45
MARCO Research and Innovation Action (RIA) This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730272. Start date : 2016-11-01 Duration : 24 Months Case Study 6 Report: Critical Energy Infrastructures Authors : Mrs. Katja LAMICH (HGF/HZG), Joerg Cortekar (HZG/GERICS), Markus Groth (HZG/GERICS) MARCO - D5.7 - Issued on 2018-01-31 09:49:00 by HGF/HZG

Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

MARCOResearch and Innovation Action (RIA)

This project has received funding from the EuropeanUnion's Horizon 2020 research and innovation programme

under grant agreement No 730272.

Start date : 2016-11-01 Duration : 24 Months

Case Study 6 Report: Critical Energy Infrastructures

Authors : Mrs. Katja LAMICH (HGF/HZG), Joerg Cortekar (HZG/GERICS), Markus Groth (HZG/GERICS)

MARCO - D5.7 - Issued on 2018-01-31 09:49:00 by HGF/HZG

Page 2: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

MARCO - D5.7 - Issued on 2018-01-31 09:49:00 by HGF/HZG

MARCO - Contract Number: 730272MArket Research for a Climate Services Observatory

Document title Case Study 6 Report: Critical Energy Infrastructures

Author(s) Mrs. Katja LAMICH, Joerg Cortekar (HZG/GERICS), Markus Groth (HZG/GERICS)

Number of pages 43

Document type Deliverable

Work Package WP5

Document number D5.7

Issued by HGF/HZG

Date of completion 2018-01-31 09:49:00

Dissemination level Public

Summary

The present case study investigates the actual and potential market for climate services in the electricity subsector of thecritical energy infrastructure sector in Germany.

Approval

Date By

2018-01-31 09:50:18 Dr. Richard BATER (Acclimatise)

2018-01-31 10:00:08 Dr. Thanh-Tam LE (CKIC)

MARCO - D5.7 - Issued on 2018-01-31 09:49:00 by HGF/HZG

Page 3: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 2 of 44

Table of content ListofTables.............................................................................................................................................3

ListofFigures............................................................................................................................................3

ExecutiveSummary..................................................................................................................................4

1 Introduction.......................................................................................................................................61.1 Background..........................................................................................................................................61.2 Methodology.......................................................................................................................................6

2 CriticalEnergyInfrastructureSector...................................................................................................72.1 DefinitionandSocio-EconomicProfileoftheSector............................................................................72.2 SimilarSectors&Regions..................................................................................................................102.3 SectorClimateVulnerabilityandRiskAnalysis..................................................................................13

3 CharacterisingtheMarket................................................................................................................163.1 ValueChainAnalysisandStakeholderMapping...............................................................................163.2 MarketQuantification,ExistingandPotentialClimateServiceSupplyandUse................................17

4 AttitudetoRisks...............................................................................................................................214.1 ActualPerceptionofClimate-RelatedImpactsandRisks..................................................................214.2 PerceptionofEvolvingClimate-RelatedImpactsandRisks...............................................................22

5 ClimateServiceDemand...................................................................................................................245.1 CurrentClimateServiceDemandandBenefitsofUse.......................................................................245.2 Constraints,unmetNeedsandOpportunities....................................................................................265.3 FactorsInfluencingClimateServiceTake-Up.....................................................................................275.4 FutureClimateServiceDemandandBenefitsofUse.........................................................................28

6 FrameworkConditions.....................................................................................................................296.1 GovernanceandStrategies................................................................................................................296.2 CollaborationwithClimateServiceSuppliers....................................................................................316.3 Technology........................................................................................................................................316.4 ResearchandKnowledge...................................................................................................................31

7 ConclusionandRecommendationstoEnhanceClimateServiceTake-Up..........................................32

Bibliography...........................................................................................................................................37

Appendices.............................................................................................................................................40

Page 4: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 3 of 44

ListofTables

Table1:Key-EconomicIndicatorsin2014........................................................................................................9

Table2:AssessmentofClimateImpactsintheGermanEnergySector.........................................................14

Table3:StakeholdersengagedintheElectricitySubsector...........................................................................17

Table4:PotentialClimateImpactsandVulnerabilitiesalongtheValueChainfortheElectricitySubsector.23

Table5:StatisticalClassificationoftheEnergySector...................................................................................40

Table6:ClimateServiceProvidersspecialisedintheFieldofEnergyinGermany.........................................41

Table7:TableofInterviewees........................................................................................................................43

Table8:TableofInvitees................................................................................................................................43

Table9:ClimaticallySensitiveDependencies.................................................................................................44

ListofFigures

Figure1:Electricity,Gas,SteamandAirConditioningSupplyin2014...........................................................11

Figure2:GermanShareofEU28GrossElectricityGeneration.......................................................................11

Figure3:GermanShareofEU28GrossElectricityGenerationofRenewables..............................................11

Figure4:SectoralAnalysisinGermany2014..................................................................................................12

Figure5:ValueChainoftheElectricitySubsector..........................................................................................16

Figure6:ElectricPowerGeneration,DistributionandTransmissionofEnterpriseswith20ormorePersons

Employed.........................................................................................................................................18

Figure7:NumberofGermanCompaniesinDifferentStagesoftheValueChainbySectorin2017.............19

Figure8:PowerPlantslocatedintheNorthofGermany...............................................................................20

Page 5: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 4 of 44

ExecutiveSummary

Thepresentcasestudyinvestigatestheactualandpotentialmarketforclimateservicesintheelectricity

subsectorofthecriticalenergyinfrastructuresectorinGermany.Criticalenergyinfrastructuresingeneral,

andelectricityinfrastructuresinparticular,areofpivotalimportanceforalmostallpartsofsociety.They

carrytheenergythatkeepsaneconomymovingandoursocietiesworking.Duetotheirinterdependent

nature,cross-borderdimensionandhighsocio-economicimportance,theirprotectionfromclimate-

inducedthreatshastoplayamajorroleatallstepsalongthevaluechain.

Inthisrespect,climateservicesaretherighttooltosupporttheenergysectortoreduceitsclimate-related

risks,toadapttoclimatechangeandtoincreaseitsresilience.Theresultsofthecasestudy–obtainedvia

interviewsanddeskresearch–indicate,however,thatlittleseemstobeknownabouttheexistenceof

climateservices.Whiletheuseofweatherservicesislargelycommoninordertoplan,controland

undertakedailyactivitiesandoperations,theactualuseofclimateservicesintheelectricitysubsectoris

ratherlow.

Stakeholdersactivelyengagedintheelectricitysubsectorclaimtoespeciallyneedseasonalforecastsand

decadalpredictions.Thelatterdemandclearlycorrelateswiththeenergycompanies’timeframesfor

strategicplanning,whichusuallyvarybetween3to8years.Additionally,decadalandmedium-term

predictionsareimportantforthosestakeholdersactiveattheverybeginningofthevaluechaininorderto

reliablydesignthestaticsofplantsorseepagesurfaces.Allinall,keyactorsoftheelectricitysubsector

needreliableinformationon(1.)windspeed,(2.)precipitation,(3.)snowload,(4.)amountofsnowand(5.)

irradiationlevels.

Amongstotherfactors,thelittledemandforclimateservicescanbeattributedto(1.)alowawarenessof

theclimate-relatedriskslyingahead,(2.)notbeingawareofthebenefitsclimateservicescanprovide,(3.)

mismatchesbetweentherequiredandtheavailabletimescaleandspatialresolutionand(4.)alackoftrust

inthereliabilityofdata.

Giventhecurrentlowdemandforclimateservices,thesector’sassessedvulnerabilitiesandeconomic

uncertaintiessuggestahighlatentpotentialfordemandforclimateservices.Thisisinlinewiththefindings

ofatransactionalanalysis,ascertainingavalueof77.1EURMandagrowthrateof9.3%fortheclimate

servicemarketintheGermanrenewableenergysectorin2015/2016,withacontinuouslyincreasing

growthrateuntil2022/2023(11.6%).ForsuchanincreasingdemandtheframeworkconditionsinGermany

aregoodandimproving.Inthisrespect,4recommendationsaregivenforanenhancedtake-upofclimate

services,spanning(1.)raisingawarenessthatclimateservicesactuallyexist,(2.)settingupa‘Climate

ServiceProviderStore’toinformwhereexactlykeyactorscanfindtheright-fittingservicesfortheirneeds

andclosetotheirlocations,(3.)increasingreliabilityofseasonalforecastsanddecadalclimatepredictions

and(4.)mainstreamingcooperationbetweenenergynetworksandclimateserviceprovidersineachregion.

Page 6: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 5 of 44

Allinall,thiscasestudyadvancesthestateoftheknowledgeontheuseofclimateserviceswithinthe

electricitysubsectorduetothefollowingaspects:(1.)whileresearchonthecurrentdemandofclimate

servicesexist,noresearchhasbeenundertakenonboth,thecurrentandfuturedemandofclimateservices

withintheelectricitysubsector,and(2.)avarietyofmethodshavebeenappliedinordertopioneeran

approachtowardsassessingandmonitoringtheclimateservicemarketoftheelectricitysubsectorby

combiningsocio-economicanalysesofthesubsectorwithitsassessedvulnerabilities.

Page 7: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 6 of 44

1 Introduction

1.1 BackgroundThisstudyformspartofMArketResearchforaClimateservicesObservatory(MARCO),aresearchproject

fundedthroughtheEuropeanCommission’sHorizon2020EnvironmentandResourcesprogramme.With

growingappreciationoftherisks(and‘opportunities’)thatclimatechangepresents,climateservicesare

helpingorganisationstomitigate,adapt,andbecomefuture-resilient.However,relativelylittleisknown

abouttheclimateservicesmarket,withunaddressedgapsexistingbetweensupplyanddemand.MARCO

endeavourstounderstandthesegapsbyprovidinga360°viewofEurope’sclimateservicesmarket,

endowingsuppliersandusersalikewiththeinsighttopredictthesector’sfuturedirectionandgrowth.

Thisdeliverable(D5.7)ispartofworkpackagefive(WP5),whichundertakesqualitativeandquantitative

analysesoftheexistingandfuturedemandforclimateservicesthroughthecompletionof9casestudies.

EachcasestudyisassociatedwithakeyeconomicsectorinEurope.Allstudies,andtheeconomicsectors

theyrepresent,hadbeenselectedas‘proxy’or‘indicator’studiesthat,whenconsideredcollectively,

describeawiderangeofsectoralcharacteristicsinwhichclimateservicescanplayarole.

D5.7presentstheresultsofcasestudy6,whichaddressestheelectricitysubsectorofthecriticalenergy

infrastructuresectorinGermanyanditsexistingandpotentialdemandforclimateservices.Theprotection

ofcriticalenergyinfrastructuresisconsideredapriorityareaofactionwithintheEuropeanUnion(EU)and

beyond,associetybroadlydependsonenergysupplysecurityinordertomaintainitsfunctioning.A

destructionordisruptionofenergyinfrastructuresbyclimate-inducedthreats,canleadtoasignificant

negativeimpactfortheenergysecurityoftheEUandthewell-beingofitscitizens.Climateservicescould

helpidentifyingsuchevolvingclimate-relatedrisksandsupportenergyfacilitiestoadapt.Thisisparticularly

importantbecausedisruptioninenergysupplydoesnotstopatbordersanddoesnotonlyaffectonesingle

sector.

Inthisrespect,theaimofthepresentdeliverableistocharacterisethemarketforclimateserviceswithin

theelectricitysubsector,toidentifythesubsector’svulnerabilitiesandtoanalyseitsuse,demandand

possiblefuturedemandforclimateservices.Bydoingso,abroadrangeofanalysesisapplied,resultingin4

finalrecommendations,whichcouldhelpenhancingclimateservicetake-upwithinthesubsectorand

beyond.

1.2 MethodologyThefindingspresentedinthisreportarebasedonavarietyofmethodsincludingliteraturereview,desk

researchandsemi-structuredinterviews.

Thedescriptionofthecriticalenergyinfrastructuresectorinchapter2,themarketcharacteristicsoutlined

inchapter3andtheframeworkconditionspresentedinchapter6arebasedonanextensiveliterature

Page 8: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 7 of 44

assessmentanddeskresearch.Thesethreechaptersprovideanexternalperspectiveontherespective

market.

Incontrast,chapters4and5provideaninternalperspectiveonthemarketbyanalysingtheattitudesto

risks(chapter4)andthecurrentandexpectedclimateservicesdemand(chapter5).Forthispurpose,

approximately70sectorexpertsfromavarietyofcompaniesoperatingintheenergysectorhavebeen

invitedtoparticipateinsemi-structuredinterviews.Thewillingnesstoparticipatewasunexpectedlylow;

finally,onlyfourinterviewscouldhavebeenconducted.Theresultsshouldthusbecarefullyreflected

againstthisbackground.

2 CriticalEnergyInfrastructureSector

2.1 DefinitionandSocio-EconomicProfileoftheSectorIn2006theEuropeanCommission(EC)publisheditsCommunicationona‘EuropeanProgrammefora

CriticalInfrastructureProtection’,alsocalledEPCIP(EC,2006).EPCIPsetstheoverallframeworkfor

activitiesaimedatimprovingtheprotectionofcriticalinfrastructuresinEurope–acrossallEUStatesandin

allrelevantsectorsofeconomicactivity.Itseekstoprovideanall-hazardscross-sectoralapproach.

DespitetheEPCIP’sbroadapproach,itsfirstpriorityareasincludethecriticalenergyinfrastructuresector.AlsopolicydevelopmentsofGermanyindicatetheenergysectorisofhighrelevancewhenitcomesto

criticalinfrastructureprotection(BundesministeriumdesInnern,2009).Whatarethereasonsforthehigh

relevanceassignedtocriticalenergyinfrastructures?Andhowiscriticalenergyinfrastructureexactly

defined?

