90
7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 1/90  ESCUELA POLITÉCNICA NACIONAL ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA CARGADOR DE BATERÍAS DE PLOMO-ÁCIDO DE 48 VOLTIOS PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN ELECTRÓNICA Y CONTROL GUANOLUISA TACO MILTON ORLANDO [email protected] PAZMIÑO ESTRELLA DANIEL CARLOS [email protected] DIRECTOR: MSc. PABLO RIVERA ARGOTI [email protected] Quito, Abril del 2008

Cargador de Baterias Plomo Acido 48 Vcc

Embed Size (px)

Citation preview

Page 1: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 1/90

ESCUELA POLITÉCNICA NACIONAL

ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CARGADOR DE BATERÍAS DE PLOMO-ÁCIDO DE 48 VOLTIOS

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO ENELECTRÓNICA Y CONTROL

GUANOLUISA TACO MILTON [email protected]

PAZMIÑO ESTRELLA DANIEL [email protected]

DIRECTOR: MSc. PABLO RIVERA [email protected]

Quito, Abril del 2008

Page 2: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 2/90

DECLARACIÓN

Nosotros, Daniel Carlos Pazmiño Estrella y Milton Orlando Guanoluisa Taco,declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría;

que no ha sido previamente presentada para ningún grado o calificaciónprofesional; y, que hemos consultado las referencias bibliográficas que seincluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedadintelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional,según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y porla normatividad institucional vigente.

Daniel Carlos Pazmiño Estrella Milton Orlando Guanoluisa Taco

Page 3: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 3/90

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Daniel Carlos Pazmiño

Estrella y Milton Orlando Guanoluisa Taco, bajo mi supervisión.

________________________MSc. Pablo Rivera ArgotiDIRECTOR DEL PROYECTO

Page 4: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 4/90

CONTENIDO

CONTENIDO 1

RESUMEN 3

PRESENTACIÓN 5

CAPÍTULO 1ESTUDIO GENERAL DE BATERIAS 71.1. TIPOS DE BATERÍAS 71.2. CAPACIDAD DE LAS BATERÍAS 91.3. ESTRUCTURA DE LA BATERÍA PLOMO-ACIDO 10 1.3.1. TIPOS DE PLACAS 121.4. OPERACIÓN INTERNA DE LA BATERÍA 16

1.4.1 DENSIDAD O PESO ESPECÍFICO DEL ELECTROLITO 171.5. CARACTERÍSTICAS DEL BANCO DE BATERÍAS 19

1.5.1. CONEXIÓN EN PARALELO 20 1.5.2. CONEXIÓN EN SERIE 23

1.6. TÉCNICAS Y ALGORITMO DE CARGA PARA UNA BATERÍA DE PLOMO-ACIDO DE 12V 231.6.1 SOBRECARGA 241.6.2. TÉCNICAS DE CARGA 25

1.6.2.1. CARGA RÁPIDA 251.6.2.2. CARGA A VOLTAJE CONSTANTE 261.6.2.3. FLOTACIÓN 261.6.2.4. CARGA A CORRIENTE CONSTANTE 27

1.6.3. ALGORITMO DE CARGA 28

CAPÍTULO 2DISEÑO Y CONSTRUCCIÓN DE LOS ELEMENTOS DE FUERZA 322.1. CONVERSOR AC/DC SEMICONTROLADO MONOFÁSICO 33

2.1.1 ANALISIS DE FUNCIONAMIENTO 332.1.2. DISEÑO DEL PUENTE RECTIFICADOR SEMICONTROLADO 36

2.2. TRANSFORMADOR DE ALIMENTACIÓN Y AISLAMIENTO 372.2.1 DISEÑO DEL TRANSFORMADOR 37

2.3. INDUCTOR 402.3.1 DISEÑO DEL INDUCTOR 41

2.4. PROTECCIÓNES 432.4.1 SNUBBERS 432.4.2 FUSIBLES 452.4.3 VARISTOR 45

2.4.4. DISIPADOR 462.5. DISPOSITIVO DE PROTECCIÓN Y DESCONEXIÓN VEHÍCULO-BATERÍAS 47

2.5.1. DISEÑO DEL DISPOSITIVO DE CONTROL 482.6. MECANISMO DE CONEXIÓN DEL CARGADOR A LA RED ELÉCTRICA 49

2.6.1. ELEMENTOS 49

CAPÍTULO 3DISEÑO Y CONSTRUCCIÓN DE LOS ELEMENTOS DE CONTROL Y SENSADO 513.1. ELEMENTOS DE SENSADO 51

3.1.1. SENSOR DE CORRIENTE 513.1.2. SENSOR DE TEMPERATURA 593.1.3. SENSOR DE VOLTAJE 61

3.1.4. DETECTOR DE CRUCE POR CERO Y ALIMENTACIÓN ALTERNA 623.2. ELEMENTOS DE CONTROL 643.2.1 MICROCONTROLADOR PROGRAMABLE 64

