12
Cascadia GPS Analysis Teacher Information and Answer Key Page 1 Cascadia GPS Analysis: Teacher Information Technology is amazing. The Global Positioning System, known as GPS, has been around for many years, and its applications are many. In a nutshell, GPS can be used to locate where you are on the Earth within a few meters, and people are most familiar with GPS units in cars to help with directions, or for recreation, like hiking. A specific type of GPS called differential GPS, or dGPS, is extremely precise and can be used to show tectonic plate movement of millimeters! Basically, there are 24 GPS satellites cruising 12,000 miles above the Earth moving at about 7500 kilometers per hour. That’s almost 2 kilometers per second – yes, 2 kilometers every second. The satellites send out radio wave signals in all directions. Receivers can tell how long it takes for the radio waves to reach them, and using some math, computers can calculate the distance between the receiver and the satellite. Computers can then translate small changes to large changes by looking at larger intervals of time. dGPS is so much more accurate because it uses some very sophisticated computing to take out errors due to the atmosphere and inaccurate clocks, for example. The picture on the student handout shows a GPS Monument. Inside the dome is the GPS antenna that receives the radio waves and sends the signal to an attached receiver. The resulting positional data are then sent via Internet to UNAVCO for further processing. Scientists can then use long-term positional data to interpret plate motions and plate boundary interactions. NGSS STANDARD ALIGNMENT Disciplinary Core Ideas • Motion and Stability—Forces and Interactions: HS-PS2-1, MS-PS2-2 • Energy: MS-PS3-1, MS-PS3-2, HS-PS3-2, MS-PS3-5 • Waves and Their Applications in Technologies for Information Transfer: HS-PS4-2, MS-PS4-3, HS-PS4-5 • Earth’s Systems: 5-ESS2-1, HS-ESS2-1, MS-ESS2-2, HS-ESS2-2, MS-ESS2-3, HS-ESS2-3 • Earth and Human Activity: HS-ESS3-1, MS-ESS3-2 Science and Engineering Practices Crosscutting Concepts 4. Analyzing and Interpreting Data 5. Using Mathematics and Computational Thinking 6. Constructing Explanations and Designing Solutions 2. Cause and Effect 4. Systems and System Models 7. Stability and Change LESSON PLAN This is a multi-day lesson, and could take 2 – 3 lessons (hour long) to complete. IRIS Education and Outreach has a two-part video to demonstrate all parts of this activity: http://www.iris.edu/hq/inclass/video/gps_monitors_deformation_in_subduction_zone_part_1_intro http://www.iris.edu/hq/inclass/video/gps_monitors_deformation_in_subduction_zone_part_2_using_real_data

Cascadia GPS Analysis: Teacher Information differential

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page1

CascadiaGPSAnalysis:TeacherInformationTechnologyisamazing.TheGlobalPositioningSystem,knownasGPS,hasbeenaroundformanyyears,anditsapplicationsaremany.Inanutshell,GPScanbeusedtolocatewhereyouareontheEarthwithinafewmeters,andpeoplearemostfamiliarwithGPSunitsincarstohelpwithdirections,orforrecreation,likehiking.AspecifictypeofGPScalleddifferentialGPS,ordGPS,isextremelypreciseandcanbeusedtoshowtectonicplatemovementofmillimeters!

Basically,thereare24GPSsatellitescruising12,000milesabovetheEarthmovingatabout7500kilometersperhour.That’salmost2kilometerspersecond–yes,2kilometerseverysecond.Thesatellitessendoutradiowavesignalsinalldirections.Receiverscantellhowlongittakesfortheradiowavestoreachthem,andusingsomemath,computerscancalculatethedistancebetweenthereceiverandthesatellite.Computerscanthentranslatesmallchangestolargechangesbylookingatlargerintervalsoftime.

dGPSissomuchmoreaccuratebecauseitusessomeverysophisticatedcomputingtotakeouterrorsduetotheatmosphereandinaccurateclocks,forexample.ThepictureonthestudenthandoutshowsaGPSMonument.InsidethedomeistheGPSantennathatreceivestheradiowavesandsendsthesignaltoanattachedreceiver.TheresultingpositionaldataarethensentviaInternettoUNAVCOforfurtherprocessing.Scientistscanthenuselong-termpositionaldatatointerpretplatemotionsandplateboundaryinteractions.NGSSSTANDARDALIGNMENTDisciplinaryCoreIdeas•MotionandStability—ForcesandInteractions:HS-PS2-1,MS-PS2-2•Energy:MS-PS3-1,MS-PS3-2,HS-PS3-2,MS-PS3-5•WavesandTheirApplicationsinTechnologiesforInformationTransfer:HS-PS4-2,MS-PS4-3,HS-PS4-5•Earth’sSystems:5-ESS2-1,HS-ESS2-1,MS-ESS2-2,HS-ESS2-2,MS-ESS2-3,HS-ESS2-3•EarthandHumanActivity:HS-ESS3-1,MS-ESS3-2ScienceandEngineeringPractices CrosscuttingConcepts4.AnalyzingandInterpretingData5.UsingMathematicsandComputationalThinking6.ConstructingExplanationsandDesigningSolutions