Threedefiningcharacteristicsofcriticalenergyinfrastructuresarepresentedbelow:

1. Interdependency

2. Cross-borderdimension

3. Socio-economicimportance

(1.)Firstly,accordingtotheCounciloftheEuropeanUnion(2008)thecriticalenergyinfrastructure

sectorisdividedinthreesubsectors:electricity,oil,andgas.Eachsubsectorconsistsofphysicalenergy

facilities,energysupplychains,informationtechnologiesandcommunicationnetworksthatmakeupan

energysystem.Suchanenergysystemdirectlysupportstheoperationaswellastheperformanceofmany

otherinfrastructuresystems,e.g.transport,waterandinformation&communicationstechnology

infrastructuresystems.Thus,ifdestroyedordegraded,asignificantimpactonenergysecurityandenergy

supplywouldoccur,notonlyaffectingotherinfrastructuresystemsbutalsoinfluencingtheoverallsocial

andeconomicwell-beingofastate.Therelationshipbetweencriticalenergyinfrastructuresandother

criticalinfrastructuresis,however,notone-sided.Likeallcriticalinfrastructures,alsocriticalenergy

infrastructureischaracterizedbyahighdegreeofinterdependency.Thisappliesespeciallytothenon-

renewableenergysector.Rinaldietal.(2001,p.14)defineinterdependencyas“abidirectionalrelationship

Page 9: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 8 of 44

betweentwoinfrastructuresthroughwhichthestateofeachinfrastructureinfluencesoriscorrelatedto

thestateoftheother.Moregenerally,twoinfrastructuresareinterdependentwheneachisdependenton

theother”.Inpractice,thereexistdefactomanyinterdependenciesbetweenoneandseveralother

infrastructures.Thesemultipleconnectionscancreatesuchanintricateweb–consistingoffeedbackand

feedforwardpathsandcomplicatedbranchingtopologies–thatanaturalorhumaninitiatedthreattoa

singlecriticalinfrastructurecannotonlyleadtoaseriouscascadeeffectbyinfluencingvariousactorsin

differentsectors,butitalsocancauseanon-effectivedisasterresponse.Suchacascadeeffectoccurred

duringtheEuropeanfloodin2002whenhydroelectricpowerplantssustaineddamage.Inmostareasof

Dresden(Germany)theelectricpowersupplywasaffected,resultingthatalsoemergencyresponseshadto

contendwithpowerblackouts(Berariueta.,2015;Habersack&Moser,2003;Helbingetal.,2006;Richter

etal.,2008).

(2.)Followingtheinterdependentnatureofcriticalenergyinfrastructure,itssecondmostimportant

characteristicandthesecondreasonforitshighpoliticalrelevance,isthecross-borderdimensionofmain

energytransmissionnetworks.Infact,energynetworkscrossbordersbothphysicallyandatthelevelofthe

serviceprovided.Whiletheformeraspectreferstotheenergyinfrastructurebeingphysicallylocatedinthe

territoryofmorethanoneMemberState,thecross-bordernatureoftheserviceprovidedimpliesthata

disruptionofserviceinoneMemberStatecanaffecttheenergysupplyinseveralotherMemberStates,

causingadominoeffect.Thus,whilenationalauthoritiesareprimarilyresponsiblefortheprotectionof

energyfacilities,suchaspowerplantsandtransmissionlines,energydisruptioncanbefeltacrossnational

bordersandcauseseriouseffectsforEuropeancitizens.Asresearchunveils,suchanincident–analmost

Europe-wideblackout–occurredin2006.StartingfromGermanyanelectricblackoutcascadedtoPoland,

totheBeneluxcountriesandFrance,toPortugal,SpainandMorocco,acrosstoGreeceandtheBalkans,

affectingmorethan15millionpeople(UnionfortheCo-ordinationofTransmissionofElectricity,2007).

AconsiderablenumberofcriticalenergyinfrastructureslocatedinEUMemberStatescanbeclassifiedas

Europeancriticalinfrastructures.TheCounciloftheEuropeanUnion(2008,p.77)definessuchaEuropean

criticalinfrastructureas“acriticalinfrastructurelocatedinMemberStatesthedisruptionordestructionof

whichwouldhaveasignificantimpactonatleasttwoMemberStates”.AspartoftheEuropean

Commission’slatest‘EnergyUnionPackage’(EC,2015)theEuropeanUnionisaimingforincreasingcross-

borderenergyinfrastructuresandinterconnectionsbetweenMemberStatesinordertocompleteitsfully

integratedEuropeanenergymarket,oneoffivetargetsoftheEnergyUnionPackage.Againstthis

background,195energyinfrastructureprojectswithacross-borderdimensionwereidentifiedin2015,

consistingof108electricity,77gas,7oiland3smartgridprojects.Theseso-calledProjectsofCommon

Interest(PCIs)–whichgetfinanciallysupportedbytheEuropeanUnion–arekeyinfrastructureprojects

andtheprimaryEuropeantooltoacceleratethedeploymentoftheinfrastructurenecessarytocomplete

theinternalEuropeanenergymarket.Theseexamplesofpolicydevelopmentsmakeclearthatthecross-

borderdimensionofcriticalenergyinfrastructuresandpossiblecross-bordercascadingeffectsintermsof

disruptedenergysupplymightbecomeofevenmoreimportancewithinthenearfuture.

Page 10: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 9 of 44

(3).Thirdly,criticalenergyinfrastructureisnotonlycharacterizedashighlyinterdependentandwith

across-borderdimension,itisalsoofhigheconomicandsocialimportancefortheEUandespeciallyfor

Germanyasitcarriesanddistributestheenergythatkeepsaneconomymovingandoursocietiesworking.

Insightsintothecriticalenergyinfrastructure’ssocio-economicimportancearebasedonEurostat’s

‘StructuralBusinessStatistics’(SBS)andthe‘StatisticalClassificationofEconomicActivitiesintheEuropean

Community’(NACE),Rev.2(2008).AsshowninTable5intheannex,theEuropeanCommission(2017,p.

134)classifies3NACEsections,7NACEdivisionsand20NACEgroupsasbeingpartoftheentireenergy

sector.Basedonthisclassificationandbasedonthedefinitionofcriticalenergyinfrastructuremadebythe

CounciloftheEuropeanUnion(2008),theredmarkeddivisionsandgroupsbelongtothecriticalenergy

infrastructuresectorinthenarrowsense.Outofallthesegroupsclassifiedasbeingpartoftheentire

energysector,theelectricitysubsectorclearlystandsout,e.g.intermsofpersonsemployedandturnover

inEURmillion.Group35.1ofsectionDpresentsit.SectionDreferstotheoverallelectricity,gas,steamand

airconditioningsupplysector(followingEUROSTAThereafterreferredtoasthenetworkenergysupply

sector).Itconcernstheprovisionofelectricpower,naturalgas,steam,hotwaterandthelikethrougha

network(permanentinfrastructure)oflines,mainsandpipes.Group35.1givesinsightsintotheEurope-

wideandnationalproduction,transmissionanddistributionofelectricityonly,whichcanbegenerated

fromfossil,nuclearorrenewablefuels.Accordingtothedataavailablefor2014,theproduction,

transmissionanddistributionofelectricitygeneratedthehighestturnoverintheEuropeanaswellas

Germanenergysector,inbothcasesemployingmostoftheworkersatthesametime.

Table1:Key-EconomicIndicatorsin2014

D35:Electricity,gas,steamandairconditioningsupply

German share of EU28

D 35.1: Electric power generation, transmission and distribution

GermanshareofEU28

EU28:Productionvaluein€M -

-

966.634

-Germany:Productionvaluein€M - -

EU28:Turnoverin€M 1.478.876

37,9%**

1.185.838

42,1%**Germany:Turnoverin€M 560.482 499.439

EU28:Valueaddedin€M 218.919

18.5%**

180.608

19,2%**Germany:Valueaddedin€M 40.467 34.659

EU28:Numberofenterprises** 88.000*

2,3%

80.466

1,8%Germany:Numberofenterprises 2.058 1.473

EU28:Numberofpersonsemployed 1.230.000*

18,5%**

937.829

21,7%**Germany:Nr.ofpersonsemployed 228.179 203.101

Source:Eurostat’s‘StatisticalClassificationofEconomicActivitiesintheEuropeanCommunity’(NACERev.2,B-E)

[sbs_na_ind_r2]*Rounded**HighestsharewithinEU28

Page 11: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 10 of 44

AmoredetailedunderstandingofthesizeoftheelectricitysubsectorisprovidedinTable1above.Looking

atthedataofSectionD,intheEU281.2millionpersonswereemployedinthenetworkenergysupply

sectorin2014andgeneratedEUR218.9billionofvalueaddedor1.56%ofGDP.Theproduction,

transmissionanddistributionoftheelectricitysubsector(group35.1)wasbyfarthelargestpartofthe

networkenergysupplysector,contributing82.5%ofsectoralvalueadded(1.27%ofGDP)and76.2%of

theworkforcein2014.ByanalysingthecontributiontotheEU28valueaddedinthenetworkenergysupply

sectorasawhole,Germanycontributedthehighestamountwith18.5%.Asimilarsituationcanbe

observedfortheelectricitysubsectorwherethehighestvalueaddedwasgeneratedinGermany(19.2%)

whileemployingmostpersonswithashareof21.7%in2014.

Againstthisbackground,alargeeconomicandsocialimportanceoftheelectricitysubsectorcanbe

observed.Energyingeneralbutelectricityinparticularplaysapivotalroleinalmostallpartsofsociety.It

mightnotbesurprisingthattheproductionofthelattercontributesthussignificantlytothetotal

greenhousegasemissionsintheEUandGermany.ToachievetheclimategoalsoftheParisAgreementand

theEU’senergyandclimateobjectivesaswellastocompletetheEuropeanenergymarket,theEuropean

CommissionestimatesthatinvestmentsofmorethanEUR1trillionareneededfortheenergysectorby

2020(EC,2010,p.2).AccordingtotheCommission’sEnergy2020strategy(EC,2010),theseinvestments

arerequiredacrosstheenergyvaluechain,includingpowergeneration,electricitytransmissiongrids,

distributiongridsandgaspipelines.However,sinceinfrastructureassetsandnetworksarenotonlycapital-

intensiveandofhighsocio-economicimportancebutalsolong-lived,theirprotectionfromclimate

variabilityandchangehastobeconsideredasofthebeginning.Inthisrespect,thereisapotentially

significantopportunitytoreducethevulnerabilityofcriticalenergyinfrastructures,toobtaintheirhigh

socio-economicimportanceandtohelppreventsectoralandcross-bordercascadingeffectswithadequate

climateservices–anopportunity,notmentionedinEPCIPnorintheEnergy2020strategyonce.

Inconclusion,(1.)theinterdependentnatureofcriticalenergyinfrastructures,(2.)theircross-border

dimensionand(3.)theirsocio-economicimportance,resultinthehighpoliticalrelevanceassignedtothe

protectionofcriticalenergyinfrastructuresbynationalandEUinstitutions.Thisappliesespeciallytothe

electricitysubsector.

2.2 SimilarSectors&RegionsAsectoralandregionalanalysiscanbeofhelpinordertobetterunderstandtheaboveoutlined

characteristicsofthecriticalenergyinfrastructuresector.ThisanalysisconcernstheGermannetwork

energysupplysectoranditssubsectorelectricity,whichwillprimarilybeofconcernforthepresentcase

study.

Startingwiththeregionalanalysis,theweightoftheGermannetworkenergysupplysectorcanbe

detectedbycomparingittotheperformanceofthesamesectorinsimilarcountries.FranceandtheUnited

Kingdom,whosesizeandnumberofinhabitantsareequivalenttothoseofGermany,areconsideredforthe

Page 12: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 11 of 44

analysis.WhencomparingthevalueaddedaswellasthenumberofpersonsemployedattheEuropean

level,Germanystandsoutasmentionedalreadyintheformerchapter.Thisappliestotheoverall

electricity,gas,steamandairconditioningsupply(production,transmissionanddistribution),asshownin

Figure1,aswellastotheproduction,transmissionanddistributionofelectricityalone.Forexample,while

theGermancontributiontotheEU28valueaddedintheentireenergysupplysectorcomprised18.5%in

2014,thenexthighestrelativesharesofFrance(13.8%),theUnitedKingdom(13.2%)aswellasItaly(11.8

%)andSpain(9.0%)werealsowellabovetheEU28average(3.3%).

Figure1:Electricity,Gas,SteamandAirConditioningSupplyin2014

Source:DataandcalculationsbasedonEurostat’s‘StatisticalClassificationofEconomicActivitiesintheEuropean

Community’,NACERev.2,B-E[sbs_na_ind_r2]

Figure2:GermanShareofEU28GrossElectricityGeneration

Figure3:GermanShareofEU28GrossElectricityGenerationofRenewables

Source:CalculationsbasedonEurostat’sannualdataforsupply,transformationandconsumptionofelectricity

[nrg_105a]

Asimilarresultcanbedetectedwhenanalysingthecountries’grosselectricitygeneration.20%ofthe

grosselectricitygenerationisgeneratedinGermanyalone(illustratedbytheredlineinFigure2onthe

18,5

13,8

13,2

18,5

15,5

10,5

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0

Germany

France

UnitedKingdom

Personsemployed,shareofEU28 Valueadded,shareofEU28

34,430,4

20,014,1

10,7 10,2

0,0

10,0

20,0

30,0

40,0

SolidFuels

Wastesnon-

RES

Renewables

Gases

Nuclear

Petroleumand

Products

GermanShare(%)ofEU28GrossElectricityGeneraZon,2015

(RedlinemarksGrossElectricity

GeneratonforallFuels)

35,9

28,3 26,2

6,72,0 0,0

0,0

10,0

20,0

30,0

40,0

Solar

Biomassand

Renewable

Wind

Hydro

Geotherm

al

Tide,Wave

andOcean

GermanShare(%)ofEU28GrossElectricityGeneraZonofRenewables,

2015(RedlinemarksGrossElectricity

GeneratonforallRenewables)

Page 13: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 12 of 44

left).Thesecondhighestcontributor,France,followswithashareof17.6%andthethird,theUnited

Kingdom,withashareof10.5%.Outofallfuelsused,theGermanelectricitygenerationbysolidfuelsis

stillhighestwithintheEU(share34,4%).Also,theGermangrosselectricitygenerationbynon-renewable

waste(GermanshareofEU28=30,4%)andrenewableenergysources(GermanshareofEU28=20%)

markthehighestsharewithintheEU.Thesameappliesextensivelytothethreerenewableenergysources

solar,biomassandwind,showninFigure3ontherightabove.

Eventhoughforacomprehensiveregionalanalysiscontextualfactorshavetobeconsidered–suchas

nationalemploymentrates,importsandexports,GDPorthenumberofenterpriseswithinthesector–

theseresultsindicatethatenergydisruptionanddestructionduetothreatscausedbyclimatevariability

andchangemighthaveasignificanteffectfortheenergyconsumptionnotonlyinGermany.Instead,given

thelargeGermancontributiontothegrosselectricitygenerationintheEUandgiventheinterdependent

natureofcriticalenergyinfrastructuresandtheircross-borderdimensions,significanteffectsonother

sectorsandinothercountriesmightoccur.Theprotectionofcriticalenergyinfrastructureslocatedin

Germanycould,therefore,potentiallybeconsideredasbothofnationalandEuropeaninterest.