Page 5: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 5/90

3.2.2 CIRCUITO DE DISPARO 693.2.3 VISUALIZADORES 70

CAPÍTULO 4

PRUEBAS Y RESULTADOS 744.1 CALIBRACIÓN DE SENSORES 744.1.1 CALIBRACIÓN DE TEMPERATURA 744.1.2 CALIBRACIÓN DE CORRIENTE 754.1.3 CALIBRACIÓN DE VOLTAJE 754.1.4 ERROR 76

4.2 PROCESO DE CARGA Y DESCARGA DEL BANCO DE BATERÍAS 764.2.1 PROCESO DE CARGA 764.2.2 PROCESO DE DESCARGA 80

CAPÍTULO 5CONCLUSIONES Y RECOMENDACIONES 825.1 CONCLUSIONES 825.2 RECOMENDACIONES 83

REFERENCIAS BIBLIOGRÁFICAS 85

ANEXOS 87

Page 6: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 6/90

RESUMEN

El presente proyecto consiste en el diseño (hardware y software) y construcción

de un cargador de baterías de plomo ácido de 48 V; que incluye un dispositivo deconexión hacia la red.

El transformador, que reduce el voltaje a 71 V, se alimenta de un tomacorriente

normal monofásico de 110Vac a 60Hz; el transformador alimenta un conversor

AC/DC semicontrolado que trabaja en el primer cuadrante, el cuál brinda voltaje y

corrientes positivos, características importantes que requiere el banco de baterías

para su carga.

El microcontrolador PIC16F877A, ejecuta el algoritmo de carga que involucra las

etapas que se deben ir siguiendo para la carga del banco de baterías; para esto,

es necesario la lectura de las siguientes variables sensadas: corriente,

temperatura y voltaje.

Las etapas de carga utilizadas son las siguientes:

Carga mínima: durante esta etapa, una mínima corriente es aplicada para traer al

banco de baterías a un voltaje de mayor nivel correspondiente o cercano a la

descarga normal.

Carga a corriente constante o carga máxima: una vez que la carga mínima supera

el límite mínimo requerido de voltaje, el cargador pasa al estado de carga

máxima. Durante esta etapa se entrega la corriente constante máxima posible a la

batería a medida que su voltaje se incrementa. En esta etapa el banco de baterías

recupera la mayoría de su capacidad (80%),

Sobrecarga controlada: Luego de la carga máxima, la batería es sobrecargada

durante un periodo de tiempo donde el cargador mantiene un voltaje constante en

la batería, mientras ésta continúa absorbiendo energía del cargador.

Page 7: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 7/90

Ecualización: La etapa de ecualización se utiliza para balancear el voltaje en cada

batería, y la densidad del electrolito de cada celda, al aplicar un relativo alto

voltaje al banco de baterías.

Flotación: se utiliza para mantener la capacidad de la batería evitando su

autodescarga. La flotación se realiza aplicando un voltaje constante menor al

voltaje de la batería totalmente cargada sin carga aplicada.

Para la visualización de las variables y de las diferentes etapas de carga del

banco de baterías se usa un display de cristal líquido (LCD) y leds luminosos,

donde al momento de la carga siempre se está mostrando la temperatura,corriente, voltaje y la etapa de carga en la que se encuentre.

En la descarga del banco de baterías el LCD, está mostrando la temperatura y el

voltaje.

Se utiliza, en serie al banco de baterías, un inductor que permite mantener la

corriente de carga en conducción continua, de esta manera se evita entregar

picos de corriente demasiados pronunciados al banco de baterías, lo quedisminuiría su vida útil.

El cable de conexión a la red eléctrica está construido de tal forma que se pueda

recoger solo, a través de un sistema mecánico.

Page 8: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 8/90

PRESENTACIÓN

El contenido de este documento inicia con una breve revisión sobre aspectos

teóricos relacionados con el desarrollo del proyecto. Sobre la base defundamentos teóricos y considerando la utilización de circuitos integrados,

elementos de potencia y elementos discretos se plantean el diseño y la

construcción del sistema que cumple los requerimientos propuestos. Finalmente,

se explican los procedimientos experimentales efectuados para realizar la

calibración de los sensores de corriente, voltaje, temperatura y pruebas de los

pasos que debe ir siguiendo el cargador para su correcto funcionamiento, mismo

que es controlado por el microcontrolador.

En el CAPÍTULO 1 se abordan generalidades, se presenta una revisión de teoría

relacionada con el proyecto. Incluye un resumen sobre tipos de baterías,

capacidad, estructura, tipos de placas, operación interna, características, técnicas

y algoritmos. Finalmente, se presenta una breve descripción de los pasos que

ejecuta el cargador de baterías en base a un algoritmo de carga específico.

En el CAPÍTULO 2 se presenta un resumen sobre el diseño y la construcción de

los elementos de fuerza, como el puente semicontrolado, transformador, inductor

y sus respectivas protecciones. Finalmente, se presenta una breve descripción del

dispositivo de conexión a la red y del dispositivo de protección y desconexión

vehículo – baterías.

