24
CASTER A Scintillator-Based Black Hole Finder Probe Mark McConnell University of New Hamsphire

CASTER A Scintillator-Based Black Hole Finder Probeastrophysics.sr.unh.edu/files/oral/spie_astro2004_caster_vgs.pdfAvailability in large areas and at low cost Energy resolution

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • CASTERA Scintillator-Based

    Black Hole Finder Probe

    Mark McConnellUniversity of New Hamsphire

  • The CASTER CastMark McConnell, Jim Ryan, John Macri

    University of New Hampshire

    Mike Cherry, T. Greg Guzik, Brad Schaefer, J. Greg Stacy, John Wefel

    Louisiana State University

    R. Marc Kippen, W. Tom VestrandLos Alamos National Laboratory

    Bill Paciesas, Rich MillerUniversity of Alabama – Huntsville

    Jim CravensSouthwest Research Institute

  • Black Hole Finder ProbeAll-sky black hole census

    Total energy range : 10 – 600 keV

    Sensitivity goal ≈0.02 mCrab in 20–100 keV

    ≈1000x more sensitive than HEAO A-4

    1–20x more sensitive than Swift

    ≈20x more sensitive than BATSE for GRBs

    Angular resolution of 3-5 arcmin will be required to avoid source confusion.

  • CASTER

    Proposed as a mission concept for the Black Hole Finder Probe.

    Mission concept closely parallels that of EXIST.

    Coded aperture imaging (10-600 keV).

    Detectors based on new scintillator technologies.

    Implications for mission design?

    Coded Aperture Survey Telescope for Energetic Radiation

  • Motivation for CASTER

    New scintillator and readout technologies.

    New scintillator with high light output :Improved energy resolutionImproved spatial resolution

    Traditional technology simplifies implementation.

    Potential for low cost detector technology.

    Emphasize the importance (uniqueness) of observations at higher energies (up to ≈600 keV).

  • INTEGRAL Sky Map

    Galactic Center Region, 20–60 keV

    91 sources, many involve black holes

    Bird et al. 2004

  • Cyg X-1 State Comparison

    McConnell et al. 2002

    SWIF

    T

    BHFP

  • Black Hole Spectra

    Observations up to 600 keV explore the range of thermal / non-thermal transitions.

    Cyg X-1 spectrum requires non-thermal component.

    What other sources exhibit similar behavior?

    What is link between galactic black holes and AGN?

    Role of pairs in accretion disk spectra?

  • Annihilation Radiation

    Origin of 511 keV diffuse emission (OSSE, SPI).

    Contribution of point sources?

    Supernovae Ia?

    Hypernovae? (Casssé et al. 2004)

    Light Dark Matter (LDM)? (Casssé et al. 2004)

  • GRB Epeak Distribution

    GRB spectra – smoothly broken power-law.

    Observed break energies up to several hundred keV.

    Spectral measurements require data both above and below the break energy.

    SWIF

    T

    BHFP

  • Detector Requirements

    Energy range ≈ 10-600 keV

    Good stopping power for energies up to ≈600 keV

    Spatial resolution ≈ 1-2 mm in x, y, and z

    Availability in large areas and at low cost

    Energy resolution

  • New Scintillator Technology

    High Z material (comparable to NaI)

    High density (higher than that of NaI)

    Higher light output (60% more than NaI)

    Significantly improved linearity (E vs. light output)

    Significantly better energy resolution (

  • Energy Resolution

    LaBr3 ≈ 2.7% @ 662 keV≈ 3.8% @ 511 keV≈ 6.8% @ 122 keV

    !

    "#$! !%&%'()!'%*+,-."+&!*.-/"%*!

    (0110! 203! 456782947953! :04! 0;49! 9216?! @A8:!

    ,0B2CDE6!723480;4!F29@=!08!'G/!! 8:6! TTU! V6#!

    5:989560V! @04! 1604H26?! 89! !0!47A=8A;;0892`IG.!

    J92!5:989?A9?6R!456782916862!J'R!70=!A;6!9>!,0B2CDN$OPE6!47A=8A;;08A9=!J59A=84R$! !.:6!49;A?!

    ;AV6!4:9@4!0!1H;8A`6a59=6=8A0;!>A8$!!.:6!52A=7A50;!79159=6=8!2A464!0=?!

    ?67034!@A8:!8A16!79=480=84!9>!S!0=?!UT!=4M!2645678AZ6;3$!

    " #" $"" $#" %""$"

    $"&'

    $"&(

    $"&%

    $"&$

    )*+,-+./0!12-/3!4+526

    %7!,8!9:(;<

    =/>*(6?2

    !

    !

    @,A2,8+A3!9/*BC!D,+A8<

    4+52!9,8<

    .]B,%!"!