Asectoralanalysisisamacroeconomicanalysisofanationaleconomy,comparingeconomic

dimensions–suchascompetitiveness,employmentorvalueadded–ofonesectorwithoneorseveral

othersectorswithinthesamecountry.Thiskindofanalysiscanbeappliedtothecriticalenergy

infrastructuresectorinGermanybycomparingitwiththeperformanceoftheGermantransportationand

storagesector(NACE,Rev.2,sectionH)aswellaswiththewatersupply,sewerage,wastemanagement

andremediationactivitiessector(inreferencetoEUROSTAThereafterreferredtoasthewatersupply

sector,NACE,Rev.2,sectionE).Allthreesectorshavethetransportationorsupplyof‘something’in

common.Theyeithermovepeopleandgoods,waterandwasteorenergy.Additionally,theenergysector

isdirectlylinkedtotheothertwosectors(e.g.intermsofthetransportationoffuelstopowerstationsorin

termsofwaterbeingusedtocooltubesofpowerfultransmittersthatusuallyusehighoperationvoltages).

Figure4:SectoralAnalysisinGermany2014

Source:CalculationsbasedonEurostat’s‘StatisticalClassificationofEconomicActivitiesintheEuropeanCommunity’,

NACERev.2,B-E[sbs_na_ind_r2]andNACERev.2,H-NandS95[sbs_na_1a_se_r2]

1,5

0,9

3,9

0,6

0,6

5,5

0,0 1,0 2,0 3,0 4,0 5,0 6,0

EnergySupplySector

WaterSupplySector

TransportatonandStorageSector

Personsemployed,shareofGermansemployedinalleconomicactvites

Valueadded,shareofallGermaneconomicactvites

Page 14: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 13 of 44

Byanalysingallthreesectorsintermsofvalueaddedandpersonsemployed,thetransportationand

storagesectorcouldbeseenasofhighestsocio-economicimportanceinGermany(Figure4).However,the

networkenergysupplysectoraccountedfora1.5%shareofthevalueaddedofallNACEactivities–almost

twotimesashighasitsshareofemployment.Sincethevalueaddedisthesector’sgrossincomefrom

operatingactivities,theseverydifferentsharesindicateahighapparentlabourproductivitywithinthe

networkenergysupplysectorandreflectitscapital-intensivenature.

Inconclusion,theoutlinedsectoralandregionalanalysisdemonstratesthatbesides(1.)theinterdependent

nature,(2.)thecross-borderdimensionand(3.)highsocio-economicimportanceofcriticalenergy

infrastructuresingeneral,theGermanenergysupplysectorrankshighestwithintheEU,andseemsto

performeconomicallywellwithinthecountry.

However,itssolidperformancedoesnotmaketheGermannetworkenergysupplysectorlessvulnerableto

climatevariabilityandchange.Particularlyduetothehighinvestmentsrequiredfortheplanning,start-up

andrunofanenergyfacilityanditsgenerallyextensivelifetime,itisevenmorecrucialthatactorsengaged

inthesectorassessthesector-specificvulnerabilitiestochangesofrelevantclimatevariables,preferablyon

aregularbasis.Bydoingso,andbytakingthevulnerabilityofenergyfacilitiestoclimate-inducedthreats

intoaccount,profitabilitycanbequantifiedmorerealisticallyoverthelongterm.Inthisrespect,aclimate

vulnerabilityanalysisoftheGermannetworkenergysupplysectoranditssubsectorelectricityispresented

inthefollowingchapter.

2.3 SectorClimateVulnerabilityandRiskAnalysisInordertoanalysethecurrentandpotentialdemandforclimateserviceswithintheGermanelectricity

subsector,itisessentialtobeawareofthesector’svulnerabilitiesandriskstoclimatevariabilityand

change.ThischapterpresentsthescientificresultsoftheGermanvulnerabilityanalysis.Theseresultswill

beneededlaterduringthecasestudyanalysisinordertocomparetheassessedvulnerabilitiesofthe

energysectorwiththeperceptionofstakeholdersactivelyengagedinthesector.

Since2008,theGermanAdaptationStrategy(Bundesregierung,2008)hassetthepoliticalframeworkfor

activitiesoftheFederalGovernmenttocountertheeffectsofclimatechange.In2015,bothamonitoring

reportoftheadaptationstrategy(Bundesregierung,2015)andthecountry’sfirstvulnerabilityanalysis

(Umweltbundesamt,2015)werereleased.Whiletheformerpresentsashorteranalysisofthevulnerability

ofeachsector,thelatterprovidesacomprehensiveoutlineofthemethodologyappliedandamore

detailedanalysisofthesectors’vulnerabilitiesuntil2050.Bothanalysesareoneandthesame–conducted

bythe“NetzwerkVulnerabilität”,anetworkoffederalauthorities.

ThedefinitionofvulnerabilityusedintheGermanvulnerabilityanalysisfollowstheoneoftheFourth

AssessmentReport(AR4)oftheIntergovernmentalPanelonClimateChange(IPCC).Hereafter

“vulnerabilityisafunctionofthecharacter,magnitude,andrateofclimatechangeandvariationtowhicha

Page 15: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 14 of 44

systemisexposed,itssensitivity,anditsadaptivecapacity”(IPCC,2007,p.883).Asareasonforapplying

theAR4frameworkinsteadofthelatest2014frameworkofIPCC’sFifthAssessmentReport(AR5),which

definesrisksasanewlyconceptualelement,itisarguedthatthelevelofanalysisofbothavulnerability

analysisandariskassessmentmightnotbecompatiblemethodologicalapproaches(Umweltbundesamt

2015,p.37).Hence,notrisks(IPCC,2014,p.1048)butthevulnerabilityofregionsandsystemstoclimate

changehavebeenidentifiedinascreeningprocedurethroughoutGermanyandacrossallfieldsofactivity.

ThisapproachhasimplicationsforthefollowingvulnerabilityandriskanalysisoftheGermancritical

energyinfrastructuresector,astheresultstobepresentedrefertothesector’svulnerabilitiestoclimate

changeonly.So,whichvulnerabilitieshavebeenassessed?

Basedonthevulnerabilityanalysisapplied,severalclimatesignalsand4assetsorprocesseswithamedium

potentialofdamagewereidentifiedintotal.TheyarepresentedbelowandshowninTable2

Table2:AssessmentofClimateImpactsintheGermanEnergySector

Assetsorprocessesaffectedbyprojectedclimateimpacts

ClimateSignal Assessmentofclimateimpacts

Timeneededtoadapt

Require-mentofAction

Present NearFuture(2021–2050)

WeakChange

StrongChange

Demandfor

heatingenergy

Temperature Low Low Medium Short

Demandfor

coolingenergy

Heat,temperature Low Low Medium Short

Hydropower Precipitation,temperature,

drought

Low Low Low Long

Coolingwater

forthermal

powerplants

Heat,precipitation,

temperature,drought

Medium Low Medium Long Medium

Windenergy

useonlandand

atsea

Strongwind,wind Low Low Low Long

Power&gene-

ratingplants

Lightning,riverflood,snowfall,

strongwind,stormsurge

Low Low Medium Long Medium

Transmission&

distribution

lines

Lightning,riverflood,snowfall,

strongwind,stormsurge

Low Low Low Long

Reliabilityof

energysupply

Lightning,riverflood,heat,

precipitation,snowfall,strong

wind,stormsurge,temperature

Low Low Low Long

Source:Bundesregierung,2015,p.176,211

Page 16: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 15 of 44

Firstly,highambienttemperaturescanreducepowerplantefficiencyandconstraintheoperation

ofthermalpowerplants,whichrequirewaterforcooling.Anincreaseddemandforcoolingwaterfor

thermalpowerplantsisexpected–withmediumtohighcertaintyandamediumpotentialofdamagein

thepresentandthenearfuture(until2050).Thesepossibleimpactsonelectricitygenerationefficiencyand

supplyreliabilityduetowarmerwaterandwaterscarcityarealreadysubjectofmanystudies(Berariuetal.,

2015,IPCC,2012,Mulugettaetal.,2014,OECD,2017,Schaefferetal.,2012).

Secondly,changesinseasonaltemperatureswillmodifyenergydemandpatterns.ForEurope,a

reductioninthenumberofheatingdaysbetween11%and20%isexpectedbytheyear2050(Isaac&van

Vuuren,2009).AlsoinGermanyadecreaseinheatingenergydemandisforeseenasaresultfromashorter

winterheatingseason,newenergyefficientheatingsystems,changesinbuildingstocksorremedialactions

(Umweltbundesamt,2015).ThisappliesespeciallytoregionsintheWestofGermanyalongtheRhine,to

Berlin,Hamburg,MünchenandtosomeareasintheEastofGermany.

Onthecontraryandthirdly,highersummertemperatureswillincreasetheelectricitydemandfor

coolingespeciallyintheSouth,andthecorrespondinghigherpeakloadsmayrequireadditionalgeneration

capacity.Altogether,changingpatternsinthedemandforheatingandinthedemandforcoolingareassessedtohaveamediumpotentialfordamagewithinthenearfutureandwouldaffecttheenergy

industryinsummer(lowcertainty)andinwinter(mediumtohighcertainty)iftemperaturerisessharply.

Fourthly,thevulnerabilityofpowerplantsandgeneratingplantscanrisesignificantlyuntil2050

duetoextremeweatherevents(lowcertainty).Amediumpotentialfordamagetothermalpowerplants

causedbyriverfloodsisassessedespeciallyforregionsinsouthernGermany,suchasMunich,aswellasin

someareasofLowerSaxony(Umweltbundesamt,2015).Apotentialdamagecausedbystormsurgesis

mainlyconcentratedincoastalareasabovetheElbe–expectedtoincreaseuntil2050.

ThebottomlineofthevulnerabilityanalysisoftheGermancriticalenergyinfrastructuresectoristhatthe

reliabilityofenergysupplymaybenegativelyaffected,butonlytoalimitedextent.Duetothehigh

adaptivecapacityandtherelativelylowimpact,theoverallvulnerabilityoftheenergyindustrytoclimate

changeisthusassessedaslow.Nevertheless,fortwooftheindicatorspresentedabovetherequirementof

actionisevaluatedasmedium.AsshowninTable2,thisappliesespeciallytotheelectricitysubsector:its

increasingdemandforcoolingwaterforthermalpowerplantsandtheincreasingdangerofdamageto

powerandgeneratingplants.Giventheseresults,showingthatespeciallytheelectricitysubsectormightbe

affectedbyclimatevariabilityandchange,itcouldbearguedthatelectricityfacilitiesshouldalsoseea

growingdemandforclimateservicesasaprimarilytoolforidentifyingregionalandsite-specificthreats.

Page 17: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 16 of 44

3 CharacterisingtheMarket

Thefindingsoftheformerchaptersdemonstratethat(1.)theinterdependentnature,(2.)thecross-border

dimensionand(3.)highsocio-economicimportanceofcriticalenergyinfrastructuresresultinthehigh

politicalrelevanceassignedtotheirprotectionbynationalandEUinstitutions.Thisappliesinparticularfor

theelectricitysubsector.Additionally,theresultsofthevulnerabilityanalysisindicateanexistingnecessity

foractionandapotentialfuturedemandforclimateservicesintheelectricitysubsector.Withinthe

subsector,however,therearedifferentstakeholdersengagedatdifferentstagesofthevaluechain.

Dependingonthepositionalongthevaluechain,theyhavedifferentvulnerabilities,whichsubsequently

mightalsoleadtodifferentdemandsforclimateservices.Therefore,thegoalofthefollowingchapteristo

firstlyprovideanoverviewofthestakeholdersengagedinthesubsectorelectricity,andtosecondly

quantifythesizeofcurrentandpotentialclimateservicedemand.

3.1 ValueChainAnalysisandStakeholderMappingThevaluechainoftheelectricitysubsectorconsistsof7-9differentstages.Thefirststepstartswiththe

planningofpowerpants,providedthroughprofessionaltechnicalconsultingandplanningbyarchitectsand

engineers.Thesecondstepofthechainconcernstheproductionofpowerplantsbasedontheplanning

preparedbyengineersbefore.Oncethepowerplantisreadytophysicallygenerateenergy,iteitherhasto

receivefuelthathastobeextractedandtransportedtotheplantfirst,oritcanstartwiththegenerationof

powerstraightawayincasethepowergenerationisbasedonsolar,windorwaterenergy.Thus,thethird

stepalongthevaluechainistheextraction,andthefourthstepisthetransportationoffuelstopower

plantsforthosefacilitiesdependingonit.Thisappliestoallfossilfuelsandinthecaseoftransportation

alsotobiomass,whichisusedtoproducebiogasorelectricity.Thereafter,thenextpossiblestep–stepfive

–isthegenerationofpoweritself.Assoonaspowerisgenerated,itisreadytobemoved,butelectricityis

movedindifferentways.Asasixthstep,electricityisfirsttransmittedatveryhighvoltage(11000V)from

powerplantstopowersubstations,whichareusuallylocatednearsettlements.Atthepowersubstations,

electricityisbroughtdownfromhightolowvoltagebyusingtransformers,beforeitisdistributed(eighth

step)atalowandsafelevel(220V)downtoitsconsumers.Inbetweenpowerisoftentraded,e.g.bybanks,

powerplantoperatorsormunicipalutilities(seventhstep).Attheveryendandasaninthstep,theenergy

producedisfinallyconsumedbyitsend-users.AllthesedifferentstagesareshowninFigure5.

Figure5:ValueChainoftheElectricitySubsector

1 2 3 4 5 6 7 8 9

Plan-

ningof

Power

Plants

Produc-

tonof

Power

Plants

Extract-

ionof

Fuels

Trans-

portof

Fuelsto

Power

Plants

Genera-

tonof

Power

Trans-

mission

of

Power

Trading

of

Power

Distri-

buton

of

Power

Consumpton

Page 18: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 17 of 44

Withinthiscasestudy,6outof9stepsofthecoreprocesseswereinvestigatedfurther.Thisincludesall

stepsexplainedaboveexcepttheextractionandtransportoffuelstopowerplantsandtheconsumptionof

energybyend-users.Eventhoughitisquestionablewhetherornotthefirsttwostepsarealreadypartof

thevaluechainofthenetworkenergysupplysectorasawhole,theygotconsideredduringtheanalysis.

Ingeneral,inGermanymanycompaniesandstakeholdersareactiveinseveralstagesofthevaluechain.

Thisseemstoapplyespeciallytotheplanningandconstructionofpowerplants,thegenerationand

transmissionofpower,andthetransmissionanddistributionofpowerasthesestagespresentveryclosely

relatedactivitiesforwhichcloselyrelatedcapacitiesareneeded(seeTable3).