En el CAPÍTULO 3 se presenta un resumen sobre el diseño y construcción de los

elementos de control y sensado. Como el diseño y utilización de los sensores de

corriente, temperatura y voltaje, El diseño del detector de cruce por cero y

alimentación alterna.

El software de control está constituido por el programa del microcontrolador

PIC16F877A, se describen la funcionalidad por medio de un diagrama de bloques

y un diagrama de flujo. Finalmente, se presenta el diseño del circuito de disparo

de los tiristores.

Page 9: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 9/90

En el CAPÍTULO 4 se describen la calibración de los sensores de corriente,

temperatura, voltaje, pruebas de las diferentes etapas de carga y pruebas de

carga y descarga del banco de baterías.

Finalmente, en el CAPÍTULO 5 se presentan las conclusiones y

recomendaciones.

Page 10: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 10/90

CAPÍTULO 1

ESTUDIO GENERAL DE BATERIAS

Una batería es un dispositivo que convierte la energía química contenida en sus

materiales activos en energía eléctrica a través de una reacción electroquímica.

Las baterías pueden ser primarias o secundarias. Las baterías primarias son

utilizadas solamente una vez, debido a que sus reacciones químicas internas, que

suministran la corriente eléctrica, son irreversibles.

En las baterías secundarias las reacciones químicas, que suministran la corriente

eléctrica, son reversibles; es decir, que haciendo circular una corriente eléctrica

continua a través de la batería, en sentido contrario a la corriente de descarga, se

pueden recuperar los compuestos químicos internos originales que suministran la

corriente eléctrica en una batería cargada; de esta manera este tipo de baterías

pueden ser usadas y nuevamente cargadas para su reutilización. [21]

1.1 TIPOS DE BATERÍAS

Las dos categorías existentes de baterías plomo-ácido para automóviles y de ciclo

profundo son:

• Las baterías húmedas conocidas también como de arranque, inundadas,

de electrolito líquido, ventiladas o VLA (vented lead acid). Entre estas se

encuentran las de bajo mantenimiento, las selladas o libres de

mantenimiento y las estándar.

• Las baterías de válvula regulada o VRLA (valve regulated lead acid). Entreestas se encuentran las secas o AGM (Absorbed Glass Mat o fibra de

vidrio absorbente), en espiral y las de gel. Todas las baterías VRLA son

selladas. [8]

Todas las baterías de electrolito líquido producen gas hidrógeno y oxígeno

(gasificación) en los electrodos durante la carga a través de la electrólisis. Estos

gases pueden escapar a la atmósfera en una batería húmeda ventilada, lo que

requiere mantenimiento regular, debiéndose añadir agua destilada al electrolito

Page 11: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 11/90

para que recupere su nivel nominal, cabe señalar que el gas hidrógeno es

explosivo en el aire a solamente el 4% de su volumen. [21]

En una batería sellada el contenedor de la misma impide el escape de los gases,

debiendo estos contenerse y recombinarse pudiendo incrementar en exceso la

presión del depósito en condiciones desfavorables, donde actúa una válvula no

regulada de emergencia. Debido al confinamiento del electrolito, este tipo de

baterías son libres de mantenimiento.

Las baterías con válvula de regulación son las más comunes en la actualidad.

Estas baterías selladas poseen una válvula de seguridad regulada que libera el

gas en caso de exceso de presión por sobrecarga o exceso de temperatura. La

presión de liberación de gases es predeterminada y generalmente se encuentraentre 2 y 5 psi dependiendo del diseño y tipo de batería. [21]

Las baterías de arranque son comúnmente utilizadas para arrancar y hacer

funcionar motores de combustión interna. El arranque de motores requiere una

corriente muy grande por un corto periodo de tiempo.

En baterías de arranque sometidas a aplicaciones de ciclo profundo gran parte

del material activo se consume muy rápidamente, desprendiéndose y cayendo al

fondo de la celda. Las baterías de arranque generalmente fallan después de los30 o 150 ciclos de descarga profunda, mientras que en descargas normales de

arranque (2 – 5% de descarga) pueden soportar miles en ciclos.

Las baterías de ciclo profundo están diseñadas para ser descargadas una y otra

vez hasta un 80% ya que poseen placas de mejor diseño para descargas

profundas. [14]

Las baterías plomo-ácido de tracción, son baterías de ciclo o descarga profundamóviles, su aplicación obliga descargas de entre el 20 y 80% de su capacidad

para luego ser recargadas.

Las baterías de tracción son de alta potencia diseñadas para abastecer de

energía a un vehículo eléctrico o hibrido.

Lo más importante en la selección de baterías de tracción es las relaciones

potencia peso y potencia volumen, debido que el vehiculo debe transportar su

fuente de energía.

Page 12: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 12/90

Las baterías de tracción al ser de ciclo profundo, requieren tasas rápidas de carga

en su utilización, generalmente entre 24 horas.

Las baterías de tracción son usualmente de placas tubulares o en espiral con un

exceso de material activo, que tienen mejor desempeño durante las operaciones

de descarga profunda.

