Bioorg. Med. Chem. Lett. 2011, 21, 558.
3. (a) M. R. Grimmett. in Comprehensive Heterocyclic
Chemistry (Eds: A. R. Katritzky, C. W. Rees), Pergamon 95
Press, New York 1984, vol. 5, p. 457; (b) J. B. Wright, Chem.
Rev. 1951, 48, 397; (c) R. W. Middleton and D. G. Wibberley,
J. Heterocycl. Chem. 1980, 17, 1757; (d) T. Hisano, M.
Ichikawa, K. Tsumoto and M. Tasaki, Chem. Pharm. Bull.
1982, 30, 2996; (e) J. D. Geratz, F. M. Stevens, K. L. 100
Polakoski and R. F. Parrish, Arch. Biochem. Biophys. 1979,
197, 551.
4. (a) P. N. Preston, in Chemistry of Heterocyclic Compounds,
Vol. 40, ed. A. Weissberger and E. C. Taylor, John Wiley and
Sons, 1981; (b) D. W. Hein, R. J. Alheim and J. J. Leavitt, J. 105
Am. Chem. Soc., 1957, 79, 427 (c) Y. -C. Chi, C.-M. Sun,
Synlett, 2000, 591; (d) W. Huang and R. M. Scarborough,
Tetrahedron Lett. 1999, 40, 2665; (e) L. M. Dudd, E.
Venardou, E. Garcia-Verdugo, P. Licence, A. J. Blake, C.
Wilson and M. Poliakoff, Green Chem. 2003, 5, 187. 110
5. (a) A. Czarny, W. D. Wilson and D. W. Boykin, J. Heterocycl.
Chem. 1996, 33, 1393; (b) R. R. Tidwell, J. D. Geratz, O.
Dann, G. Volz, D. Zeh and H. Loewe, J. Med. Chem. 1978,
21, 613; (c) T. A. Fairley, R. R. Tidwell, I. Donkor, N. A.
Naiman, K. A. Ohemeng,; R. J. Lombardy, J. A. Bentley and 115
M. Cory, J. Med. Chem. 1993, 36, 1746; (d) P. N. Preston, in
Chemistry of Heterocyclic Compounds, vol. 40,
Benzimidazoles and Congeneric Tricyclic Compounds (Eds:
A. Weissberger, E. C. Taylor), Wiley, New York, 1981, part 1,
p. 6. (e) Grimmett M. R. in Comprehensive Heterocyclic 120
Chemistry, vol. 5, Imidazoles and their Benzo Derivatives
(Eds: A. R. Katritzky, C. W. Rees), Pergamon Press, Oxford,
Page 10 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
This journal is © The Royal Society of Chemistry [year] RSC Adv., 2012, 2, 00–00 | 11
1984, p. 457; (f) Y. Wang, K. Sarris, D. R. Sauer and S. W.
Djuric, Tetrahedron Lett. 2006, 47, 4823; (g) T. Benincori, F.
Sannicolo, J. Heterocycl. Chem. 1998, 25, 1029; (h) K.
Bourgrin, A. Loupy and M. Soufiaoui, Tetrahedron 1998, 54,
8055; (i) G. V. Reddy, V. V. V. N. S. Ramarao, B. Narsaiah 5
and P. S. Rao, Synth. Commun. 2002, 32, 2467; ( j) A. Ben-
Alloum, S. Bakkas and M. Soufiaoui, Tetrahedron Lett. 1998,
39, 4481; (k) K. Niknam and A. Fatehi-Raviz, J. Iran. Chem.
Soc. 2007, 4, 438.
6. (a) J. G. Smith and I. Ho, Tetrahedron Lett. 1971, 12, 3541; 10
(b) K. Nagata, T. Itoh, H. Ishikawa and A. Ohsawa,
Heterocycles, 2003, 61, 93; (c) T. Itoh, K. Nagata, H. Ishikawa
and A. Ohsawa, Heterocycles 2004, 63, 2769; (d) S. Perumal,
S. Mariappan and S. Selvaraj, Arkivoc, 2004, 8, 46; (e) M.
Chakrabarty, S. Karmakar, A. Mukherji, S. Arima and Y. 15
Harigaya, Heterocycles, 2006, 68, 967; (f) P. Sun and Z. Hu, J.
Heterocycl. Chem., 2006, 43, 773; (g) P. Salehi, M. Dabiri, M.
A. Zolfigol, S. Otokesh and M. Baghbanzadeh, Tetrahedron
Lett. 2006, 47, 2557; (h) R. Varala, A. Nasreen, R. Enugala
and S. R. Adapa, Tetrahedron Lett., 2007, 48, 69; (i) B. H. 20
Kim, R. Han, J. S. Kim, Y. M. Jun, W. Baik and B. M. Lee,
Heterocycles, 2004, 63, 41.
7. (a) A. Ben Alloum, K. Bougrin and M. Soufiaoui,
Tetrahedron Lett. 2003, 44, 5935; (b) P. Gogoi and D.
Konwar, Tetrahedron Lett. 2006, 47, 79; (c) T. Itoh, K. 25
Nagata, H. Ishikawa and A. Ohsawa, Heterocycles 2004, 62,
197; (d) R. Trivedi, S. K. De and R. A. Gibbs, J. Mol. Catal.