2.CauseandEffect4.SystemsandSystemModels7.StabilityandChange

LESSONPLANThisisamulti-daylesson,andcouldtake2–3lessons(hourlong)tocomplete.IRISEducationandOutreachhasatwo-partvideotodemonstrateallpartsofthisactivity:http://www.iris.edu/hq/inclass/video/gps_monitors_deformation_in_subduction_zone_part_1_introhttp://www.iris.edu/hq/inclass/video/gps_monitors_deformation_in_subduction_zone_part_2_using_real_data

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page2

Introduction:Havestudentsstandupandtrytoonlymoveamillimeter.Witheverymovement,sayit’stoomuch.ThiswillimpressuponthemtheaccuracyofthedGPSsystem.Thesatellitesystemcandetectmovementsofpartsofcontinentsmovingmillimeters.

PARTI:BuildingaGPS‘Monument’

Materials:• Sharptoothpicksworkbest.• Gumdropscanbefoundatlargerstoreswithbulkcandy.Canalsousethesmaller‘spicedrops’available

atmoststores,butit’stoughertogettoothpicksin.• Onlysmallamountsofmodelingclayarenecessary.• Transparenciescanbecutintoquartersheets.Youcanevenusesmallerpiecesifnecessary.Cuttingone

sheetinto6thshouldbelargeenough.Procedure:1. Buildingthemonumentshouldtakeafewminutes,andit’sthehook.Studentswillusethegumdrop

modelforPartII(ifdoingPinpointingLocationportioningroups),andalsotomodelstationmovementinPartIV.

2. Havestudentsplacegumdropmonumentinmiddleoftransparencysheet.Clayrepresentstheconcretethat‘glues’themonumenttoEarth’ssurfacerocklayersbeneaththesoil.

3. Studentscanalsodrawandcoloronthetransparencysheettorepresentrocklayers.Thekeyisthatstudentsunderstandthatit’scrustalrock,notjustthemonumentorsoil,thatmoves.

4. Ifdoingtheactivityovertwodays,havestudentswritetheirnameonapieceofscrappaperandplacegumdropmonumentontoptosavefornextday.

PARTII:PinpointingLocation

Therearethreemethodstodothedemonstration,whichvaryinscale.OptionOne–SmallerScaleSupplies:• 3ringstands(withoutrings)• 3‘satellites’toplaceattopofringstands.BubbleYumgumhasashapesimilartoGPSsatellitesandisan

attentiongrabber.Youcouldalsoprintsmallpicturesofsatellitestotapetotopofringstands.• Stringsof3differentlengthstapedtotopsofringstands–allmustbeatleastaslongasheightofring

stands• GumdropmonumentfromPartIDemonstrationProcedure:1. Premarklocationsofringstandssothatall3stringsmeetinonelocationontablesurface.Youwillhave

tosetthisupandcutthestringsbeforehand.2. ExplainthatsatellitesareflyingaboveEarth’ssurfaceatsamealtitudeandringstandsrepresentthat

height.

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page3

3. Explainrelationshipbetweengumdropmonument(builtinPartI)andsatellite–they‘talk’toeachotherandestablishthedistancebetweenthem.

4. Thestringrepresentsthedistancebetweenthesatelliteandmonument.5. Haveastudentcomeandmoveonestring(heldtautly)inalldirectionstoindicatethatthedistanceis

known,butthedirectionisn’t.Aspherearoundthetopoftheringstandisestablishedwithradiusequalingthedistancefromthesatellite.

6. Haveanotherstudentmovea2ndstringaroundandnotewherestringsintersect–thereisacircleofpossibleplacesthishappens.Emphasizeagainthattheonlyknownentityisthedistancebetweenthemonumentandsatellite.