La principal falla de una batería de ciclo profundo cuando se completa su tiempo

de vida útil se debe a la corrosión de la rejilla y al desprendimiento del material

activo, pero a diferencia de las baterías de arranque, el desprendimiento del

material activo no es el principal problema de falla debido a que las baterías de

tracción poseen separadores grandes y mejores que en algunos casos cubren en

su totalidad las placas. Sin embargo la pérdida de material activo afectadirectamente a la capacidad de la batería, reduciendo ésta progresivamente.

La corrosión de la rejilla es en efecto la que determina la vida útil de una batería

de tracción ya que es causa normal del proceso de carga-descarga; y

eventualmente su deterioro la destruirá totalmente desconectando la celda;

invalidando la batería.

Un cortocircuito en una batería de tracción puede producirse si la batería pasa

demasiado tiempo descargada y es recargada de manera indebida. Una recargainadecuada en estas condiciones forma acumulaciones de material activo en

forma de pequeñas montañas o picos llamadas dendritas que al crecer

demasiado pueden llegar a atravesar el separador cortocircuitando las placas. [8]

1.2 CAPACIDAD DE LAS BATERÍAS [21]

En general el término capacidad (C) de una batería es la cantidad de carga

disponible en la misma, expresada en amperios-hora (Ah).

La capacidad de una batería se relaciona con: la cantidad de material activo en la

misma, el porcentaje de electrolito y el área superficial de las placas. La

capacidad de una batería es medida al descargarla a una corriente constante

hasta alcanzar su voltaje mínimo (generalmente alrededor de 1.75 voltios por

celda). Esto se realiza bajo condiciones estándar a temperatura constante de

25°C.

Page 13: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 13/90

La capacidad se calcula al multiplicar el valor de la corriente de descarga por el

tiempo requerido para alcanzar el voltaje mínimo.

En resumen, la capacidad o capacidad de entrega es la habilidad de entregar

corriente de una batería, la cual se expresa en amperios-hora a un tiempo de

descarga específico. Por ejemplo si una batería plomo-acido es de 200Ah (a 10

horas de descarga) entregará 20 amperios de corriente durante 10 horas bajo

condiciones normales de temperatura (25°C). Por otr o lado, una tasa de descarga

puede ser especificada como múltiplo de la capacidad de entrega de la batería.

Por ejemplo, una batería puede tener una capacidad de entrega de 200 Ah a C/10

de tasa de carga. La tasa de descarga se determina por la siguiente ecuación:

C/10 (A) = 200Ah/10h = 20 ALa capacidad de la batería varía con la tasa de descarga. A mayor tasa de

descarga menor capacidad de la batería y a menor tasa de descarga mayor

capacidad.

Cabe destacar que la batería del ejemplo no puede entregar 200A durante una

hora. El proceso electroquímico no puede ser acelerado sin que la batería

incremente su resistencia interna en forma substancial.

Si la tasa de descarga es menor que la especificada, por ejemplo C/40:C/40 (A) = 200Ah/40h = 5 A; la relación es válida. La batería de 200Ah puede

sostener este valor de corriente (5A) por 40 horas.

La capacidad para las baterías plomo-ácido se especifica generalmente con tasas

de descarga de 8, 10 o 20 horas (C/8, C/10, C/20); siendo 20 horas la más común

que los fabricantes especifican en baterías de arranque.

1.3 ESTRUCTURA DE LA BATERÍA PLOMO-ACIDO [8,21]

Una batería de plomo-acido de 12 voltios esta construida de seis celdas

inundadas de electrolito conectadas en serie, el terminal positivo de la primera

celda con el terminal negativo de la segunda celda y así sucesivamente como se

muestra en la Figura 1.1, cada celda en su respectivo compartimiento produce 2.1

voltios aproximadamente. La celda esta construida por electrodos o placas

positivas conectadas entre si y placas negativas también conectadas entre sí. Las

Page 14: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 14/90

placas en una celda están intercaladas, una placa positiva seguida de una

negativa. Las placas están individualmente separadas por láminas o introducidas

en sobres delgados de material aislante poroso permeable a los iones que

permita la difusión del electrolito a la vez que resista la acción del ácido. Mediante

los separadores se consigue un aislamiento eléctrico entre placas, evitando

cortocircuitos entre las de polaridad opuesta, pero permitiendo la transferencia de

iones entre el electrolito y las placas. La conformación de una placa positiva, un

separador y una placa negativa se denomina elemento. El conjunto de seis celdas

se encuentra encerrado en un monobloque de polipropileno generalmente

moldeado por inyección.

Figura 1.1 Batería plomo-ácido

Las baterías de plomo-ácido al terminar su vida útil fallan y lo suelen hacer

instantáneamente. El material activo progresivamente llena el depósito en el fondo

de la celda donde se apila hasta alcanzar las placas y al unir dos placas de

polaridad opuesta el cortocircuito destruye la celda y por ende la batería queda

inservible.

Page 15: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 15/90

1.3.1 TIPOS DE PLACAS

Placas planté

El método más simple, común en nuestro medio, para la construcción de placas

es realizando placas planté como se muestra en la Figura 1.2, evocando a Gastón

Planté, científico que dio a conocer un acumulador que se diferenciaba de otras

realizaciones precedentes en la utilización de electrodos de plomo.