Table3:StakeholdersengagedintheElectricitySubsector

PlanningofPowerPlants

ProductionofPowerPlants

GenerationofPower

TransmissionofPower

TradingofPower

DistributionofPower/Grids

- Architecturefirms

- Engineeringfirms

- Spatialplanning

offices

- Publicauthorities

- Energycompanies

- Buildingcontractors

and

developers

- Energycompanies

- Architecturefirms

- Engineeringfirms

- Energycompanies

(stateowned

orprivately

owned)

- Energycompanies

- Networkoperators

- Municipal/

public

utilities

- Privateutilitycompanies

- Banks- Powerplantoperators

- Privateutilitycompanies

- Smalltraders

- Brokers

- Energycompanies

- Municipal/

public

utilities

- Privateutilitycompanies

Expertsofenergynetworksandnon-profitorganisations

The4stakeholderswhowereinterviewedareengagedinseveralstages.Altogether,theyrepresentall

stepsalongthevaluechain,andcomprisearchitectureandengineeringfirms,energycompanies,network

operators,privateutilitycompaniesandexperts.TheyarealllocatedintheNorthofGermany–within

FederalStatesSchleswig-Holstein(NUTS2:DEF0),Hamburg(NUTS2:DE60)andBremen(NUTS2:DE50)–

andoperateonacrossregional,cross-federalandintwocasesevenonacross-nationalandEuropean

scale.WithintheGermannetworkenergysupplysectorasawhole,75%menand25%womenwere

employedin2016(FederalStatisticalOffice,2017a).

3.2 MarketQuantification,ExistingandPotentialClimateServiceSupplyandUseAccordingtoEUROSTAT1.461companieswereactiveinthegeneration,transmissionanddistributionof

electricityinGermanyin2015.TheFederalStatisticalOfficeofGermanycounts771enterprisesin2015

Page 19: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 18 of 44

whatmarksabouthalfoftheamountEUROSTATpresents.Theseverydifferentnumberscouldbedueto

thefactthatmanycompaniesareengagedinmorethanoneofthestepsalongthevaluechain.Itislikely

thattheywerecountedseveraltimes.

Bylookingatthedevelopmentsin(1.)numberofcompanies,(2.)numberofpersonsemployed,(3.)

investments,(4.)turnoveraswellas(5.)materialconsumptionandinputofgoodsovertime,presentedby

theFederalStatisticalOffice(seeFigure6),itcanbenoticedthatinGermanenterprisesengagedinthe

generation,distributionandtransmissionofelectricitythenumberofpersonsemployed,thenumberof

companiesandtheinvestmentshavebeenstableoverthelasttenyears.Ontheotherhand,material

consumptionandinputofgoodshaveremarkablyincreasedsincetheearly2000’s.Thesameappliestothe

similarlyincreasedturnover,whichcanbeconsideredasthebusinessgrowthfactor.Asthematerial

consumptionandinputofgoodsarethevariableinputoftheelectricitysubsector,theyalsodeterminethe

subsector’sfinalturnover.Thismeansthatthehighcostsinvestedinthematerialconsumptionandinputof

goodsalsobringhighfinancialuncertaintytothecompaniesengagedinthegeneration,transmissionand

distributionofelectricity.Thishighuncertaintymarksageneralneedforthesubsectortogather

informationaboutallimpactstoitsbusiness.Itopensopportunitiesforexternalinformationproviders,

suchasclimateservicesuppliers,toaidthesubsectorelectricitytoreduceitsuncertaintiesandtocreatea

morestableturnover.

Figure6:ElectricPowerGeneration,DistributionandTransmissionofEnterpriseswith20ormorePersonsEmployed

Source:FederalStatisticalOffice,2017b

Whilebusinesswiseandeconomicallyastrongindicationoffutureclimateservicedemandexists,itisstill

unclearwhoofthestakeholdersengagedalongthevaluechainmighthavethehighestdemandforclimate

services.

0

100000

200000

300000

400000

500000

600000

1975

1978

1981

1984

1987

1990

1993

1996

1999

2002

2005

2008

2011

2014

Nr.ofEnterprises

Nr.ofpersonsemployed

TurnoverinEURmn

Materialconsumpton

andinputofgoodsinEUR

mn

InvestmentsinEURmn

Page 20: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 19 of 44

NeitherEUROSTATnortheFederalStatisticalOfficeprovidedataontheamountofcompaniesactiveinthe

differentpartsofthevaluechain.However,Statista–anonlinestatisticportal–does.Itgivesinsightsinto

theamountofGermanelectricitycompaniesandtheirlocationatthevaluechain,butalsoenterprises

belongingtothegassubsectorarelistedaswellasthosecompaniesbeingactiveindistrictheating(one

partoftheelectricitysubsector).Thus,Figure7belowdoesnotonlysummarisetheengagementofallof

theseactorsalongsomepartsofthevaluechainbutitalsoshowsthenumberofcompaniesthatmight

generateahigherdemandforclimateservicesinthefuture.

Basedontheillustratedamountofcompaniesinsomepartsofthevaluechainandincombinationwiththe

assessedvulnerabilitiesoftheenergysector(seeresultsofchapter3.3and4.2),thepotentialsizeofthe

futuremarketforclimateservicescanbeassumed.Thevulnerabilityanalysisunveiledalreadyamedium

potentialfordamagetopowerandgeneratingplants.Eitherextremeweathereventswillleadtodamages

orhighertemperatureswillleadtoanincreasingdemandforcoolingwaterforthermalpowerplants,which

willaffecttheefficiencyofpowergeneratingplantstoo.Butbesidescompaniesengagedinthegeneration

ofelectricityalsoenterprisesactiveinthetransmissionanddistributionofpowermightbeaffectedsincea

lowerdemandforheatingandahigherdemandforcoolinginfluencestheamountofelectricitytheymight

beabletomoveordeliver.Thus,especiallythe90companiesgeneratingelectricityandtoalesserextent

alsothe906electricitynetworkoperatorsand1200electricitysuppliersshownbelowinFigure7might

haveagrowingdemandforclimateservicesinthefuture,providedthattheyareactuallyawareofthe

climate-inducedvulnerabilitiesandrisksahead.Thesizeofthemarket,however,canonlybeinferredfor

eachstepofthevaluechain,becauseasimplesummationoftheexistingcompaniesshownbelowisnot

possible.Asmentionedalreadybefore,manyenterprisesareactiveinseveralstagesalongthevaluechain

andareoftenalsoengagedinmorethanonesubsectorofcriticalenergyinfrastructures.Therefore,they

havebeenrecordedseveraltimes.

Figure7:NumberofGermanCompaniesinDifferentStagesoftheValueChainbySectorin2017

Source:Statista(https://de.statista.com/statistik/daten/studie/173884/umfrage/zahl-der-unternehmen-in-den-

einzelnen-marktbereichen-des-energiemarktes/,lastaccessed:12December2017)

540

450

540

930

70

41

730

7

1200

130

906

90

0 200 400 600 800 1000 1200 1400

DistrictHeatngSupplier

DistrictHeatngNetworkOperator

DistrictHeatngGenerator

GasSupplier

GasTrader

GasStorageCompany

GasNetworkOperator

GasGatheringAssociaton

ElectricitySupplier(Distributon)

ElectricityTrader

ElectricityNetworkOperator(Transmission)

ElectricityGenerator(Generaton>100MW)

Page 21: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 20 of 44

Intermsofcurrentclimateserviceuse,thefindingsofatransactionalanalysisconductedwithinthescope

ofMARCO’sWP4(D4.2)indicatethattheentireGermanmarkethadavolumeof98suppliersand63

purchasersofclimateservicesin2015/2016.Additionally,76supplierswereidentifiedinWP3.2andWP

3.1.Outofthese76climateservicesuppliers43provideservicesspecificallymadefortheenergysector.A

fulllistofenergy-specialisedproviderscanbefoundintheannex,Table6.Besidestheidentificationof

suppliersandusersthetransactionalanalysisofD2.1alsoassessedthevalueandgrowthoftheclimate

servicemarketwithanascertainedvalueof77.1EURMandagrowthrateof9.3%fortheGerman

renewableenergysectorin2015/2016.Until2022/2023(11.6%)thegrowthrateoftheclimateservice

marketintherenewableenergysectorisforecastedtocontinuouslyincrease.Unfortunately,theanalysis

hasnotbeenappliedforenergyinfrastructuresoritselectricitysubsectorbutfortherenewableenergy

sectoraswellasfordifferentutilities,e.g.comprisingalsoutilitiesofthewatersector.Insightsintothe

valueandgrowthoftheclimateservicemarketwithintheenergysectoranditselectricitysubsectorcan

hencenotbegiven,buttheresultsoftherenewableenergysectorandtheresultsofthemarket

quantificationgivenaboveindicatealreadyanincreasingdemandforclimateserviceswithinthefuture.

ThisincreasingdemandcouldbemonitoredandevaluatedbytheClimateServiceObservatory–forwhose

creationMARCOdeliversrecommendations.Alsosector-specificinsightscouldbeprovided.

The4interviewsconductedinthiscasestudytookplaceinthethreeFederalStatesSchleswig-Holstein

(NUTS2:DEF0),Hamburg(NUTS2:DE60)andBremen(NUTS2:DE50).Below,allidentifiedclimateservice

providerslocatedintheseFederalStatesarelisted,whileFigure8showsthelocation,amountandtypeof

powerplantswithintheseareas.AllclimateserviceproviderslocatedintheFederalStatesSchleswig-

Holstein,HamburgandBremenandthosespecialisedinservicesfortheenergysector(colouredgreen)are:

1.HamburgischesWeltWirtschaftsInstitutGmbH 4.Max-Planck-InstitutfürMeteorologie

2.HAWHamburg 5.ÖkopolInstitutGmbH

3.Helmholtz-ZentrumGeesthacht 6.TechnischeUniversitätHamburg-Harburg

Figure8:PowerPlantslocatedintheNorthofGermany

Green:WindBlack:HardCoalOrange:GasBlue:PumpedStorageBrown:OilRed:Uranium

Source:FraunhoferInstituteforSolarEnergySystemsISE(https://www.energy-charts.de/osm.htm)

Page 22: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 21 of 44

OftherelativelysmallamountofallidentifiedclimateservicepurchasersinGermanyin2015and2016,

naturallyanevensmallernumberbelongstotheenergysector.Thisshowsoncemorethattheenergy

sectoranditselectricitysubsectorseemtomakeonlylittleuseofclimateservices,principallyasa

supplementarytoolforenterprises’strategicplanningprocesses.Therefore,given(1.)thehighpoliticaland

socio-economicrelevanceofthesubsectorelectricity,(2.)itsidentifiedvulnerabilities,(3.)assessed

economicuncertaintiesand(4.)thelargeamountofcompaniesbeingengagedinthegeneration,

distributionandtransmissionofelectricity,ahighpotentialforagrowingclimateservicedemandin

Germanycouldbeconcluded.

4 AttitudetoRisks

Afterhavingcharacterisedthecurrentandpossiblemarketforclimateservicesintheelectricitysubsector,

theresultsoftheinterviewsarepresentedinthefollowingsections.

Duringthesemi-structuredinterviews,thestakeholders’perceptionofclimate-relatedriskswasaddressed

atthebeginningoftheconversations.Thiswasmeanttoincreaseawarenessoftheimportanceofthe

subsequentquestionsandledtosomeinterestingfindings.Thekeymessagesarehighlightedbeloweach

section.

4.1 ActualPerceptionofClimate-RelatedImpactsandRisksClimatechangehasalreadyhadanimpactontheentireenergysector.Oneparticipantevenassessesthe

impactasbeing“fundamental”,asclimatechangehasalreadybecomevisiblethroughspecificobserved

problems.Theheatloadinriversisevaluatedasoneofthemoststressingproblems,whichresultsinalack

ofcoolingwaterforthermalpowerplantsduetoincreasingtemperatures.Alsopunctualandfast-

occurringextremeweatherevents,suchasstormsorheavyrainfalls,areevaluatedashavingabigimpact,

becausetheyaffecttheplanningofpowerplantsandcausedamagetotransmissionanddistributionlines

aboveground(undergroundcablearenotseenasvulnerable).Whileallparticipantsagreeonalready

observedimpactsofclimatechangeontheentireenergysector,oneparticipantconcludesthatitwould

nothavesuchasignificanteffectinGermany,though.

Theimpactofclimatechangeassessedbykeyactorsoftheelectricitysubsectoris,however,differentto

therelevancethesubsectorcurrentlygivestoclimatechangeanditspossiblerisks.Therelevanceof

possiblenegativeconsequencesisassessedas“extremelylow”,sinceothercircumstancesanddecisions

withfinancialandeconomicscopearecurrentlyofmoreimportancetothemarketandalsosincethe

sectortendstousuallyoperatereactively.

Interestingly,whenaskingtheparticipantsaboutthecurrentclimate-relatedrisksfortheircompanies,the

factthatclimatechangecomesnotonlyalongwithconstraints,butalsowithopportunities,hasemerged.

Alreadyexistingopportunitiesseemtobeavailable,inparticularforcompaniesoftherenewableenergy

Page 23: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 22 of 44

sector.Somestakeholdersseethevalueofbusinessalreadypositivelyinfluencedduetoclimatechange

andevenassessoverallpositiveeffectsontheeconomy.Thisappliestostakeholdersbeingengagedinthe

veryfirsttwostagesofthevaluechain,whererequestsofmoresolutionstoclimate-relatedproblems

resultinahigherdemandfortheirbusinessactivities.Theotherstakeholdersdonotmentionsuchpositive

effects,butnonegativeeffectseither.

Whileallstakeholdersstressthephysicalimpactsofclimatechangeontheenergysectorbutevaluatethe

currentrisksalsoasopportunities,alreadyexistingmitigationandadaptationmeasuresareassessedas

mostinfluentialtotheirbusinesses.TheParisAgreementandpreciselytheGermanenergytransitionwith

itslong-termstructuralchangesofenergysystemshavebroughtaboutconcretechangesinthesector.The

aimoftheenergytransitioninGermanyistoincreasetheshareofrenewableenergiesinelectricity

consumptionto80%by2050,toreduceprimaryenergyconsumptionby50%inthesameperiod

comparedto2008,andtocutgreenhousegasemissionsinlinewithEUtargetsby80%to95%compared

to1990.Intotal,atleast60%oftheenergyconsumptionin2050issupposedtobecoveredbyrenewable

energies.Thesechangesarenotofphysicalbutofregulativenatureandareevaluatedasmostinfluential

sincetheenergysectorhadshownatendencytooperatereactivelyuntilnow.

