23
0/ -- .. r a. 0"- (" > .... ) effW:>' @] a?.? "- uoocL rM- a- .bad ? t2.- =vj (tud ;br- . OA- «>oJ:> 74- A&&.

Case Western Reserve University - o~astroweb.case.edu/heather/323.12/galaxy_class2.pdf · 2012. 2. 19. · 24 Galaxies today [Ch.2 . Figure 2.3. The changing appearance of galaxies

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • S~j,~ ~ >~!:7 ~~

    s~ &u~~ ~a~~~r~~ 0/ 'i;~cE (~);, --~ ..~ ~ ~ ~7~ r a. ~~. ~ tVo~ ~~~ 0"-P(y~ ("t,+~ > .... ) ~~.v.> ~ effW:>'

    @] ~~~~~/~~ ~&..~o~ a?.?

    ~ tM

  • The  Hubble  classifica.on  reading:  Binney  and  Merrifield  Sec  4.1,  4.1.1  

  • Ellip.cal  galaxies  

    •  Smooth,  structureless  •  Designated  En,  where  n=10(1-‐b/a);  b/a  is  ra.o  of  major  to  minor  axis  

    •  Can  be  either  very  luminous  (giant  ellip.cals)  or  much  less  so  (dwarf  ellip.cal  or  dE)  

    •  NGC  205,  M32  (M31  satellites)  are  both  dEs  •  Dwarf  spheroidal  (dSph)  galaxies  are  very  low  surface  brightness  objects  which  are  only  possible  to  detect  within  a  few  Mpc  

  • Disk  galaxies:  Spiral  and  S0  (len.cular)  

    •  Two  branches:  barred  and  not  barred,  for  both  spirals  and  S0s  

    •  S0:  bright  central  region  (bulge)  plus  region  where  brightness  drops  less  sharply  (envelope;  this  is  the  disk)  

    •  Depending  on  strength  of  dust  absorp.on,  classified  S01,  2  or  3    

    •  Barred  S0s  classified  by  strength  of  bar:  SB01,  2  or  3  

  • Disk  galaxies:    spirals  

    •  Unbarred  spiral  has  central  bright  region  surrounded  by  disk  with  spiral  arms    

    •  Barred  spiral  has  bar  interior  to  spiral  arms  

  • Spiral  subtypes  

    •  Spiral  subtypes  Sa,  Sb,  Sc  or  SBa  SBb  and  SBc  according  to  

           (a)  rela.ve  importance  of  disk  and  bulge:    Sa  galaxies  generally  have  large  B/D  ra.os,  Sc  galaxies  are  disk  dominated  

           (b)  .ghtness  of  winding  of  spiral  arms:  Sa  .ghtly  wound,  Sc  loose  

           (c)  how  well  spiral  arms  are  resolved  into  individual  stars  and  HII  regions:  Sc  is  most  ‘resolved’  –  due  to  young  luminous  stars  and  luminous  HII  regions  

  • Hubble  stage  T  

  • 24 Galaxies today [Ch.2

    Figure 2.3. The changing appearance of galaxies in different parts of the electromagnetic spectrum is illustrated by this series of images, showing the nearby spiral galaxy M81. In X-rays, only the active nucleus and accreting compact objects in binary systems (white dwarfs, neutron stars, and black holes) appear, with no hint of the rich stellar structure. In the ultraviolet, only the hottest (unobscured) stars are bright, so that the spiral pattern can be traced via star-forming regions, but the central bulge of old stars has almost vanished. This appearance resembles some spiral galaxies seen at large distances, where the redder bulge light has shifted out of the optical bands. The familiar visible-light image shows both the spiral pattern and the old bulge population, while in the near-infrared, the spiral pattern and starforming regions are much more subdued. This change in apparent structure with wavelength has been dubbed the "morphological K-correction". X-ray data are from ROSAT, extracted from the HEASARC archive at NASA's Goddard Space Flight center. The UV image is a combination of observations obtained by the GALEX satellite at wavelengths 1,500 and 2,300 A., used courtesy of NASA. The optical images are reproduced courtesy of Greg Bothun. (The infrared data are from the 2-Micron All Sky Survey (2MASS), a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF.)

  • 2)t.Ua¥ tJo.ku UJ ~ vr~)~r~ cue ~

    ~S

    ~ y~ : S~ S~) /fY' ;?7V~c~ ~~~~ O

  • £C>b\.., ~ ~ ~ I'\D 1t'\DO~)

    6' ks ~ ~ .6'~~-s. ;;.,. "(7 F-E oj:.ads~ ~ mo#l. ~ ~'\.$ ~~

    ~1.ot.V - ~c>"V ~ ~ 'P~

    ..z:u.~ > ~.J,.r ~ ~ .

    IU~~ ~ ~

    F~.

  • The Spectrum of the Night Sky

    16

    19

  • Mlk. dd- eL/yJt:i:a,0 (-d ~~) .J~ ~ f!~ c..~ J+= ~cf~ ~

    . o!uJbJ

    ~A.- 1'4. tDcuue .f~CYJ. fj~v~~

    o'if~ ~~ ~ ~~~

    8d- ~ ~ h\ASS~J~~ ~ .

    ~ ~wr~ ~~ .. ".

    ~7 J

  • o

    ---++- +'1-+-+....

    N

    + - - +++ ---+ +

    + - - .. -+-+ 50

    RADIUS (areSLC. )

    FIG. 3. Vband luminosity profile. The solid line indicates the llC:Stfitting r l/4 component while the dashed line corresponds to the exponential disk. The fits are schematic only, as the total luminosity profile does not readily deconvolve into distinct components. Radius is in arcsec.