Debido a que la capacidad de la batería plomo-acido es proporcional al área

superficial de la placa expuesta al electrolito, son empleados varios métodos paraincrementar el área de la placa por unidad de volumen o peso. Una placa planté

es simplemente una placa plana compuesta de plomo puro; esta placa se

encuentra surcada o perforada para incrementar su área superficial.

Figura 1.2 Placa planté y celda de batería estacionaria

Page 16: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 16/90

Placas planas

Otro método muy utilizado para incrementar el área superficial es hacer una pasta

del material activo que actúe como una esponja la cual llene todas sus cavidades

de electrolito. La pasta o material activo, es montada en un marco o rejilla de

aleación de plomo que hace de soporte mecánico y conductor eléctrico, llevando

la corriente eléctrica durante los ciclos de carga y descarga.

La rejilla, similar a un panal, es cubierta de pasta llenando todas las ventanas de

la estructura, seguidamente solo la placa positiva es forrada por el material

separador microporoso. Este material es un sobre de polipropileno / polietileno en

cuyas caras internas se adhiere fibra de vidrio absorbente o AGM, que aseguraque la placa esté en todo momento en contacto con el electrolito.

En la actualidad este es el método más utilizado y es llamado de placa

empastada, o placa plana.

Rejillas Rejillas empastadas Placa

Figura 1.3 Partes y fabricación de una celda de placas planas

Page 17: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 17/90

Placas tubulares

Las placas tubulares son fabricadas para ciclos profundos de trabajo, ideales para

baterías de descarga profunda (tracción).

Esta construcción utiliza una estructura en forma de marco con una serie de

columnas axiales conectadas a un conector común como se muestra en la Figura

1.4. La pasta es llevada en tubos microporosos no conductivos los cuales son

puestos sobre cada columna.

Figura 1.4 Placa tubular y componentes

La rejilla en las placas planas y tubulares esta hecha de una aleación de plomo.

Una rejilla de plomo puro no es suficientemente fuerte y no soportaría al material

activo, debido a esto, otros metales en pequeñas cantidades son añadidos al

plomo como aleación para darle más fuerza y mejorar algunas propiedades

eléctricas. Los metales añadidos con más frecuencia son el antimonio, calcio,

estaño y selenio.

Las aleaciones más comunes para fortalecer la rejilla se realizan con antimonio y

calcio. Se añade estaño a las rejillas plomo-calcio para mejorar los ciclos carga-

descarga.

Page 18: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 18/90

Placas en espiral

Las placas en espiral (Figura 1.5) ofrecen algunas ventajas sobre el resto de

placas, ya que cada una de sus celdas contiene placas más largas y grandes

enrolladas de una manera muy compacta conjuntamente con el separador, esto

permite que exista una mayor área de placa en contacto con el electrolito, lo que

da como resultado una mayor energía y ciclos de descarga profunda más

frecuentes.

Debido a que la rejilla no realiza soporte mecánico se la fabrica de plomo puro, lo

que permite a la batería tener mejores propiedades de conductividad, menor

resistencia interna y resistencia a la corrosión, además cada batería estaconformada de pocos componentes, reduciendo así los riesgos de falla.

Debido a la compresión de cada una de sus celdas resiste mucho más la

vibración. [16]

Figura 1.5 Placas en espiral

Page 19: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 19/90

Figura 1.6 Batería de placas en espiral

1.4 OPERACIÓN INTERNA DE LA BATERÍA [8, 21]

Los materiales activos en la batería son aquellos que participan en la reacción

electroquímica de carga-descarga. Estos materiales incluyen el electrolito y loselectrodos positivo y negativo, mismos que se deterioran con cada proceso de

carga-descarga lo que determina la vida útil de la batería.

El electrolito es una solución diluida de ácido sulfúrico (H2SO4); 25% de ácido

sulfúrico y 75% de agua destilada en una batería totalmente cargada.

El electrodo negativo en una batería cargada esta compuesto de plomo en estado

esponjoso (Pb) y el electrodo positivo esta compuesto de dióxido de plomo

(PbO2).Todas las baterías de plomo-acido operan con la misma reacción fundamental.

Cuando la batería se descarga los materiales activos en los electrodos reaccionan

con el ácido sulfúrico en el electrolito para formar sulfato de plomo y agua. El

electrodo negativo (Pb+2) reacciona con el ión sulfato (SO4 -2) del ácido, creando

un depósito de sulfato de plomo PbSO4; esta reacción química se lleva a cabo

con la cesión de dos iones positivos, lo que da al electrodo su polaridad negativa.

El electrodo positivo (PbO2) reacciona también con los iones de sulfato (SO

4

-2) del

ácido, creando de igual manera sulfato de plomo PbSO4, pero esta reacción

Page 20: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 20/90

química se lleva a cabo con la cesión de dos electrones, lo que da a este

electrodo su polaridad positiva; por último los iones de hidrógeno H+ liberados del

ácido se combinan con el oxigeno liberado del dióxido de plomo PbO2 formando

nuevas moléculas de agua.