4.2 PerceptionofEvolvingClimate-RelatedImpactsandRisksIncomparisontocurrentrisks,allstakeholdersevaluatefuturerisksasoverallpositive:asopportunities.

Noneofthemestimateclimate-inducedthreatstocomealongwithsignificantnegativeeconomic

consequencesfortheirenterprises.Instead,increasingbusinessopportunitiesareexpectedwhichwill

exceednegativeeffectsofpunctualandfast-occurringextremeweathereventstheywilllikelyhavetoface.

Accordingtoonestakeholder,suchpositiveeffectsconcerntherenewableenergysectoringeneral,

becauseitsfutureopportunitiesarebasedonthefossilfuelindustry’s‘crisis’.

Additionallytotheserelativelypositiveperceptionsofrisks,moststakeholdersthinkthattherelevanceof

climatechangefortheentireenergysectorwillincreaseuntil2030.Allofthemevenexpectanincreasing

relevanceofclimatechangefortheircompanies,againduetopositiveeffectsontheirbusinessactivities.

Whencomparingthestakeholders’perceptionofclimate-relatedriskswiththeresultsoftheGerman

vulnerabilityanalysispresentedinchapter3.3,itbecomesapparentthatthescientificresultsandthe

perceptionsdiffertosomeextent.InTable4belowareallexpectedeffectslistedwhichhavebeenassessed

withamediumpotentialfordamagebytheGermanvulnerabilityanalysis.Oftheseeffects,stakeholders

KeyMessage1:

Alreadytoday,climatechangehasanimpactontheenergysectorbutthecurrentrelevancegivento

climatechangeandclimate-relatedrisksisrelativelylow.Risksareseenalreadyasopportunities.

Page 24: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 23 of 44

mentioned:(1.)thedangerofnothavingenoughcoolingwaterforthermalpowerplantsduetorising

temperatures.Also(2.)extremeweathereventsareassessedasadanger,forexampleaffectingthe

transmissionanddistributionofpowerduetopossibledamagestocables.WhiletheGermanvulnerability

analysisassessesthedangerfordamagestocablesasbeinglowinthepresentandinthefuture,other

possibleevolvingimpactshavebeenpointedout.Suchimpactsspantheincreasingdemandforcooling

energyinsummer,thechangingdemandforheatingenergyinwinter(duetoraisingtemperatures),aswell

asthepossibledamagetopowerandgeneratingplantsduetoextremeweatherevents.Stakeholdershave

notrecognisedormentionedtheseeffects,seemingtohaveabetterunderstandingofthecurrentclimate

relatedrisksthanthoseahead.Therefore,itcouldbeconcludedthatmoreawarenessraisingmightbeof

helpinordertobetterpreparetheelectricitysubsectorforallpossiblechangescoming.

Table4:PotentialClimateImpactsandVulnerabilitiesalongtheValueChainfortheElectricitySubsector

PlanningofPowerPlants

ProductionofPowerPlants

GenerationofPower

TransmissionofPower

TradingofPower

DistributionofPower/Grids

CurrentClimateImpactsandVulnera-bilities

Rising

Temperature

Rising

Temperature

Rising

Temperature

Cooling

waterfor

thermal

powerplants

Cooling

waterfor

thermal

powerplants

Cooling

waterfor

thermal

powerplants

FutureClimateImpactsandVulnera-bilitiesuntil2050

Rising

Temperature

Rising

Temperature

Rising

Temperature

Rising

Temperature

Rising

Temperature

Rising

Temperature

Cooling

waterfor

thermal

powerplants

Cooling

waterfor

thermal

powerplants

-Cooling

waterfor

thermal

powerplants

-Demandfor

heating

energy

-Demandfor

cooling

energy

-Demandfor

heating

energy

-Demandfor

cooling

energy

-Demandfor

heating

energy

-Demandfor

cooling

energy

-Demandfor

heating

energy

-Demandfor

cooling

energy

Extreme

weather

events

Extreme

weather

events

Extreme

weather

events

Damageto

power&

generating

plants

Damageto

power&

generating

plants

Damageto

power&

generating

plants

Source:IllustrationbasedontheassessmentofeffectswithamediumdamagepotentialintheGermanvulnerability

analysis.

Page 25: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 24 of 44

5 ClimateServiceDemand

Basedonthestakeholders’perceptionsofclimaterelatedrisks,thequestionofcurrentandfutureclimate

servicedemandbecomesevenmoreinteresting.Asshownabove,allstakeholdersexpectanincreasing

relevanceofclimatechangefortheirbusinessesinthefutureandoverallpositiveeffectsfortheir

enterprises.Economically,increasingdemandforcoolingenergy,forinstance,mighthaveapositiveeffect

onsomestakeholders’businessactivities,butsofartheresultingeffectsontheyearlyenergyconsumption

duetohottersummersorwarmerwintersisaltogetherunclear(Taseska,Markovska&Callaway,2012;

Mima&Criqui,2015).Still,companiesshouldprepareandadapttopossiblechangingdemandpatterns.So,

dotheyorwilltheymakeuseoftheclimateservicesprovided?

5.1 CurrentClimateServiceDemandandBenefitsofUseAlmostallstakeholdersstatetousesomekindofweatherand/orclimateservices.Itshouldbenoted,

however,thattheredoesnotseemtobeawarenessofthedifferencesbetweenthetwoconcepts.

Weatherreflectsshort-termconditionsoftheatmosphere,whileclimateistheaveragedailyweatherfor

anextendedperiodoftimeatacertainlocation.Orlikethewell-knownadage:climateiswhatyouexpect,

weatheriswhatyouget.

Consequently,weatherandclimateservicesarenotthesame.Weatherservicesprovideinformationon

theshort-termconditionsoftheatmosphereanditsshort-termvariations(fromhourstoafewweeks),

suchastemperature,humidity,precipitation,cloudiness,visibilityorwind.AccordingtotheWorld

MeteorologicalOrganization(WMO,2016,p.7)climateservicesonthecontrary“developandprovide

science-basedanduser-specificinformationrelatingtopast,presentandpotentialfutureclimateand

addressallsectorsaffectedbyclimateatglobal,regionalandlocalscales”.Thus,climateservicesfocuson

theaveragesofweatherpatternsandprovidelong-terminformationwhileconnectingnaturalandsocio-

economicresearchwithpractice.Indoingso,theycansupportdecision-makingandhelpsocietytocope

withcurrentclimatevariabilityandlimittheeconomicandsocialdamagecausedbyclimate-related

disasters,asstatedbythe‘ClimateServicePartnership’(CSP1)(adetaileddefinitionofclimateservicescan

1Moreinformationcanbefoundhere:http://www.climate-services.org

KeyMessage2:

Intheelectricitysubsectorevolvingclimate-relatedrisksareunderstoodasopportunities.Growing

positiveeffectsonbusinessactivitiesareexpected,whileatthesametimeawarenessofpossible

negativeeffectsisnegligible.

Page 26: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 25 of 44

alsobefoundinD4.6andD4.7).Giventhesedifferencesbetweenweatherandclimateservicesitisthus

importanttoclarifywhatthestakeholdersreallyuse.

Mostcasestudyparticipantsuseweatherservicesonadailybasisinordertoplanandcontrolthe

efficiencyoftheiractivitiesandoperations.75%useweatherservicesonly,while25%additionallyemploy

climateservicesasasupporttoolforthestrategicplanningoftheirenterprisesandasbackground

informationforlobbying.Onestakeholder,arepresentativeandexpertinpublicadministration,uses

neitherclimatenorweatherserviceshimself,butinformshisclientswhereandfromwhomtheycanobtain

both.

Dependingontheirareasofactivity,thestakeholdersclaimtouseandneeddataon:

1. Windspeed

2. Precipitation

3. Snowload

4. Amountofsnow

5. Irradiationlevels.

Thebenefitsofusingthesedataaremainlyseeninensuringthecompanies’planningdependability,

preferablyonadailybasis.TheGermanNationalMeteorologicalService(DeutscherWetterdienst(DWD))

obtainsthedatabutinformationisalsopurchasedfromdifferentsources,suchastheGermanInstitutefor

EconomicResearch(DeutschesInstitutfürWirtschaftsforschung(DIW)),theHelmholtz-Zentrum

Geesthacht(HZG)orinformationprovidedbytheIPCC.

Giventhatcasestudyparticipantsarenotveryawareofthedifferencesbetweenclimateandweather

services,itcouldbeinferredthatthislackofknowledgemightalsoaccountfortherelativelylowvolumeof

stakeholdersusingclimateservices.Accordingtooneenergyexpertinterviewed,thisappliestotheenergy

sectorasawhole.Toraiseawarenessofthepotentialofclimateservicesonthegroundseemstobemuch

needed.

KeyMessage3:

Theuseofclimateservicesisstillverylimited.Thisappliesalsototheactualknowledgeofthe

differencesbetweenweatherandclimateservicesandtheresultingawarenessofthepossiblebenefits

thelattercouldprovide.Thus,thereisaneedtoraiseawarenessofthepotentialbenefitsofusing

climateservices.

Page 27: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 26 of 44

5.2 Constraints,unmetNeedsandOpportunitiesDespiteverydifferentdemandsforinformation,allstakeholdersemphasisethatdataurgentlyneedsto

becomemorereliable.Onestakeholderclaims“morereliablepredictionswouldcreateanenormous

potentialforthe[energy]market”.Sofar,however,theredoesnotseemtobemuchtrustbypotential

usersaboutthescopeandreliabilityofdata.Thisappliestoshort-termbutespeciallytoseasonalandnear-

termpredictions,whichcanbeseenasunmetdemandsincestakeholderswanttoreceivesuchpredictions

onamorereliablebasis.

Seasonalforecastsallowthecharacterisationofthecomingseasonforcertainclimatevariableswith

respecttotheprobabilityofdeviationfromthelong-termhistoricalobservedmeans.Accordingto

deliverableD6.5.0ofCLIM4ENERGY–aprojectundertheEuropeanUnion’sCopernicusClimateChange

Service(C3S)providingclimatechangeindicatorstailoredfortheenergysector–aseasonalforecastcan

complementthestrategicmanagementinenergycompaniesforthenextfewmonthsintermsof

generationaswellasexpecteddemand(Viktor&Teichmann,2017).Suchaseasonalforecastisofmuch

interestformostofthestakeholdersinterviewed.

Decadalpredictions,ontheotherhand,trytopredictclimatevariationsfromayeartoadecadeaheadby

meansofaseriesofretrospectiveforecasts.The‘WorldClimateResearchProgramme’(WCRP)iscurrently

undertakingresearchonthescientificandpracticalaspectsofdecadalclimatepredictionsthroughits

‘DecadalClimatePredictionProject’(DCPP)2.AlsoMiKlip

3–aprojectfundedbytheGermanMinistryfor

EducationandResearch(BMBF)–iscurrentlyaimingtofosterbasicresearchondecadalclimate

predictionsandtoevendevelopanoperationaldecadalpredictionsystem.Furthermore,therecently

fundedEuropeanresearchprojectEUPORIAS4aimedatdevelopingfullyworkingprototypesofclimate

servicesoperatingonaseasonalanddecadaltimescale.Alltheseresearchprojectsandthedevelopments

indecadalpredictionsareofmuchinterestbecausethestrategicplanningofcompanieswithintheenergy

sectorusuallyliewithinthetimeframesthatdecadalpredictionscover.Thestrategicplanningofall

stakeholdersinterviewed,forinstance,variesbetween2-3years,3-5yearsand3-8years.Hence,the

possibledemandfordecadalpredictionsseemstobeenormous.Especiallyonestakeholderbeingactiveat

thebeginningofthevaluechainthroughtheplanningofpowerandgeneratingplantsclaimstoneedthese

predictionsurgentlyinordertobeabletoreliablydesignthestaticsofplantsaswellastheirseepage

surfaces.

So,bothseasonalforecastsanddecadalpredictionscouldbeexamplesofwhatclimateserviceswouldbe

providingbecausebothoutreachtheshort-termperspectiveweatherservicesusuallycapture.Thismeans

thatahugedemandforclimateservicescouldbemet,notablyassoonasthesetwotoolsoperateona

moreskilfulandreliablebasis.

2Moreinformationcanbefoundhere:https://www.wcrp-climate.org/dcp-overview

3Moreinformationcanbefoundhere:https://www.fona-miklip.de

4Moreinformationcanbefoundhere:http://www.euporias.eu

Page 28: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 27 of 44

Closelyrelatedtothereliabilityofdataisitsaccuracy.Themoreaccuratethedata–forexampleonsnow

loadorwindspeedinnearbyareasandregions–thebetterthechancestobalancetheelectricitynetwork

asawhole.Onestakeholderpointsoutthatthismightalsobeofadvantagetoclients,whocouldbenefit

fromcheaperpricesforelectricity.Anotherstakeholdercompletes:“Wedonotjustneedmoredataandan

inflationaryproductionanduseofthesedata,whatweneedismorequality”.Inthisregard,averified

qualitystandard(ISO,DIN)forweatherandclimatedatawouldbeappreciated.

5.3 FactorsInfluencingClimateServiceTake-UpThetake-upofweatherservicesiseasilyexplainedduetothedailynecessityforusingweatherinformation

inordertoplan,controlandundertakedailyactivitiesandoperationswithintheenergysector.Factors

influencingthetake-upofclimateservicesareofmorestrategicnature.Stakeholderspurchasingclimate

servicesonaregularbasisusethemasstrategicbackgroundinformationformorelong-termplanning

activitiesandlobbying,butdonotmakeuseofthefullpotentialwhichtheseservicesprovide,e.g.interms

ofadaptiveactions.

Onthecontrary,whilereliabilityandaccuracyareclearlythemostimportantfactorsinfluencingthe

participantstonotmakefurtheruseofclimateservices,thecostsforadequateinformationarealsoa

concern.Atthemoment,thecostsofclimateservicesexceedthepossibleimprovementsofprojects,which

onecanexpectafterpurchasingtheseservices,accordingtooneofthestakeholdersbeingengagedatthe

firststageofthevaluechain.Thisstatementintensifiesthedemandforreliableandaccuratedatabecause

thecostforclimateserviceswouldbeofnoconsequenceinrelationtothetotalamountofcostsforlarge

projectsandtheirprofit.

Overall,however,thecostofanyclimateserviceisnotseenasgreataconstraintasthedifficultyoffinding

therightserviceonewouldpayfor.Freeservicesareavailablebutarealsodifficulttofind.Eventhoughall

theinterviewedstakeholdersuseweatherservices,orknowwheretopurchasethem,theyknowlittle

aboutwheretheycouldobtainclimateservices.Thislackofknowledgeclearlycorrelateswiththelackof

awarenessofthedifferencesbetweenthetwotypesofservices.Itcanbethusrepeatedthatactorsbeing

engagedinthebroadfieldofclimateservicesshouldraiseawarenessofclimateservicesandtherelevant

benefitsclimateservicesprovide.