A: Chem. 2006, 245, 8.
8. (a) A. Couture and P. Grandclaudon, Heterocycles 1984, 22,
1383; (b) R. H. Tale, Org. Lett. 2002, 4, 1641; (c) D. Alagille, 30
R. M. Baldwin and G. D. Tamagnan, Tetrahedron Lett. 2005,
46, 1349; (d) T. Itoh and T. Mase, Org. Lett. 2007, 9, 3687.
9. (a) C. W. Phoon, P. Y . Ng, A. E. Ting, S. L. Yeo and M. M.
Sim, Bioorg. Med. Chem. Lett. 2001, 11, 1647; (b) E.
Kashiyama, I. Hutchinson, M. S. Chua, S. F. Stinson, L. R. 35
Phillips, G. Kaur, E. A. Sausville, T. D. Bradshaw, A. D.
Westwell and M. F. G. Stevens, J. Med. Chem. 1999, 42,
4172; (b) D. E. Boger, J. Org. Chem. 1978, 43, 2296 .
10. Ben-Alloum, S. Bakkas and M. Soufiaoui, Tetrahedron Lett.
1997, 38, 6395. 40
11. (a) A. Correa, O. G. Mancheno and C. Bolm, Chem. Soc. Rev.
2008, 37, 1108; (b) B. D. Sherry and A. Furstner, Acc. Chem.
Res. 2008, 41, 1500; (c) C. Bolm, J. Legros, J. Le Paih and L.
Zani, Chem. Rev. 2004, 104, 6217; (d) A. Furstner and R.
Martin, Chem. Lett. 2005, 34, 624; (e) D. D. Diaz, P. O. 45
Miranda, J. I. Padron and V. S. Martın, Curr. Org. Chem.
2006, 10, 457.
12. (a) B. P. Bandgar and V. T. Kamble, Green Chem. 2001, 3,
265; (b) T. Hatakeyama and M. Nakamura, J. Am. Chem. Soc.
2007, 32, 9844; (c) V. T. Kamble, B. P. Bandgar, Satish B. G. 50
Suryawanshi and S. N. Bavikar, Aust. J. Chem. 2006, 59, 837;
(d) R. Surasani, D. Kalita, A. V. D. Rao, K. Yarbagi and K. B.
Chandrasekhar, J. Fluorine Chem, 2012, 135, 91; (e) B. P.
Bandgar,; V. T. Kamble and A. Kulkarni, Aust. J.
Chem. 2005, 58, 607; (f) X.-L. Fang, R. -Y. Tang, X. -G. 55
Zhang and J. –H. Li, Synthesis 2011, 1099.
13. J.-P. Wan, S.-F. Gan, J.-M. Wu and Y. Pan, Green. Chem.
2009, 11, 1633.
14. Y. Kim, M. R. Kumar, N. Park, Y. Heo and S. Lee, J. Org.
Chem. 2011, 76, 9577. 60
15. M. Shen and T. G. Driver, Org. Lett. 2008, 10, 3367.
16. R. M. Acheson and M. S. Verlander, J. Chem. Soc., Perkin
Trans. 1, 1973, 2348.
17. M. D. Bhor and B. M. Bhanage, Synth. Commun., 2010, 40,
1743. 65
18. J. C. Lewis, A, M. Berman, R. G. Bergman and J. A. Eliman,
J. Am. Chem. Soc. 2008, 130, 2493.
19. D. Yang, H. Fu, L. Hu, Y. Jiang and Y. Zhao J. Org. Chem.,
2008, 73, 7841.
20. S. Rostamizadeh, A. M. Amani, R. Aryan, H. R. Ghaieni and 70
L. Norouzi, Monatsh Chem. 2009, 140, 547.
21. L. S. Tan, R. Kannan, J. C. Spain and L. J. Nadeau, U. S.
Patent No US7495106 B1, 2009.
22. K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An, C.-
C. Cuo, Org. Lett. 2010, 12, 1564 75
23. Y. Cheng, J. Yang, Y. Qu, and P. Li, Org. Lett., 2012, 14, 98.
24. J. N. Moorthy and, I. Neogi, Tetrahedron Lett. 2011, 52, 3868.
25. M. Rekha, A. Hamza, B. R. Venugopal and N. Nagaraju, Chin.
J. Catal., 2012, 33, 439.
26. L. D. Luca and A. Porcheddu, Eur. J. Org. Chem. 2011, 29, 80
5791.
Page 11 of 12 RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online
Graphical Abstract
H2O
NH2
XH
R2OHC
X
NR2
(X = NH, S)
FeF3
Open to air
N
NR2
R2
R
R1
R
R1
R2OHC (X = NH)2
R
R1
We describe first FeF3 mediated green synthesis of 2-substituted 1,3-benzazoles and 1,2-
disubstituted benzimidazoles in water under open air.
Page 12 of 12RSC Advances
RS
C A
dva
nce
s A
ccep
ted
Man
usc
rip
t
Dow
nloa
ded
on 2
8 Se
ptem
ber
2012
Publ
ishe
d on
27
Sept
embe
r 20
12 o
n ht
tp://
pubs
.rsc
.org
| do
i:10.
1039
/C2R
A22
302C
View Online