En la carga el agua disocia las moléculas del ácido sulfúrico (H2SO4); el proceso

de electrólisis del agua, cuando el voltaje de celda supera cierto valor, genera

iones de hidrógeno H+ y oxígeno O-2; el sulfato de plomo PbSO4 en ambos

electrodos se convierte de nuevo en dióxido de plomo (positivo) y plomo en

estado esponjoso (negativo), y los iones de sulfato (SO4-2) son conducidos de

vuelta a la solución de electrolito para formar acido sulfúrico.

Las reacciones involucradas en la celda son las siguientes: [21] Descarga→

Carga←

En el electrodo positivo:

PbO2 + 3H+ + HSO4- + 2e- ↔ PbSO4 + 2H2O (1.685V)

En el electrodo negativo:

Pb + HSO4-

↔ PbSO4 + H+

+ 2e-

(0.356V)

Para toda la celda:

PbO2 + Pb + 2H2SO4 ↔ 2 PbSO4 + 2 H2O (2.041V)

El cambio porcentual de la cantidad de agua en solución forza un cambio de

densidad en el electrolito. Cuando la batería está cargada, la densidad aumenta, y

cuando está descargada disminuye. Estas variaciones de densidad permitenevaluar el estado de carga de las celdas.

1.4.1 Densidad o peso específico del electrolito [8]

El peso específico es el cociente entre el peso de una solución y el peso de una

de igual volumen de agua a una temperatura determinada. El peso específico o

densidad es utilizado como un indicador del estado de carga de una celda o

batería. Sin embargo, la medición de la densidad no puede determinar la

Page 21: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 21/90

capacidad de una batería. Durante la descarga, la densidad decrece linealmente

con la descarga amperios-hora, como se muestra en la Figura 1.7.

Figura 1.7 Medición de la densidad del electrolito [21]

El descenso lineal de la densidad durante la descarga se aproxima según la

ecuación:

Densidad = Voltaje de celda a circuito abierto – 0.845

ó

Voltaje de celda a circuito abierto = densidad + 0.845

Estas ecuaciones permiten monitorear la densidad para determinados casos,

como en baterías selladas.

La densidad decrece durante la descarga de una batería a un valor cercano al de

el agua pura e incrementa durante la recarga. La batería es considerada

totalmente cargada cuando la densidad alcanza sus máximos valores posibles. La

densidad varía con la temperatura y la cantidad de electrolito en una celda.Cuando el electrolito se acerca al nivel más bajo indicado, la densidad es más alta

que la nominal y desciende a medida que se añade agua a la celda para llevar al

electrolito a su máximo nivel. El volumen del electrolito aumenta si la temperatura

se incrementa y lo contrario si disminuye, modificando de igual manera la

densidad leída. Si el volumen del electrolito aumenta la lectura de densidad es

baja y por otro lado es alta con las bajas temperaturas.

V o l t a j e d e c e l d a [ V

]

Page 22: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 22/90

La densidad de una batería es determinada por la aplicación para la cual será

destinada, la temperatura de trabajo y su vida útil.

Densidad [gr/cm3] Aplicación

1.300 Baterías de ciclo profundo para vehículos eléctricos (tracción)

1.265 Automóviles

1.250 UPS

1.215 Aplicaciones generales

Estado de carga Densidad [gr/cm3] Voltaje [V]

100% 1.265 12.775% 1.225 12.4

50% 1.190 12.2

25% 1.155 12.0

Descargada 1.120 11.9

1.5 CARACTERÍSTICAS DEL BANCO DE BATERÍAS [14,21,8]

La energía que una batería almacena se puede relacionar con la cantidad de

plomo que contiene. Así una batería de 12 voltios de 100Ah de ciclo profundo,

pesa alrededor de 35Kg, su equivalente de 200Ah pesa 70Kg.

Existen diversos criterios como el costo, la seguridad, el peso, el espacio, la

confiabilidad, etc. para preferir utilizar y conectar dos o más baterías en vez de

utilizar una sola de la misma capacidad o viceversa, que dependen de la

aplicación o las necesidades. Muchas veces no es posible encontrar baterías de

un determinado voltaje o capacidad debiendo recurrirse a los arreglos de baterías;

o por otro lado, existen muchos arreglos de baterías en diferentes conexiones que

permiten obtener el mismo voltaje o capacidad deseada.

Un buen criterio para preferir varias baterías a una única es generalmente el

costo, en caso de falla de una celda; en el banco de baterías se sustituiría una

fracción del costo; en cambio en este mismo caso la batería única debe ser

sustituida, repitiendo toda la inversión.

Page 23: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 23/90

La seguridad por otro lado también es importante, un monobloque de gran

capacidad sometido a un cortocircuito en las peores condiciones trae graves

consecuencias. La temperatura se incrementaría súbitamente, el electrolito se

evaporaría en gran cantidad, consumiendo también parte del material activo, el

ambiente cercano se llenaría de hidrógeno, oxigeno y elementos propios del

material activo, es decir el ambiente seria volátil y tóxico. Por otro lado, utilizando

varias baterías de menor capacidad sucedería lo mismo pero en menores

proporciones.