7. Haveathirdstudentmovethe3rdstringtoshowwhereall3stringsintersect.Thereshouldbetwoplaces–oneonEarth’ssurfaceandoneinspace–whereall3stringsintersect.Notethatcomputerscanautomaticallydetectthattheoneinspaceisnon-sensical.

8. Placethegumdropatthepointwhere3stringsintersect.9. Remindstudentsthatthesemeasurementsaretakingplacewhilesatellitesaremovingat2

kilometers/second!10. HavestudentscompletePartIIquestionsonworksheet.Note:activitycanbedoneingroupsfollowingsamedirections.

OptionTwo–LargerScaleSupplies:• 3longlengthsoftwine(constructiontwineworksfine)thatwillreachfromhighuponthewallstoa

centralpointsomewhereintheroom.• Tapetoholduptwineonwall.• 3‘satellites’toplaceattopofringstands.BubbleYumgumstillwillwork.Youcouldalsoprintlarger

picturesofsatellitestotapeonthewalls.• GumdropmonumentfromPartI,oralargerversionofaGPSmonument.DemonstrationProcedure:11. Tapeendsofstringsonwallssothatall3stringsmeetinonelocationsomewhereonthefloorofthe

room.Youwillhavetosetthisupandcutthestringsbeforehand.12. Coilupthelongstringsandtapethemuponthewallsoyoucaneasilypullthemdownandhandtoa

student.13. Followsameprocedureasaboveforlocatingthethreeplaceswhereall3strings(distances)meet.

OptionThree–LargestScaleDemonstrationProcedure:14. PresentdemonstrationjustaswithOptionTwoabove,onlyusemuchlongerstringandusethegymor

outdoorbasketballhoops.

Hereisavideoyoucouldalsouse:

https://www.youtube.com/watch?v=IoRQiNFzT0k

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page4

PARTIII:MeasuringCascadiaGPS/TectonicMovement

Procedure:

1. Reviewmetricsystem(millimeter,centimeter,meter,kilometer).2. Reviewcardinaldirections.3. TherearehundredsofdGPSstationsinoperation.4. Instructstudentshowto‘read’aTSP.UseexamplefromPacificBeachasexampletodoaswhole

class.5. Verticalisnotusedbecauseitismoredifficulttodetermineachangeinaltitude.Imagineasatellite

overheadlookingforside-to-sidemotion,andthentryingtodetermineverticalmotion.Itwouldbemuchmoredifficulttoseetheup/downmotion.

6. Witharuler,drawalineofbestfittoshowtrendofTSP.Trytodrawthelinesothatthereareanequalnumberofpointsaboveandbelowtheline.Usingaclearrulerworksbest.

7. Usingy-axismmscale,determineoverallchangeinpositioningiventimeperiod.8. Calculateannualmovementbydividingoverallchangeinpositionbytotaltimeperiod.

DetailonInterpretingTimeSeriesPlots(TSP)

a) AllplotshaveaY-axiswith‘zero’andpositivenumbersabovethelineandnegativenumbersbelowtheline.Numberlesstickmarksontherightmirrorthemeasurements.

b) The‘North’plotshowsNorthandSouthmovement–anythingmovinginthe‘positive’(up)directionismovingNorth,andanythingmovinginthe‘negative’oroppositedirectionismovingSouth.

c) ThesameistrueforEast/West–movementinapositivedirectionismovementtotheEast,andanythingmovinginthenegativedirectionismovingWest.

d) Mosttimeseriesdonotincludegridlines,soit’shelpfultousearulerorstraightedge(aclearoneisbest)tocalculatehowmuchmovementthereis.

e) Thescaleontheaxeswillvaryandtheunitsmayvaryaswell.f) UsuallyN/SandE/Wmovementiseasiertoseeapatternwithcomparedtoheight.Butremember

thattherearealotoferrorsthatmustbecorrected,sothedatawon’talwaysbeperfect,orinaclearpattern.

g) Thedataintheexamplesareverylinear–usuallythey’realotmessier.h) Thetimescaleisshownbyyearsandtwelfthsofyears.i) Receiverscollectapositionalmeasurementeverysecond.That’s86,400measurementsaday.These

areaveragedtogetonepointforeachdaythatshowsuponatimeseries.j) Mostplotsnowstartrightat‘0’onthey-axis;whatisimportantisthechangeinposition.However,

sometimesyouwillneedtousethetrendlines,notthepoints,todeterminechangeinposition.k) ThemovementsthatdGPSreceiversshowareverysmall–millimetersorcentimetersatmost.But

justthinkhowmuchmovementthatwouldmeanoverthousandsofyears!Aneasyequivalenttorememberis1mm/yristhesameas1kilometer/1millionyears.