    %WW%E.!+W!E%CQ!E+&E%&.']."+&!!+&!."G"&(!I'+I%'."%*!+W!,]B'CDE%!

    E6CQ!E9=76=8208A9=!

    JPR!

    /6703!.A16!E9=480=84!

    J=4R!

    'A46!.A16!E9=480=8!

    J=4R!

    N$O! UT!=4!JcCPRM!TT!=4!JSPR! S!=4!

    O$N! KO!JcSPRM!TC!=4!JCPR! N$c!=4!

    KN$N! KO!JgccPR! hN$O!=4!

    !

    WAF$! O$! KCSE4! 6=62F3! 4567820! 26792?6?! @A8:! 0! ,0B2CDE6! 47A=8A;;0892!5265026?!08!'G/!0=?!0!7911627A0;!&0"J.;R!47A=8A;;0892$!!.:6!TTU!V6#!

    560V! 6=62F3! 2649;H8A9=! A4! U$TP! JWXYGR! >92! ,0B2CDE6! 0=?! T$SP!

    JWXYGR!>92!&0"J.;R!08! 2991! 86156208H26$!]!IG.!@04!H46?! 89! 260?`

    9H8!

  • Detector Materials

    LaBr3 LaCl3 NaI(Tl) CsI(Na) BGO CZT Ge

    Density 5.29 3.86 3.67 4.51 7.13 5.78 5.33

    Light Output 63,000 49,000 39,000 39,000 9,000 N/A N/A

    ∆E/E (FWHM) @ 662 keV

    10%

  • Stopping Power

    Thick scintillators are easier to fabricate.

    This gives a potential advantage at high energies.

    1.0

    0.8

    0.6

    0.4

    0.2

    Full-

    Ener

    gy E

    ffic

    ienc

    y

    102 3 4 5 6

    1002 3 4 5 6

    1000Energy (keV)

    CZT 5mm thick

    LaBr3 5mm thick

    LaBr3 20mm thick

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Dete

    ctio

    n Ef

    ficie

    ncy

    102 3 4 5 6

    1002 3 4 5 6

    1000Energy (keV)

    CZT 5mm thick

    LaBr3 5mm thick

    LaBr3 20mm thick

  • Spatial ResolutionAnger Camera Designs

    Performance will depend on several parameters :light output of scintillatorthicknessenergy

    Estimated resolution based on increased light output.

    Energy Thickness σxy σxyCsI(Tl) (NRL) 60 keV 4 mm 1-2 mm 0.8-1.6 mm

    NaI(Tl) (Medical) 141 keV 9.5 mm 1.5 mm 1.2 mmNaI(Tl) (SIGMA) 30 keV – 1 MeV 12.5 mm 2.5-5.0 mm 2.0-4.0 mmNaI(Tl) (GRIP) 662 keV 5 cm 3.0 mm 2.4 mm

  • New Readout Technologies

    wavelength-shifting(WLS) fibers

    MCP-PMT (Burle)

    Flat-Panel PMT (Hamamatsu)

  • Depth of Interaction

    WLS fiber ribbons can be used to determine depth of interaction (DoI).

    Depth measurement comes from light cone projected onto WLS ribbon.

    X-Y (and Z?) location and total energy provided by an array of PMT anodes.

    Matthews et al. 2003

  • Availability of Detector Material

    Both LaBr3 and LaCl3 still under development

    A lot of interest (incl. medical)

    Development of LaCl3 leads LaBr3

    LaCl3 is available commercially

    Largest LaBr3 to date ≈ 2.3 cm3

    Cost eventually < $30 / cm33” x 3” LaCl3

    (St. Gobain)∆E/E = 4.1%

  • Challenges

    Fabrication (availability) of new scintillator material

    Spatial resolution of ≈ 1-mm in x, y and z

    On-orbit background of LaX?

    Radiation effects on LaX?

    Handling of multiple interaction sites?

    Ability to do polarimetry?

  • Implications for Mission Design

    Thicker material ==> greater weight, background?

    Thicker mask ==> greater weight, background?

    Thicker detector/mask ==> restricted FoV?

    Separate low-energy and high-energy imagers?

    Daily sky coverage?

  • CASTER Mission Concept Study

    Continued Development of LaBr3

    Detector Design Studies (various scintillators)

    Imager Design Studies

    Background Studies (beam tests, MGGPOD)

    Sensor Ruggedization

    Data Handling

    Spacecraft Design

    Mission Design

  • Summary

    Coded aperture imaging is an attractive way of doing a hard X-ray survey (10-600 keV).

    Alternative detector technologies are worth considering.

    The goal of the CASTER study will be to consider some of these alternative technologies and their implications for mission design.