Si se requiere más capacidad de entrega (Ah) de una batería, existen

básicamente dos opciones; conexión en paralelo o conexión en serie o un arreglode ambos.

1.5.1 CONEXIÓN EN PARALELO [19]

Las baterías pueden conectarse en paralelo, estas deben ser del mismo

fabricante, tipo, edad, voltaje y capacidad.

Para una típica conexión cableada, los conectores de cada batería tienen unapequeña resistencia al igual que el cable que las une, en conjunto suman

aproximadamente 0.0015 ohmios entre cada polo de cada batería, de igual

manera cada batería tiene una resistencia interna de alrededor de 0.02 ohmios.

Si se descarga por ejemplo 100 amperios de un banco de cuatro baterías en una

conexión típica en paralelo, cada batería debería aportar con 25 amperios; sin

embargo el aporte de cada batería depende de la conexión que esta tenga en el

banco debido a la resistencia de los conectores que aunque es mínima, paragrandes corrientes su efecto resulta sumamente importante. Así, si la conexión es

como la indicada en el esquema de la Figura 1.8, la batería uno (V1) aportará la

mitad de la corriente que la batería cuatro (V4), que es la más cercana a la carga.

De esta manera a medida que se aumente conectores a cada batería, desde la

carga hasta sus polos, su aporte de corriente será menor.

Page 24: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 24/90

D C

V

1 1 .

6 8

V

D

C

A

1 7

. 7 4

A

D C

A

2 0 .

4 0

A

D

C

A

2 6

. 1 3

A

D

C

A

3 5

. 7 7

A

DC A

100.0 A

+ V312.7V

+ V412.7V

+ V212.7V

+ V112.7V

Rcp40.0015

Ri40.02

Ri30.02

Rcp20.0015

Rcp30.0015

Carga

Rcn30.0015

Rcn20.0015

Rcn40.0015

Ri20.02

Ri10.02

Rcp10.0015

Rcn10.0015

Figura1.8 Conexión en paralelo

Del esquema se puede resumir:

V1= V2= V3= V4 = 12,7V; baterías cargadas.

Rcp: resistencia conector positivo = 0.0015 Ω

Rcn: resistencia conector negativo = 0.0015 Ω

Ri: resistencia interna = 0.02 Ω

I1 = 17.74A corriente que aporta batería 1I2 = 20.4A corriente que aporta batería 2

I3 = 26.13A corriente que aporta batería 3

I4 = 35.77A corriente que aporta batería 4

IT = 100A corriente total.

Durante la recarga del banco de baterías sucede exactamente lo mismo, la

batería más cercana al cargador recibe mayor corriente que la más lejana, estegran desbalance da como resultado que la batería más cercana trabaje mucho

más que las demás teniendo más posibilidad de falla.

Una corrección aproximada es la del esquema de la Figura 1.9, donde se alimenta

la carga de polos opuestos en diagonal, se aprecia un buen mejoramiento con un

simple cambio, pero el desbalance aún existe y sus efectos también.

Del esquema se puede resumir:

I1 = I4 = 26.74A corriente que aporta batería 1 y 4I2 = I3 = 23.26A corriente que aporta batería 2 y 3

Page 25: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 25/90

D C

V

1 1 .

6 4

V

D C

A

2

6 .

7 4

A

D C

A

2

3 .

2 6

A

D C

A

2

3 .

2 6

A

D C

A

2

6 .

7 4

A

DC A

100.00

+ V312.7V

+ V412.7V

+ V212.7V

+ V112.7V

Rcp40.0015

Ri40.02

Ri30.02

Rcp20.0015

Rcp30.0015

Carga

Rcn30.0015

Rcn20.0015

Rcn40.0015

Ri20.02

Ri10.02

Rcp10.0015

Rcn10.0015

Figura 1.9 Conexión en paralelo corrección aproximada

La solución para un banco balanceado de baterías en paralelo, es el esquema de

la Figura 1.10, donde para cada batería influyen solo sus propios conectores (2),

es importante también que todos los cables de cada polo de cada batería que van

a al punto común, sean necesariamente del mismo calibre y tamaño; procurando

la mínima distancia posible.

Pese a requerir de dos conectores extra (puntos comunes), este esquema finalpermite un correcto balance entre las cuatro baterías del banco.

Si se utilizan 2 baterías en paralelo la solución se reduce al ejemplo segundo, es

decir la interconexión en diagonal de polos opuestos.

D C

V

1 2 .

1 2

V

D C

A

2 5 .

0 1

A

D C

A

2 5 .

0 1

A

D C A

2 5 .

0 1

A

D C

A

2 5 .