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page5

AnswerstoStudentWorksheetareshownbelowonAnswerKey.

PARTIV:PlottingGPSStationMotionProcedure:1. Followproceduresonstudenthandout.Confusionmayariseaboutscaletranslationofcentimetersto

millimeters.Scaleusedonthegridiscentimeterstomakegraphingeasier.Actualmovementisinmillimetersbutthisisfartoohardtoseeat1:1scale.

2. VectorgraphshouldlookliketheexampleprovidedonAnswerKey.Colorsusedmayvary.3. TheGPSgumdropstationswillmovealongpathofvectors,mimickingthemovementofthetectonic

platewithGPSstationattached.Foraddedeffect,have3studentsputtheirgumdropmodelsonONEmap(page7ofthestudentworksheet)andthensimultaneouslyhavethemmovethegumdropstheappropriatedistancealongthevectorinthesametimeperiod.Althoughcramped,itshowstheshorteningeffectofthewesternmarginquitewell.PARTV:AnalysisofGPSStationMotionThebigpictureresultoftheactivityisthatcoastalstationsofOregonandWashingtonarebeingpushedtowardthenortheastatabout1/2ofthevelocityofJuandeFucaPlatemotionwithrespecttointeriorNorthAmerica.Urbancorridorstations(inWillametteValleyofOregonorPugetLowlandofWashington)arebeingpushedtowardthenortheastatabout1/4ofthevelocityofJuandeFucaPlatemotionwithrespecttointeriorNorthAmerica.StationseastoftheCascadesarenotmovingatallorarebarelymoving.TheclearimplicationisthatcoastalareasaremovingtowardseasternareasastheactivecontinentalmarginisbeingcompressedinSW–NEdirection.StrainisbuildingwithinthePacificNorthwestmarginoftheNorthAmericanPlateastheJuandeFucaPlatepushestheNorthAmericanPlatemargintowardthenortheast.ThisaccumulatingstrainwilleventuallybereleasedinthenextgreatearthquakeontheCascadiaSubductionZone.TheplateboundaryregionsoftheJuandeFucaandNorthAmericanplatesare“lockedandloading”.Furtherimplicationsofthe“lockedandloading”natureofthePacificNorthwestcontinentalmarginareelasticenergywillbestoredupoverlongintervalsoftimeandthensuddenlyreleasedinthenextgreatCascadiaearthquake.Forexample,overtheaverage500yearsrecurrencetimebetweengreatearthquakes,thecoastalstationswillmovenortheastabout7.5meters(25feet).Duringthenextgreatearthquake,thestoredenergyduetotheslowNEmovementwillsuddenlybesuddenlyreleasedasthecoastalareasreboundthesamedistancetowardsthesouthwest.Procedure:1. LeadstudentstoanswersfromobservationsofthePacificNorthwestvectormap.2. Discussbigpictureafterstudentsrealizethattheregionisbeingsqueezed.3. Afurtherdemonstrationistakingapieceofpaperorclothandholdingtherightsideofitstationary,

andthenpushingtheleftsidetowardstheright.Thepaper/clothwillbuckle.

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page6

Name: CASCADIAGPSANALYSISToday’sDate:

PARTI:BuildingaGPS‘Monument’Materials: 4toothpicks,1gumdrop,modelingclay,ruler,1/4sheettransparencyProcedure: 1. Insert3toothpicksdiagonallyintothegumdrop.Thesewillactasthe

legs.2. Insertaslightlyshortertoothpickstickingstraightdownfromthemiddle

ofthegumdrop.Thetipofthistoothpickshouldbejustbarelyabovethesurface.Thiswillbethe‘placemarker’.

3. Putverysmallpiecesofclayonthebottomofthelegs(nottheplacemarker).TheclaywillactasacementtoholdtheGPSstationinplace.InrealitythelegsofaGPSstationarecementeddeepintothegroundsothatifthegroundmoves,sodoestheGPSstation.

4. PositiontheGPSMonumentontopofapieceofcleartransparency.PARTII:PinpointingLocation1. Whatdothetopsofthestringholdersonthewallsrepresent?2. Whatdoesthelengthofstringrepresent?3. HowmanysatellitesareneededtopinpointthelocationofaspotontheEarth?4. Whywouldn’toneortwosatelliteswork?Expainanddrawadiagramtoshowthis.5. Drawthesetupofthedemonstration inthespacetotheright.