    Itkkv / Ian nL~ 1

  • /f} /0/

    30StLC ~~

    52" a ~

    . 11:5"£ sr ~(/U-AVY) ~~

  • · JD~~~

    /00 -~ ~~~SICGOQ

    kw sr "':f~ .k.t~ .D,d. ~ ~ fy~ ~.u~

    4Vt:U(.

    - ,w-.Jrut-~~ ~ --

  • lJ,n~ ~ 151 ~

    (/IJ"Y ~ oU. 30 ~

  • . .

    ~ Ilu.MIe.. c/a..sS~4 Zo~ IJerv(!S as ~e. ~~V

    ~7 cY ~ ,ft~ol.

    7k "'O#~/~a.t ~t«A.~ ~oti ~J..1: ~fy~~~ ~ 3~ &. Q.VOkJ;:o~.

    (tN' rIDes t/; .'?) /J') t ~)(fe ~ k~ :i4~ ~ ~~

    ~~.

    1l'Ju.L&;.,;~cJi: ~81S ~.!«e.S 84:.CU .e. ~Yo.L e

  • ~-~ ~~~~~ ~ .A, "'- oaL* ~. ~ .kStd.

  • 1.5

    1\ 5 t~ t t t +~ t; t! 't t t t ~

    -V 1 tID Itt t I Itt t t~.2

    ( a ) 15

    11 -

    1\.. ...J T , t~ t 'f 'f 't 't T t

    V 10 0 tID .2

    r f r r f 'Ij 1T 9 (b) II

    r~--r---I I I I I o

    r -I

    11 1\ L10 '1 'f T~ 'T fo !

    ...t" < V r iTT !! 1) tID I f, ..,..2 10

    (c) 1f

    J

    E so SOn Sa Sab Sb @ Se Sed Sd Sm 1m FiKure 2 Global galaxy lJarameters vs morphological type. Circles represent the RC3-UGC sample; squares the RC3-LSc sample. Filled symbols are medians; open ones are mean values. The lower bar is the 25th percentile; the upper the 75th percentile. Their range measures half the sample. The sample size is given in Table I. (a) log linear radius Rlin(kpc) to an isophote of 25 B mag/arcsec2 , (b) log blue luminosity Lo in solar units. (c) log total mac;s MT in solar units. (d) log total mass-to-Iuminosity ratio MT/Lo.

  • ,yet co~

    ~ .sh.vS a.

  • ~ ':/ ~~ /I 3~uoc::! ,.,tUSwe, "tvs C /I cC,,/~ !Y ~.fro""- ~.s) )Z.;,. , hi "-:J r ~ ~ sta,.. ~~ ~~ £) so) SGl. lI$r CIa:;!) N~& ~ ~~

    100 ~------r----.-------r-~

    ~e..

    10

    (!) ....J o... o ~

    a: w a.

    -l -ZII

    0.1

    0.01 L-- ---l.. ...I-_-.J._--'_---' 37

    Fif.:ure 6 The cumulative HII region lumino!iity function for different galaxy type!i from Kennicutt et al (1989).

    38 39 40

    log L ( Hex) erg I sec

  • /I~~~~~~" . .

    d40~~ (UIl ~st-) ~~

    1Jteu.5~ " .. . . a... ~ ~.

    G&J,.. ~;oz:.:; ~ ~U~~ "t:w.-S ~ ~

    tY~ ~c,YJlf~ ,~s eve- ~) ~

    ~ ~-r ~ ~ ~ ~e. H!.~

    ~ a.k dd~ ~ eve 'C:/ ~ - eo-- ~~v~ .=l

  • Figure 2.7. The color of galaxies along the Hubble sequence. The star-forming history of galaxies is traced by their broad-band colors. This is illustrated in these mean colors from a sample of 456 bright galaxies in the Sloan Digital Sky Survey, with the bands approximately at 3,500 A(u), 4,800 A(g), 6,250 A(r), 7,700 A(i), and 9,100 A(z). Smaller differences among these magnitudes (color indices) denote a bluer spectral shape. The difference is most conspicuous at shorter wavelengths (as in u - g color), since stellar evolution is most rapid for the more massive bluer stars. (Data from Shimasaku et al., Astronomical Journal, 122, 1238,2001.)

    8 10

    r-i .....

    g-r

    u-g

    024 6 Morphological type T

    :

    1G..eL: Galaxy components and quantitative classification 31

    : :

    1.5

    2.0

    0.5

    CIl Q) C).'0

    .5 1.0 J,., o '0 u

    has seen use in asking how local galaxy samples populate the CAS space, and in comparing this with samples at high redshift.

    Such a pattern of grouping and quantifying galaxies through some small set of observable quantities, such as color, image concentration, and an index of image symmetry, takes us into the more abstract field of quantitative classification. For many years, a need has been expressed for fully quantitative and numeric ways to classify galaxies, not necessarily to supplant but more completely to supplement the classical morphological schemes such as the Hubble and de Vaucouleurs systems. Such parameters could, if we are fortunate, be linked directly to the dynamical components of galaxies, and be defined in ways that make them more robust to data quality and resolution than the usual visual classifications. As candidate systems have been proposed and evaluated, it is one measure of the lasting influence of the Hubble system that most of the quantities they derive have been shown plotted as functions of ... Hubble class. We may consider such interesting additional quantities as color of the stellar population, gas content per unit optical luminosity, normalized starformation rate from Ha or far-infrared indicators, or mean rotational velocity, and in each case we see a clear correlation with galaxy type (as seen in sample quantities in Figure 2.7). The color dependence can be so strong that color is often used as the independent variable in studies of galaxy populations, as a proxy for the star-forming history of a system (Chapter 4).

    Sec. 2.2)

    aug25aug25Pages from 16-jan.pdf

    aug 27