KeyMessage4:

Morereliablepredictionsareneeded–forexampleonwindspeed,snowloadandprecipitation–in

ordertoenablecompaniestostrategicallyplantheiroperationsonseasonalanddecadaltimescales.

Page 29: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 28 of 44

Inadditiontothequestionofwheretofindtherightclimateservices,thereisaquestionaboutwho

providestheservice.Therespectabilityandsoundnessofaserviceproviderisofmuchimportancewhen

decidingtopurchasecertaininformation.Thiscouldbeseenascloselyrelatedtotheunmetdemandfor

moreskilfulandreliabledata.Itmightalsoexplainwhymoststakeholdersrelyonweatherservices

providedbywidelyknownorganisations,suchastheNationalMeteorologicalService(Deutscher

Wetterdienst(DWD)).

5.4 FutureClimateServiceDemandandBenefitsofUseAslaidoutabove,futureclimateservicedemandinthesubsectorelectricityseemstodependonthe

awarenessof6keyaspects:

1. Thatclimateservicesexist,

2. Theydifferfromweatherservices,

3. Theycanprovidesubstantialinformationonalonger-termbasis,

4. Theycanenrichthestrategicplanningandoperationofacompanyand

5. Ifcarefullyapplied,theycanhelptominimisepossiblerisksandlossesand

6. Evenhelptoincreaseoverallprofit.

Allstakeholderswereaskedattheendofeachinterviewiftheyexpecttheircompaniestouseclimate

servicesinthefuture.Theywerealsoaskedhowregularlythismightbe.Allstakeholdersindicatethatthey

wouldprobablysticktocommonpurchasepatterns.Reasonsfornotincreasingpurchasesofclimate

servicesinfutureareobstaclesnotedintheprevioussection;inparticularinadequatereliabilityofdatabut

alsocostandsubsequentlyundemonstratedeconomicbenefits.However,ifscientificandpractical

developmentsinseasonalforecastsanddecadalclimatepredictionsproceed,anincreaseindemandfor

climateservicesmightoccur.Stakeholderscertainlyrequestsuchinformationandcomplaintonothave

suchreliableinformationavailableyet.Ifreliableseasonalforecastsanddecadalclimatepredictionswere

available,alsoeconomicbenefitswouldbelikelytoincrease.Inthiscase,costisofreducedconcern

becausetheoverallbenefitduetopurchasingclimateserviceswouldbebiggerthantheinitialsumonehas

toinvestinreceivingtherightinformationneeded.Thus,theinterviewedkeyactorsofthesubsector

electricityexpecttheclimateservicemarkettogrowwithitsgrowingpossibilitytooffermoreskilful

seasonalandnear-termpredictions.Thiscouldgiveenergyfacilitiesandcompaniesthepossibilityto

KeyMessage5:

Thedemandforstrategicplanninginformationisafactorthatpositivelyinfluencesclimateservice

take-upintheelectricitysubsector.Alackofexistingknowledgeofthedifferencesbetweenweather

andclimateservices,andofwheretopurchaseclimateservices,arefactorsnegativelyinfluencing

climateservicetake-up.

Page 30: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 29 of 44

strategicallyplanonalonger-termbasis,toremainincontrolofclimate-relatedrisksandtoadaptfastand

proactively.

Besidesstakeholders’declaredfutureclimateservicedemand,section3.2infersapotentialforincreasing

climateservicedemandduetothesector’sassessedeconomicuncertaintiesanditssector-specific

vulnerabilities.Thisappliesespeciallytocompaniesengagedinthegenerationofelectricity.

6 FrameworkConditions

Theresultsofsection3.2(marketquantification,existingandpotentialclimateservicesupplyanduse)

illustrateacurrentlylowdemandforclimateservicesintheenergysector.Alsotheresultsoftheinterviews

indicatethatkeyactorsofthesubsectorelectricitymakelittleuseoftheservicesprovided.However,given

theresultsofthevulnerabilityanalysisandtherelativelyhigheconomicuncertaintieswithintheelectricity

subsectorpresentedinsection3.2,ahighpotentialforanincreasingclimateservicedemandcouldbe

assessed.Forsuchanincreaseinclimateservicetake-uptheframeworkconditionsinGermanyarealready

good,orabouttoimprovesignificantly.Thesearepresentedbelow.Inordertoavoidprovidingsimple

generalisations,onlythosepartsoftheframeworkconditionswillbementionedthathaveeither

substantiallyimprovedoverthatpastyearsorsubstantiallycontributetotherelevantframework

conditionsinGermany.

6.1 GovernanceandStrategiesIngeneral,inGermanythereishighpoliticalwilltoadapttoclimatechange.Thishighpoliticalwillwas

demonstratedin2008whentheFederalGovernmentadoptedtheGermanAdaptationStrategy,whose

preparationwasaccompaniedbyaninformal,cross-departmentalworkinggrouponadaptation.The

informalworkinggroupwasformalisedaftertheadoptionofthestrategyandisnowthe‘Interministerial

WorkingGrouponAdaptationStrategy’(IMAAdaptation).NearlyallFederalMinistriesarerepresentedin

theworkinggroupinordertofurtherdeveloptheGermanAdaptationStrategyandtosuccessfully

coordinatethecross-sectoralcooperationamongtheparticipatingministries.Theimplementationofthe

strategytakesplacewithintheframeworkofactionplans,whileimplementationdevelopmentsare

reportedregularlyinthecontextofprogressreports.Thelatestprogressreportwaspublishedin2015and

setsoutkeyactivitiesfortheenergysector,itreferstoinstitutions,networksandclimateservicesuppliers

KeyMessage6:

Givenstakeholders’currentexpectations,demandforclimateserviceswillremainsteady.

Developmentsinseasonalforecastsanddecadalclimatepredictionsareexpectedtochangedemand

patterns.

Page 31: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 30 of 44

andgivesinsightsintothedevelopmentsofclimateimpactresearchandcurrentandfuturesector-specific

climatevulnerabilities.

TheNationalStrategyfortheProtectionofCriticalInfrastructures(KRITIS)waspublishedin2009.There

existsstrongagreementbetweentheobjectivesoftheGermanAdaptationStrategyandtheNational

StrategyfortheProtectionofCriticalInfrastructures,inparticularwithregardtothereductionof

vulnerabilityaswellastomaintainingandincreasingtheadaptabilityofcriticalinfrastructurestoextreme

weatherevents.Additionally,aguidancedocumentforcompaniesandpublicauthoritieswaspublishedin

2011.Theguidancedocumentlaysoutpossiblestepsfortheanalysisofrisksandcrisesandhowtomanage

subsequentscenarios.Bothdocuments–theNationalStrategyfortheProtectionofCriticalInfrastructures

andtheguidancedocumentforcompaniesandpublicauthorities–arenotspecificallypreparedforcritical

energyinfrastructures.Theyalsodonotprovideanyreferencestoclimateservices.

Anotherexampleforthestrongpoliticalcommitmenttoadapttoclimatechangeistheestablishmentof

the‘ClimateServiceCenterGermany’(GERICS)in2009.GERICSwasinitiatedbytheGermanFederal

Governmentasafundamentalpartofthe‘GermanHigh-techStrategyforClimateProtection’.Asthefirst

nationalClimateServiceCenterworldwideitworkstransdisciplinary,developsprototypesofclimate

servicesandoffersinascientificallysoundmannerproducts,advisoryservicesanddecision-relevant

informationinordertosupportgovernment,administrationandbusinessintheireffortstoadaptto

climatechange.

Besidesthat,severalnationalwebportalshavebeenestablishedinordertomakeinformationonclimate

change,climateimpactsandoptionsforadaptationtoclimatechangepubliclyavailable,suchasthethe

‘RegionalerKlimaatlas5’(2010),the‘Klimanavigator6’(2011)and‘DeutschesKlimaportal7’(2012).

In2015,the‘DeutscherKlimadienst’(DKD8)wasestablishedattheNationalMeteorologicalService.Itisa

networkofagenciesandoffices,whichprovidelong-termhydrometeorologicalclimateinformationand

climateservicesonanoperationalbasis.ByestablishingtheDeutscherKlimadienst,theGerman

GovernmenthastakenthesteptoimplementtheGlobalFrameworkforClimateServices(GFCS)atthe

nationallevel.Inordertoofferabroadapplication-orientedconceptforadaptationtoclimatechangein

Germany,itisintendedtocomplementtheDeutscherKlimadienstinthemediumtermwithservicesfor

adaptationtoclimatechange.‘KlimAdapt’,establishedattheUmweltbundesamt,willprovidethese

services.

5Moreinformationcanbefoundhere:http://www.regionaler-klimaatlas.de

6Moreinformationcanbefoundhere:http://www.klimanavigator.de

7Moreinformationcanbefoundhere:http://www.deutschesklimaportal.de/EN/Home/home_node.html

8Moreinformationcanbefoundhere:https://www.dwd.de/DE/klimaumwelt/dkd/dkd_node.html

Page 32: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 31 of 44

6.2 CollaborationwithClimateServiceSuppliersTheGermanAdaptationStrategy–itsprogressreportsandactionplans–broadlyencouragecollaboration

betweenclimateserviceprovidersandactorsfromvarioussectors.Additionally,the‘Deutsche

Klimaportal‘ismeanttosupportthecollaborationandnetworkingbetweenclimateserviceprovidersand

users,andalsosuggestsspecificclimateserviceprovidersfordifferentsectors,suchastheenergysector.

Still,morecollaborationisneededontheground,forexamplebetweenenergynetworksandclimate

servicesuppliers.Energynetworksusuallyconsistofalargenumberofmembersandenterprisesfromthe

energysectortowhichtheyprovideinformationondevelopmentswithinthesectorandonpossible

mitigationandadaptationactions.AsresearchonthreelargeGermanenergynetworksunveils,however,

noneofthesethreenetworkscollaborateswithaclimateserviceprovider,andnoneofthemevenmention

climateservicesontheirwebsite.Thismarksanunusedpossibilitytoconnectandreachoutto2.600

companiesoftheenergysectorintotal.

6.3 TechnologyTheenergytechnologyindustryinGermanyhasbeeninfluencedbythepoliticalgoalofensuringthatby

205080%oftheelectricityproducedintheGermanmarketwillbegeneratedfromrenewableenergy.Grid

operatorsarerequiredtopurchaseacertainamountofelectricityfromrenewableenergysourcesfirst

beforetheyfeedinelectricitygeneratedfromnon-renewablesources(Grigoleit&Lenkeit,2012).

Therefore,theenergyindustryisincreasinglyfocussingonalternativesourcesofenergyandrelated

technologies;pushingthemarketforinnovationfurther.Remainingchallengesaresystematicsolutionsfor

theintegrationofnewenergysupplytechnologies,newgridtechnologies,energystorageandsector

coupling.Anotherchallengeandgoalistostepupdigitalisationintheenergysector.Inordertodoso,the

FederalGovernmentisfosteringtheenergyinfrastructure,bycreatingintelligentnetworksandenergy-

efficienttechnologiesandhassetupadedicatedresearchprogramme9.Technologiestoadapttothe

vulnerabilitiesmentionedinchapter2.3existbutarecost-intensive,e.g.coolingsystemsthatmakethermal

powerplantsindependentfromfluvialwaters.Aslongasregulationsorbuildingstandardsdonotrequire

implementingthesemeasures,itwillremaina(economicallydriven)decisionforprivatefirmswhetherto

implementthemornot.

6.4 ResearchandKnowledgeTheclimate-relatedresearchlandscapeinGermanyhasalonghistoryandisworld-leading.Nevertheless,

mostresearchintoenergyandclimatechangeinGermanyfocusesonclimatechangemitigation,andless

onvulnerabilityandadaptationtoclimatechange.Alsothemajorityofenergynetworksfocuseson

providinginformationonmitigationandclimateprotectionmeasures.

9http://www.bmwi.de/Navigation/DE/Themen/energieforschung.html

Page 33: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 32 of 44

Researchisconductedatuniversities–ofwhichsomehaveclusteredtheirclimate-relatedresearch

activitiesin‘competencecentres’–butalsoinfourwell-knownextramuralresearchorganisations

(HelmholtzAssociationofGermanResearchCentres(HGF),MaxPlanckSociety(MPG),Fraunhofer-

Gesellschaft(FhG)andGottfriedWilhelmLeibnizScienceAssociation(WGL)).Therealsoexistnon-profit

researchcentresworkingonclimatechangemitigationoradaptationrespectively.Consequently,research

activitiesincludethefullrangeoftopicsrelevantforclimatechange,includingglobalandregionalclimate

modellingaswellasphysicalandsocio-economicimpactsmodelling.Severalhigh-performancecomputing

facilitiesarelocatedinGermany,ofwhichoneisdedicatedtoclimateresearch.Additionally,Germanyis

engagedinEuropeanandinternationalinitiativesandprogrammesfordatacollectionandstorage,climate

modelling,andcoordinationofresearchactivities.

Inthefieldofforward-lookingenergytechnologiestheGermangovernmentsupportsresearchand

developmentthroughits6thEnergyResearchProgramme.Thisprogrammeisastrategicelementofthe

FederalGovernment’senergypolicythataimstosupportcontinuousresearchandinnovationof

technologiesfortheenergysupplyoftomorrow.Altogether,however,notmanyenergy-centredresearch

projectsexist.Energytopicsareoftenpartofcross-sectoralprojects.

7 ConclusionandRecommendationstoEnhanceClimateServiceTake-Up

WhileinGermanytheframeworkconditionsforclimateservicetake-uparegood,thecurrentknowledgeof

–anddemandfor–climateservicesisassessedasbeinglowintheelectricitysubsector.Giventhismain

finding,4recommendationscanbegiventoenhanceclimateservicetake-upinthefuture.These

recommendationsarebasedontheresultsofallanalysescarriedoutunderthisdeliverable:(1.)the

sectoralandregionalanalysis,(2.)vulnerabilityanalysis,(3.)valuechainanalysis,(4.)thestakeholder

mapping,(5.)marketquantification,(6.)theresultsobtainedthroughtheinterviewsaswellas(7.)the

resultsgainedthroughtheanalysisofframeworkconditionssummarisedinthefollowing.

Problem1: Companiesoftheelectricitysubsectorhavelowawarenessofclimateservices.