Gumdrop

Toothpick

Clay

TEACHERANSWERKEY

Thetopsofthestringsrepresentwheresatellitesare–allareatthesameheightabovetheEarth.

Thelengthofstringrepresentsthedistancebetweenmonumentsandsatellites.

Atleast3satellitesareneededtopinpointthelocationofthemonumentonthesurface.Inrealitymorethan3areused.

Onesatellitewouldn’tworkbecausethestationcouldbeaninfinityofpointsaroundthatonesatellite.Twowouldn’tworkbecausethetwospheresaround2satellitesintersectataninfinityofpointsaroundthecirclewherethetwospheresintersect.

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page7

PARTIII:MeasuringCascadiaGPS/TectonicMovementMaterials: Coloredpencil(fordrawingtrendlines),clearruler,calculator• HighprecisionGPSstationscollectdatain3partsshowninTimeSeriesPlots(TimeSeriesorTSP):

o North/Southmovementovertime(abbreviatedN/S)o East/Westmovementovertime(abbreviatedE/W)o Height(up/down)movementovertime(notshowninthisactivity)

• X-axismeasurestime.• EachdotontheTSPsistheaveragepositionofthestationforoneday.

PacificBeach,WashingtonGPSData–CoastalStation

Thefirstthingtodoisdrawa“trendline.”Positionaruler(clearworksbest)sothatthetrendlinerepresentstheaverageoftheplotsaboveandbelowtheline.Drawthelinesothatitcrossestheaxesonbothsides.Notetheexampleabove.DrawatrendlinefortheEastportionofthePacificBeachTSP.6. Whataretheunitsofmeasurementforthesetimeseries?Circlethebestchoice. a) centimetersandmonths b) metersandyears c) millimetersandyears d) centimetersandyears

19961998200020022004200620082010201220142016

TrendLine

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page8

7. Ifeachdotistheaveragepositionforanygivenday,howlongofatimespanhasthisstationbeencollectingdata?

a) 10years b) 15years c) 19years d) 201/2years8. HowfarNorthdidthePacificBeachstationmoveonthetimeseries?Hint:calculatethechangein

positionovertime. a) 200millimeters b) 215milllimeters c) 230millimeters d) 275millimeters9. DidthestationmoveSouthovertheperiodoftimerelativetoitsstartingposition(1stmeasurement)? a) No,becausetrendlineonlymovesup. b) Yes,becausetrendlinemovesdown. c) Can’ttellfromtimeplotsgiven.10. HowfarEastdidthestation(andthereforetheEarthbelowit)moveontheTSP?Remembertousea

straightedgetohelp. a) 205millimeters b) 215milllimeters c) 280millimeters d) 300millimeters11. Whatoveralldirectionwasthisstationmoving? a) Northonly b) Northwest c) Northeast d) Southwest12. WhatwastheannualmovementintheNorthdirection?(Hint:Dividedistancetraveledby#ofyears) a) 10mm/yr b) 11.3mm/yr c) 16mm/yr d) 200mm/yr13. CalculatetheannualEastwardmovement: a) 4mm/yr b) 13.3mm/yr c) 14.7mm/year d) 280mm/yrUsingtheTSPsbelowforGrapeview,WAandLind,WA,calculateN/SandE/WmotionandanswerquestionsforeachTSP.Startwithdrawingtrendlinesthatcrossbothverticalaxes.

Notethatsomepositions(dots)are‘off’thegeneraltrend,orthereisagapinthedata.Thosemightbetimeswhenmaintenancewasbeingdoneonthestation,ortherewassomeerrorthatwasbeingcorrected.Youcanignorethosepointswhendoingyourtrendlinesandcalculations.

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page9

Grapeview,WashingtonGPSData–UrbanCorridorStation

14. Accordingtothisdata,howlongofatimeperiodhasthisstationbeeninoperation?Notethateach

smalllineonX-axisisonemonth,or1/12thofayear.15. WasGrapeviewmovingNorthorSouth?Howdoyouknow?16. HowfarNorthorSouthdiditmovesincedatahasbeenrecorded?17. Overall,wasGrapeviewstationmovingEastorWest?Howdoyouknow?18. HowfarEastorWestdiditmoveoverthewholetimeperiodofdatacollection?19. Werethereanytimeswhenthestationwasn’tmovingNW?Ifso,when,andwhatdirection??20. CalculateannualmotionsinN/SandE/Wdirections.