Solution: Companiesshouldbesupportedinreceivingtheknowledgethatamarketforclimate

servicesexists.Forthisproposeitisneededtobroadlyraiseawarenessatthe

European,national,regionalandlocallevel.Sinceactorsactivelyengagedintheenergy

sectoruseweatherservices,theNationalMeteorologicalServicesshouldplayakey

role.Theyshouldbeaddressedwhentryingtodevelopandincreaseawarenessonthe

benefitsclimateservicescanprovide.

Supported/

Implementedby

− European,national,regionalandlocalinstitutions

− NationalMeteorologicalServices,climateserviceproviders

Page 34: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 33 of 44

Itcouldbeillustratedthattheelectricitysubsectorlacksawarenessaboutthedifferencesbetweenclimate

servicesandweatherservices.AsresearchwithinMARCOunveils,thisalsoappliestoothersectors,e.g.the

manufacturingsector(D4.6).TheresultsoftheSECTEURproject(D2.1)–apartoftheCopernicusClimate

ChangeService(C3S)–alsodemonstratesthatparticipantsinvarioussectorsarenotawareofclimate

informationbeingavailable(28%ofnon-climateserviceusers).Itisthereforerecommendedtobroadly

andquicklyengagethesectortoraiseawarenessatalllevels.Onlywithappropriateknowledgeaboutthe

benefitsclimateservicescanprovide,thecompanies’individualclimate-relatedriskscanbeidentifiedand

adequateadaptationmeasurescanbedevelopedandapplied.Thisbenefitssocietyasawhole.

Inthecaseofenergy,societydependsonsupplysecurityinordertomaintainitsfunctioning.Sincesupply

securitycanbeeasilydisruptedduetotheinterdependentnatureandcross-borderdimensionofcritical

energyinfrastructures,itsprotectionfromclimate-inducedthreatsbymeansofadequateclimateservices

isofevenmoreimportance.Boththeinterdependentnatureandcross-borderdimensionillustrate,a

disruptionofenergysupplywillnotstopatbordersandwillnotaffectasinglesectoronly.Thismeansthat

abroadrangeofactorshastogetengagedinprocessesofawareness-raisingandeducationaboutclimate

services,attheEuropean,nationalandregionallevelaswellasacrosssectors.Inthisrespect,theEuropean

UnionhasalreadytakenseveralactionsinitscurrentresearchframeworkHorizon2020tosupport

sustainablegrowthontheclimateservicesmarket;amongothersdemonstrationcallsontheaddedvalue

ofclimateservices(SC5-01-2016-2017),theERA-NETforClimateServices(SC5)orcoordinationandsupport

actionsaimingatnetworking(SC5).However,notonlytheclimateservicecommunity,butfutureusersof

climateservicesinparticularmustbeaddressed.Buildingupaclimateservicesmarketnecessarilymeans

thatpotentialpurchasersknowthismarketexists.Therefore,anenhancedtarget-orientedcooperation

betweenEuropeaninstitutions,nationalandregionalauthorities,nationalweatherservices,climateservice

providers,research,andalsoenergynetworksandcompaniesshouldbeconsideredtomainstreamclimate

servicesontheground.Thiswouldincludethattheclimateservicecommunityopensupmorewidelyto

possibleusersofitsservices.

Problem2: Electricitysubsectorfirmsknowlittleaboutwhoprovidesclimateservicesnorwhereto

findservicesappropriatetotheirneeds.

Solution: A‘ClimateServiceProviderStore’shouldbeset-upwhereallclimateservicesuppliers

arelisted.Withanintegratedsearchfunction,companiescouldidentifytheright

climateserviceproviderclosetotheirlocation.This‘ClimateServiceProviderStore’

couldbeconnectedtotheClimateDataStoreofC3SattheEuropeanLevel.Atthe

nationallevel,a‘ClimateServiceProviderStore’couldbeconnectedtothe

correspondingministryresponsibleforclimatechangemitigationandadaptation

action.

Implementedby − EuropeaninstitutionsincooperationwithMemberStates

− NationalMinistriesresponsibleforclimatechangemitigationandadaptationaction

Page 35: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 34 of 44

Ifanenergycompanydecidestopurchaseaclimateserviceforthefirsttime,itwillmostlikelyhaveto

searchwhereandfromwhomitmightobtaintherightserviceforitsneeds.Earlierresearchdemonstrated

thatalargeamountofverydifferentclimateserviceprovidersexistsalready,includingnational

meteorologicalservices,climateservicecentres,consultingcompaniesorresearchinstitutions(EUMACS

D1.1).ResearchconductedwithinMARCO’sWP4(D4.2)evenidentified188majorsuppliersofclimate

servicesacrossthe28countriesoftheEU.Withthisamountofpossiblesuppliers,andtheirdifferentfocus

areasandexpertise,itbecomesobviousthatitmightindeednotbeeasytofindtherightsupplierand

serviceforone’sneeds.

Inthisrespect,itisrecommendedtoset-upa‘ClimateServiceProviderStore’.TheEUisalreadyaboutto

set-upaClimateDataStoreunderC3S.Thiswillmostlikelycontainthegeophysicalinformationneededto

analyseclimatechangeindicatorsinaconsistentandharmonisedway.Itwillalsocombinethefunctionsof

adistributeddatacentrewithasetofservicesandfacilitiesforusersandcontentdevelopers.So,the

ClimateDataStorecouldbetherightframeworktointegrateatoolsuchasaClimateServiceProviderStore

attheEuropeanlevel.Climateservicesaremuchmorethandata,however.Tobeofmostuseforits

purchaserstheyshouldbefurthertailored.Theycancomeintheformofanalysistailoredtoparticularuser

needs,orasapurpose-madestrategyhelpingenergycompaniestoadapttoclimatechange.Theseservices

cannotjustbereceivedviaadatastorebecauseexpertsareneededtoprovidetherightanalysisorto

developtherightfittingstrategyforcompanies,dealingwithindividualcircumstancesorproblems.

AClimateServiceProviderStorecouldlistallclimateservicesuppliersoutthere.Withanintegratedsearch

functionpotentialuserscouldforexampleidentifymoreeasilytherightexpertclosetotheirownlocation.

Buttheset-upofsuchaClimateServiceProviderStoreonlymakessensegoinghandinhandwithraising

awarenessonclimateservicesgenerally.Itisnotmeanttobefortheclimateservicecommunityitselfbut

forenergyfacilities,orcompaniesfromothersectorsorauthoritieswithademandforclimateservices.

Therefore,allthesepossibleusersshouldalsoknowaboutthebenefitsofclimateservicesandaboutthe

supportaClimateServiceProviderStorecouldoffer.Adaptationtoclimatechangeisconsideredtobea

global,cross-sectoral,societalchallenge,thereforesocietyshouldalsobegiventheopportunitytoeasily

findtherightserviceitneedsinordertoactuallyadapt.Thus,bymeansofaClimateServiceProviderStore

itcouldbepossibletoincreaseadaptationactionontheground,toproducetransparencyandtoenhance

competitivenessaswellascooperationwithintheEU,itsMemberStatesandregions.Inthisregard,itis

recommendedtonotonlyestablishaClimateServiceProviderStoreattheEuropeanlevelbutalso–and

probablyevenmoreimportantly–atthenationallevel,connectedtothecorrespondingministry

responsibleforclimatechangemitigationandadaptationaction.

Page 36: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 35 of 44

Problem3: Electricitysubsectorfirmshaveahugedemandfordecadalclimatepredictionsbut

datalackreliablity.

Solution: Researchinthefieldofdecadalclimatepredictionsshouldbeincreasedandfunding

enhanced.

Implementedby Europeanandnationalresearchfundinginstitutions

Sinceenergyfacilitiesandnetworksarecapital-intensiveandlong-livedasoutlinedbefore,itisessentialto

considerclimate-inducedthreatsasoftheverybeginningofthevaluechain:theplanningofpowerand

generatingplants.Duringtheplanningphaseundertakenbyarchitectsandengineerslonger-term

predictionsareneededforthereliableplanningofvariousaspects,e.g.static.Alsoatlaterstagesofthe

valuechain–generationofpower,transmissionanddistributionofpower–longer-termpredictionsareof

importanceinordertoenablethestrategicplanningofactorsengagedinthecapital-intensiveenergy

sector.Withinthissectorthetimeframeofstrategicplanningcompromisesusually3to8years.So,longer-

termpredictionssuchasdecadalclimatepredictionsareneeded,whichshouldurgentlybecomemore

reliable.Theclimatecommunityisalreadyengagedinimprovingthesepredictions,butadditionaland

broadersupportmightbeneededgiventhatreliablepredictionsareoneofthemostimportantaspectsof

climateservices.ThroughC3StheEuropeanCommissionisalreadysupportingthedevelopmentofquality-

assuredinformationaboutthepast,currentandfuturestatesoftheclimatesystem,spanningalsodecades

andcenturies.Thismeansthatup-to-dateandscientificallyprovendecadalclimatepredictionswillmost

likelybepubliclyavailableforfreesoon.However,researchondecadalclimatepredictionscanbe

considereda‘young’fieldofresearch:itisstillgrowing.Therefore,effortstomorewidelysupportitshould

beincreasedbygivingitthemeansitneedstodevelop.Indoingso,theEuropeanCommissionornational

researchfundinginstitutionswouldhelptostabilisethebasisonwhichscientificallysoundandtailored

climateservicesstandanddependon.Themorethereliabilityandqualityofdataimproves,thebetter

climateserviceswillbe.Andmorereliableclimateservicesagainwillsubsequentlyleadtoahighertake-up

oftheseservices,astheresultsoftheinterviewsshow.

Problem4: Electricitysubsectorfirmshavelowawarenessofevolvingclimate-relatedrisks.They

areengagedinenergynetworksbutlackconnectionswithclimateserviceproviders

whichcouldinformthemaboutupcomingrisksandhowtoadapt.

Solution: Cooperationbetweenenergynetworksandclimateserviceprovidersshouldbe

mainstreamedineachregion.Basedonthiscooperationenergynetworkscouldnot

onlyprovidegeneralinformationonclimate-relatedrisksbutbuilduptheconnection

betweenitsmembersandclimateserviceprovidersinordertoenabletailoredclimate

vulnerabilityandriskanalysesandpurpose-madestrategiestoadapt.

Supported/

Implementedby

− Nationalandregionalinstitutions

− Energynetworksandclimateserviceprovider

Page 37: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 36 of 44

Duetothecombinationof(1.)thelowawarenessofclimateservicesexistingand(2.)thelowawarenessof

evolvingclimate-inducedthreatswithintheGermanelectricitysubsector,itisrecommendedto

mainstreamcooperationbetweenenergynetworksandclimateserviceprovidersineachregion.This

recommendationiscloselyrelatedtothefirst,butspecificallyconcernsnetworksandsuppliers.The

analysisofthreebigenergynetworksintheFederalStatesofHamburg,BremenandSchleswig-Holstein

unveiledthatnoneofthesenetworksmentionsclimateservicesonceontheirwebsites.Additionally,some

donotevenknowthedifferencesbetweenweatherandclimateservicesandthebenefitsthelattercan

provide.Alltogether,thesethreenetworksconsistof352members.Onenetworkevenprovidesenergy-

relatedinformationto2.300companiesinaddition.Andallofthemareusedtoregularlyreachouttoits

memberstogivethemthepossibilitytoconnectandexchangeknowledgeandbest-practises.These

networksshouldbeofstrategicimportanceforclimateserviceprovidersandclimateserviceproviders

shouldbeofimportanceforthesenetworks.Nationalorregionalauthoritiescouldrecommend

cooperationandhelpconnectingboth.Thiswouldnotonlyincreasetheknowledgeofclimateservices

existing.Itwouldgiveclimateserviceproviderstheopportunitytomoreeasilyreachouttothesector.The

businesssectorisnoteasytoaddress,butsoundcooperationbetweenanetworkwhichrepresentsitanda

regionalclimateserviceproviderwouldenableaccesstohigh-levelrepresentatives.Consequently,the

energysectorcouldgetbetterinformedaboutevolvingclimate-relatedrisksandpossibilitiestoadapt.

Altogether,byconsideringall4outlinedrecommendationsnotonlytheenergysector,butallsectorsand

companiesusingclimateserviceswouldultimatelybenefit.Theclimateservicemarketisstillina

prematurestateintermsofconnectionsbetweenclimateserviceprovidersandpotentialusers.Better

connectionsseemtobethemostessentialmeasurestoenhanceclimateservicetake-up,andwhichshould

increasefurtherifsupportforimprovingthereliabilityandqualityofdataisgivengranted.

Page 38: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 37 of 44

Bibliography

Berariu,R.,Fikar,C.,Gronalt,M.&Hirsch,P.(2015).Understandingtheimpactofcascadeeffectsofnatural

disastersondisasterreliefoperations.InternationalJournalofDisasterRiskReduction,12(2015),

doi:350–356.10.1016/j.ijdrr.2015.03.005.

BundesministeriumdesInnern(2009).NationaleStrategiezumSchutzKritischerInfrastrukturen–Leitfaden

fürUnternehmenundBehörden.Retrievedfrom

https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/2009/kritis.pdf?__blob=publi

cationFile&v=3

BundesministeriumdesInnern(2011).SchutzKritischerInfrastrukturen–Risko-undKrisenmanagement.

Retrievedfrom

https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/2011/leitfaden_schutz-

kritischer-

infrastrukturen.pdf;jsessionid=1F396887F6ED1C11EEFC9A659543444E.1_cid364?__blob=publicatio

nFile&v=4.

Bundesregierung(2015).FortschrittsberichtzurDeutschenAnpassungsstrategieandenKlimawandel.

Retrievedfrom

http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimawandel_das

_fortschrittsbericht_bf.pdf.

Bundesregierung(2008).DeutscheAnpassungsstrategieandenKlimawandel.

http://www.bmub.bund.de/fileadmin/bmu-

import/files/pdfs/allgemein/application/pdf/das_gesamt_bf.pdf.

CounciloftheEuropeanUnion(2008):CouncilDirectiveontheIdentificationandDesignationofEuropean

CriticalInfrastructuresandtheAssessmentoftheNeedtoimprovetheirProtection.2008/114/EC.

Brussels:OfficialJournaloftheEuropeanUnion.

EuropeanCommission(2017).EUEnergyinFigures.StatisticalPocketbook2017.Luxembourg:Publications

OfficeoftheEuropeanUnion.

EuropeanCommission(2015).EnergyUnionPackage.CommunicationonaFrameworkStrategyfora

resilientEnergyUnionwithaforward-lookingclimatechangepolicy.Brussels:COM(2015)80final.

EuropeanCommission(2013).StaffWorkingDocumentonanewapproachtotheEuropeanProgrammefor

CriticalInfrastructureProtection–MakingEuropeanCriticalInfrastructuresmoresecure.Brussels:

COM(2006)786final.