2004200620082010201220142016

May2005–Sept2016isabout11.5years

GrapeviewwasmovingNorthduetotheupwarddirectionontheN/Splot.IntermittentlyismovedS(down).

Itmovedapproximately56mmNorth.

GrapeviewwasmovingEastduetotheupwarddirectionontheE/Wplot.IntermittentlyismovedW(down).

Itmovedapproximately67mmEast.

ItmovedSouthwestinearly2007,mid2010,mid2011,early2014,andearly2016.

AnnualmotionsareNorth4.9mm/year(56mm/11.5yr)andEast5.8mm/yr(67mm/11.5yr)

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page10

Lind,WashingtonGPSData–EasternStation

21. Accordingtothisdata,howlongofatimeperiodhasthisstationbeeninoperation?22. WasLindmovingNorthorSouth?Ifso,howfar?Becarefulwithmeasurements.Usethetrendlineto

betterindicatethestartingposition.Hint:it’sbelow‘0’.23. WasOthellostationmovingEastorWest?Ifso,howfar?Again,becareful.24. WhataretheannualmotionsintheN/SandE/Wdirections?PARTIV:PlottingGPSStationMotionMaterials: CascadiaGPSAnalysisGrid(nextpageofpacket),3differentcoloredpencils,ruler

2004200620082010201220142016

May2004–Sept2016isabout12.5years

LindwasmovingveryslightlyNorth.Trendlineshowsit’sstartingat-1andmovingtoabout5,fortotalof6mm.

LindwasmovingveryslightlyEast.Trendlineshowsit’sstartingat-2andmovingtoabout12,fortotalof14mm.

AnnualmotionsareNorth0.5mm/year(6mm/12.5yr)andEast1.1mm/yr(14mm/12.5yr)

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page11

Procedure:1. Usingonecoloredpencil,startat(0,0)anddrawafaintarrowtoshowtheannualNorth

movementofthePacificBeachstation.

2. FromendpointoftheNortharrow,drawanarrowtoshowtheannualEastmotion.

3. Drawadiagonalarrowfrom(0,0)totheendpointoftheEastarrow.Thisfinalarrow(vector)showstheoverallannualdirectionandrateofmotionofthePacificBeachGPSstation.

4. Usingacentimeterruler,measurethelengthofthefinalvectorandlabelthevectorwithdistanceinmm/year.Note:Scaleongridiscentimeters,butactualmovementismillimeters–that’swhyyoulabel‘mm/year’.

5. Usingdifferentcolors,drawvectorsforGrapeviewandLindstations.

6. Completekeyindicatingcolorsofyour3GPSstationvectors.

KEY: Color StationLocation StationGroup(Coastal,UrbanCorridor,orEastern)

012345678910

11

12

13 TEACHERANSWERKEY

0123456789101112131415

EastwardVelocity(mm/year)

NorthwardVe

locity(m

m/year)

PacificBeach,WACoastal

Grapeview,WAUrbanCorridor

PacificBeach=18.5mm/yr

Grapeview=7.6mm/yr

Lind=1.6mm/yr

Lind,WAEastern

CascadiaGPSAnalysisTeacherInformationandAnswerKey Page12

Procedure(continued):7. Placegumdropstation(ontopoftransparency)at0,0andmovethetransparencysheetalongoneofthe

Northeastvectorstosimulatethemotionofthelandatthatpoint.

PARTV:AnalysisofGPSStationMotion25. ThemapbelowshowsthedirectionandspeedofseveralGPSstationsinthePacificNorthwest.Whatdoyou

observeabout: a) thestationsalongthecoast? b) thestationsslightlyinland(Grapeview,Kelso,Corvallis)? c) stationseastoftheCascades(Wasco,Lind,LaGrande?26. Overtime,whatwillhappentothedistancebetweenstationsonthecoastandstationseastoftheCascades? a) Distancegetsshorter b) Distancegetslonger c) Distancestaysthesame27. WhatdoesthisindicateabouttheforcesactingonthePacificNorthwest?What’shappeningtotheedgeofthe

continent?

Newport Corvallis

Tillamook

PacificBeach

NeahBay

Kelso

Grapeview Lind

LaGrande

Wasco

TheyaremovingNEmustfasterthantheotherstationsinland.

TheyaremovingNEabouthalfasfast.

MovingNEjustbarely–almoststationary.

ThewesternedgeofthePNWisbeingpushedNEfasterthantheinlandareas.Asitdoesso,theregionisbeingcompressedinaNE–SWdirection.Theregionisbeingloadedlikeaspring.