EuropeanCommission(2010).Energy2020.Communicationonastrategyforcompetitive,sustainableand

secureenergy.Brussels:COM(2010)639final.

EuropeanCommission(2006).CommunicationonaEuropeanProgrammeforCriticalInfrastructure

Protection.Brussels:COM(2006)786final.

Page 39: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 38 of 44

FederalMinistryforEconomicCooperationandDevelopment(2014).TheVulnerabilitySourcebook–

Conceptandguidelinesforstandardizedvulnerabilityassessments.BonnandEschborn:DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbH.

FederalStatisticalOffice(2017a).Erwerbstätige:Deutschland,Jahre,Wirtschaftszweige(WZ2008),

Geschlecht(12211-0009).Retrievedfromhttps://www-

genesis.destatis.de/genesis/online/link/tabelleErgebnis/12211-0009

FederalStatisticalOffice(2017b).InvestitionenderUnternehmeninderEnergie-undWasserversorgung:

Deutschland,Jahre,Wirtschaftszweige(43211-0001)&Beschäftigte,Umsatz,Produktionswertund

WertschöpfungderUnternehmeninderEnergie-undWasserversorgung:Deutschland,Jahre,

Wirtschaftszweige(43221-0001).Retrievedfromhttps://www-

genesis.destatis.de/genesis/online/logon?language=de&sequenz=tabelleErgebnis&selectionname=

43211-0001.

Grigoleit, T. & Lenkeit, D. (2012). The Renewable Energy Industry in Germany – A glance at industry

promotionpoliciesinselectedenergysectors.Energia,AmbienteeInnovazione,3/2012,49-54.

Habersack,H.&Moser,A.(2003).PlattformHochwasser—EreignisdokumentationHochwasserAugust2002.Vienna:ZENAR—ZentrumfürNaturgefahrenundRisikomanagement,UniversitätfürBodenkultur.

Helbing,D.,Ammoser,H.&Kühnert,C.(2006).Disasterasextremeeventsandtheimportanceofnetwork

interactionsfordisasterresponsemanagement.InS.Albeverio,V.Jentsch&H.Kantz(Eds.),

ExtremeEventsinNatureandSociety(pp.319–348).Berlin/Heidelberg:Springer.

IPCCandOppenheimer,M.,Campos,M.,Warren,R.,Birkmann,J.,Luber,G.,O’Neill,B.&Takahashi,K.

(2014):Emergentrisksandkeyvulnerabilities.InClimateChange2014:Impacts,Adaptation,andVulnerability.PartA:GlobalandSectoralAspects.ContributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Field,C.B.,V.R.Barros,D.J.Dokken,K.J.Mach,M.D.Mastrandrea,T.E.Bilir,M.Chatterjee,K.L.Ebi,Y.O.Estrada,R.C.Genova,

B.Girma,E.S.Kissel,A.N.Levy,S.MacCracken,P.R.Mastrandrea,andL.L.White(Eds.)](pp.1039-

1099).CambridgeandNewYork:CambridgeUniversityPress.

IPCCandEdenhofer,O.,Pichs-Madruga,R.,Sokona,Y.,Seyboth,K.,Eickemeier,P.,Matschoss,P.,Hansen,

G.,Kadner,S.,Schlömer,S.,Zwickel,T.,vonStechow,C.(Eds.)(2012).RenewableEnergySources

andClimateChangeMitigation–SpecialReportoftheIntergovernmentalPanelonClimateChange.

CambridgeandNewYork:CambridgeUniversityPress

IPCCandParry,M.L.,Canziani,O.F.,Palutikof,J.P.,vanderLinden,P.J.&Hanson,C.E.(Eds.)(2007).

ContributionofWorkingGroupIItotheFourthAssessmentReportoftheIntergovernmentalPanel

onClimateChange.CambridgeandNewYork:CambridgeUniversityPress.

Isaac,M.,vanVuuren,D.(2009).Modelingglobalresidentialsectorenergydemandforheatingandair

conditioninginthecontextofclimatechange.EnergyPolicy,37(2),507–521.

Mima,S.&Criqui,P.(2015).TheCostsofClimateChangefortheEuropeanEnergySystem,anAssessment

withthePOLESModel.EnvironmentalModeling&Assessment,20(4),303–319.doi:

10.1007/s10666-015-9449-3.

Page 40: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 39 of 44

Mulugetta,Y.,Hertwich,E.,Riahi,K.,Gibon,T.&Neuhoff,K.(2014).Chapter7:EnergySystems,InIPCCFifthAssessmentReport,WorkingGroup3 :MitigationofClimateChange(pp.511–598),CambridgeandNewYork:CambridgeUniversityPress.

Richter,S.,Huber,R.K.&Lechner,U.(2008).TheElbeFlood2002—AcasestudyonC2systemsandinter-

organisationalcoordination.München:UniversitätMünchen.Retrievedfrom

http://www.dodccrp.org/files/case_studies/Elbe_Flood_case_study.pdf.

Rinaldi,S.,Peerenboom,J&Kelly,T.(2001).Identifying,UnderstandingandAnalysingCriticalInfrastructure

Interdependencies,IEEEControlSystemsMagazine,Retrievedfrom

http://www.ce.cmu.edu/~hsm/im2004/readings/CII-Rinaldi.pdf.

Schaeffer,R.,SzkloA.S.,Frossard,A.,deLucena,P.,Borba,B.S.M.C.,Nogueira,L.P.P,Fleming,F.P.,Troccoli,

A.,Harrison,M.,Boulahya,M.S.,(2012).Energysectorvulnerabilitytoclimatechange:Areview.

Energy,38(2012).1–12.

Taseska,V.,Markovska,N.&Callaway,J.M.(2012).Evaluationofclimatechangeimpactsonenergy

demand.Energy,48(1),88–95.doi:10.1016/j.energy.2012.06.053.

OECD(2017):Climate-resilientinfrastructure:Gettingthepoliciesright.EnvironmentWorkingPaperNo.

121,2017(8),Paris:OECDEnvironmentDirectorate.

Umweltbundesamt(2015).VulnerabilitätDeutschlandsgegenüberdemKlimawandel.Dessau-Roßlau:Umweltbundesamt.

UnionfortheCo-ordinationofTransmissionofElectricity(2007).FinalReport–SystemDisturbanceon4

November2006.Retrievedfrom

https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-

Report-20070130.pdf.

Viktor,E.&Teichmann,C.(2017).Focuspaperonclimatechangeintheenergysectorandprogressreport

onfactsheetsanduserguidance.CLIM4ENERGY,DeliverableD6.5.0.Retrievedfrom

http://clim4energy.climate.copernicus.eu/focus-paper-climate-change-energy-sector-and-

progress-report-fact-sheets-and-user-guidance.

WMO(2016):ClimateServicesforSupportingClimateChangeAdaptation–SupplementtotheTechnical

GuidelinesfortheNationalAdaptationPlanProcess.Geneva:WorldMeteorologicalOrganization.

Page 41: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 40 of 44

Appendices

Table5:StatisticalClassificationoftheEnergySector

StatisticalClassificationofEconomicActivitiesintheEuropeanCommunity(NACE),Rev.2(2008) Section Division

GroupName TurnoverinMio

EURO,2014Nr.ofPersonsEmployed,2014

B

05 MiningofCoalandLigniteEU

DE

11783.6

2271.2

EU

DE

177143

20164

05.10 MiningofHardCoal

05.20 MiningofLignite

06 ExtractionofCrudePetroleumandNatural

Gas

EU

DE

146325.6

3259.2

EU

DE

79131

3972

06.10 ExtractionofCrudePetroleum

06.20 ExtractionofNaturalGas

07 MiningofMetalOres

07.21 MiningofUraniumandThoriumOres

08 OtherMiningandQuarrying

08.92 ExtractionofPeatEU

DE

1749.4

412.6

EU

DE

11622

2015

09 MiningSupportServiceActivities

09.10 SupportActivitiesforPetroleumand

NaturalGasExtraction

EU 18764.0 EU

57497

C

19 ManufactureofCokeandRefined

PetroleumProducts

EU

DE

557103.4

131075.1

EU

DE

117892

22593

19.10 ManufactureofCokeOvenProducts

19.20 ManufactureofRefinedPetroleum

Products

D

35 Electricity,Gas,SteamandAirConditioning

Supply

EU

DE

1478875.8

560482.1

EU

DE

1230152

228179

35.1 ElectricityEU

DE

1185837.6499439.1

EU

DE

937829203101

35.11 ProductionofElectricity EU 325816.4 EU 446326

35.12 TransmissionofElectricity EU 69990.7 EU 54825

35.13 DistributionofElectricity EU 241043.1 EU 339317

35.14 TradeofElectricity EU 548987.3 EU 97360

35.2 GasEU

DE

256721.0

54396.0

EU

DE

148589

14174

35.21 ManufactureofGas EU 5779.6 EU 7241

35.22 DistributionofGaseousFuelsthrough

Mains

EU 56992.2 EU 99993

35.23 TradeofGasthroughMains EU 193935.5 EU 41344

35.3 SteamandAirConditioningEU

DE

36317.2

6646.9

EU

DE

143734

10904

35.30 SteamandAirConditioningSupplyEU

DE

36317.2

6646.9

EU

DE

143734

10904

Source:EuropeanCommission(2017)andEurostat’s‘StatisticalClassificationofEconomicActivitiesintheEuropean

Community’(NACE),Rev.2(2008)

Page 42: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 41 of 44

Table6:ClimateServiceProvidersspecialisedintheFieldofEnergyinGermany

(notexhaustive)

Number Organisation’sName

1 Adelphi

2 AllianzClimateSolutionsGmbH

3 ArbeitsgruppefürregionaleStruktur-undUmweltforschungGmbH(ARSU)

4 Beratungs-undService-GesellschaftUmweltmbH

5 BioConsultSchuchardt&ScholleGbR

6 Bosch&PartnerGmbH

7 BürofürUmweltbewertung

8 Climate&EnvironmentPotsdamGmbH(CEC)

9 ClimateRiskAnalysis

10 ClimateServiceCenterGermany(GERICS)

11 Climonomics

12 CompetenceinPortsandLogistics(CPL)

13 DeutschesKomiteeKatastrophenvorsorgee.V.(DKKV)

14 DIALOGIKGmbH

15 EcologicInstitut

16 FutureCampClimateGmbH

17 GALLEHR+PARTNER

18 HAWHamburg

19 Helmholtz-ZentrumfürUmweltforschungGmbH-UFZ

20 Helmholtz-ZentrumGeesthacht

21 Helmholtz-ZentrumPotsdamDeutschesGeoForschungsZentrumGFZ

22 HessenAgenturGmbH

23 InstitutderdeutschenWirtschaftKöln

24 IÖWInstitutfürÖkologischeWirtschaftsforschung

25 KarlsruherInstitutfürTechnologie

26 klima-allianzdeutschland

27 Klimaplattform

28 LandesamtfürUmweltschutzSachsen-Anhalt

29 Leibniz-InstitutfürTroposphärenforschung(TROPOS)

Page 43: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 42 of 44

30 MinisteriumfürLandwirtschaft,UmweltundVerbraucherschutzMecklenburg-Vorpommern

31 MinisteriumfürUmwelt,GesundheitundVerbraucherschutzdesLandesBrandenburg

32 MinisteriumfürWirtschaft,Klimaschutz,EnergieundLandesplanung

33 MunichRE

34 Öko-Institut

35 PotsdamInstituteforClimateImpactResearch

36 Rheinland-PfalzKompetenzzentrumfürKlimawandelfolgen

37 UDATAUmweltschutzundDatenanalyse

38 Umweltbundesamt

39 UnitedNationsUniversity

40 UniversitätKassel

41 WSPEnvironment&EnergyServices

42 ZentrumfürUmweltkommunikation

Orangefontshowsorganisations,whichlookfurtherfromthecoreofclimateservicesbutmaywellpertainto

connectedregions'inthebox'ofthebroaderperimeterMARCOhasagreedtoexploreintheproject.Whatthey

provideasservicesrelevanttoclimateisnotclearfromtheirwebsites.Theseorganisationswouldreflecttheexample

ofriskassessments.

Page 44: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 43 of 44

Table7:TableofInterviewees

LastName FirstName Gender Position Organisation NUTS2

Averdung Sebastian Male ChiefExecutiveOfficer Averdung

IngenieurgesellschaftmbH

DE60

Brauer Thomas Male ManagerforInnovation

andMarketing

HanseWerkAG DEF0

Findeisen Andreas Male ProjectManagerfor

InnovationManagement

ErneuerbareEnergien

HamburgClusteragentur

GmbH(EEHH)

DE60

Anonym Anonym Anonym Anonym Anonym Anonym

Table8:TableofInvitees

Amountofcompaniesinvited

NUTS2 PeriodofContact TypeofContact FrequencyofContact

35 DE60

DEF0

24June2017–23September2017 − Email

− Phonecall

(partly)

Initialinvitationand

upto2reminder

36 DE60

DEF0

DE50

DE73

31July2017–23September2017 − Email

− Phonecall

(partly)

Initialinvitationand

reminder

à 71companiesinvitedintotal

Page 45: Case Study 6 Report: Critical Energy Infrastructuresmarco-h2020.eu/wp-content/uploads/2018/05/MARCO_D5_7... · 2018-05-24 · of critical energy infrastructures is considered a priority

CSforCriticalEnergyInfrastructures

December 2017 Page 44 of 44

Table9:ClimaticallySensitiveDependencies

IndustrialSector/Sub-sectororActivity

NACE EconomicRankofSector

DependencyonClimaticallySensitiveInfrastructureandSystems(CSIS)

LargeFixedAssets

Trans-port

Water Other(climat-icallysensitiverawmater-ials)

MarketDemand

Energy Eco-system

Subsector

Electricity

D35.1

Scoring: Red HighlydependentonClimaticallySensitiveInfrastructureandSystems(CSIS)formajorityofsector'scoreactivities.

Short-termdisruptioncouldcauseaninterruptioninbusinesscontinuity.

Orange ModeratedependencyonCSISformajorityofsector/activity'scoreactivities.Severalaspectsofthebusiness's

operationsalongthevaluechainareliabletobesignificantlyinterrupted.

Green LowdependencyonCSISfortheoperationofsector'scoreactivities.BusinesscontinuestofunctionduringCSIS

disruption.

Note:Thelevelofdependencyonclimaticallysensitiveinfrastructureandsystemsdependsonthesourceofenergy

anddiffersdependingonthesourceused,e.g.renewableversusnon-renewableenergy.