0 1

A

DC A

100.0 A

+ V312.7V

+ V412.7V

+ V212.7V

+ V112.7V

Rcp40.0015

Ri40.02

Ri30.02

Rcp20.0015

Rcp30.0015

Carga

Rcn30.0015 Rcn2

0.0015

Rcn40.0015

Ri20.02

Ri10.02

Rcp10.0015

Rcn10.0015

Figura 1.10 Banco balanceado de baterías en paralelo

Page 26: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 26/90

1.5.2 CONEXIÓN EN SERIE

Las baterías pueden conectarse en serie, estas deben ser del mismo fabricante,

tipo, edad y capacidad. En el caso de conectarse baterías de diferente capacidad,

la de menos capacidad se sobrecargará o se descargara demasiado respecto a

las demás, según el proceso.

Los cables de conexión entre baterías deben ser del mismo tamaño, calibre y lo

mas pequeños posibles para evitar caídas de voltaje innecesarias y perjudiciales.

Algunos expertos creen que baterías en serie son más fáciles de cargar y

descargar debido a que se aplica la misma cantidad corriente a cada celda de

cada batería. Otros expertos creen que es mejor baterías en paralelo por que encaso de falla en una batería, una celda abierta por ejemplo, la batería dañada

queda desconectada y la del otro ramal aún puede continuar dando servicio. [8]

En el presente caso el banco consta de dos bloques de 48 voltios, cada bloque

compuesto de cuatro baterías de 12 voltios en serie. Dichos bloques se conectan

en paralelo de tal manera que se alimentan del cargador y alimentan la carga de

polos opuestos en diagonal, según el esquema de la Figura 1.9; que para estecaso se consigue un buen balance.

1.6 TÉCNICAS Y ALGORITMO DE CARGA PARA UNA BATERÍA

DE PLOMO-ACIDO DE 12V

Las baterías no son 100% eficientes, algo de energía se pierde en forma de calor

y en las reacciones químicas de carga y descarga. Si se utilizan 100 vatios de unabatería, se necesitaran 120 vatios o más para recuperar su carga inicial. Cargas y

descargas de tasas lentas son más eficientes. La batería plomo-ácido tiene una

eficiencia típica de entre 85% y 95%. En general a medida que su vida útil

disminuye, la batería disminuye su eficiencia. [14]

Todas las técnicas de carga para una batería plomo-ácido así como el algoritmo

de control, se relacionan con la temperatura y la gasificación, consecuenciasdirectas de una sobrecarga.

Page 27: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 27/90

1.6.1 SOBRECARGA

La sobrecarga es la aplicación de elevadas corrientes o voltajes a la batería

durante excesivos periodos de tiempo, la sobrecarga genera demasiada oxidación

en la rejilla positiva lo que conlleva a la degradación de la batería, también

produce súbitos incrementos de temperatura lo que causa una gasificación

excesiva.

El inicio de la sobrecarga puede ser detectado monitoreando el voltaje de la

batería. En la Figura 1.11 se muestra el voltaje de la batería versus el porcentaje

de carga repuesto a varias tasas de recarga. La reacción de sobrecarga esta

indicada por el incremento súbito del voltaje de la celda y llega a ser excesiva ypeligrosa cuando la curva alcanza su punto máximo y vuelve a descender.

El punto al cual la reacción de sobrecarga empieza, depende de la tasa de carga

y a medida que la tasa de carga se incrementa, el porcentaje de carga repuesto,

en el punto en que inicia la sobrecarga, disminuye. Para tasas de carga menores

a la capacidad dividido para cinco (C/5), menos del 80% de carga se repone,

antes que la sobrecarga inicie.

Para que la sobrecarga coincida con el 100% de la carga repuesta, la tasa decarga debe ser menor a la capacidad dividido para cien (C/100). Para tasas de

carga mucho mayores, se emplea sensores que determinan cuando la sobrecarga

se aproxima, evitándola y reduciendo la tasa de carga a valores moderados. [15]

Figura 1.11 Voltaje de la batería vs el porcentaje de carga. [15]

Page 28: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 28/90

1.6.2 TÉCNICAS DE CARGA

La principal causa de la disminución de la vida útil de una batería es el

inadecuado proceso de recarga.

Un cargador de baterías plomo-ácido tiene dos objetivos que cumplir. El primero

es restaurar la capacidad de una manera práctica y rápida. El segundo es

mantener la capacidad compensando la autodescarga.

El proceso de recarga presenta varias opciones mediante diferentes técnicas,

pero la idea común siempre es hacer circular corriente a través de la batería en

dirección contraria a la de descarga.

El aspecto más importante de la recarga es relacionar de mejor manera el

cargador con la aplicación de la batería. Al escoger un cargador, es necesario

considerar el tipo de batería, la manera en que la batería será descargada, el

tiempo disponible para recargar la batería, las temperaturas extremas a las cuales

estará expuesta la batería, y el número de celdas en la batería (voltaje de salida).

En general, las baterías plomo-ácido pueden ser recargadas a cualquier tasa

siempre y cuando no produzca excesiva gasificación, sobrecarga o elevadas

temperaturas. Baterías descargadas pueden ser recargadas con moderadamentealtas corrientes iniciales. Sin embargo, una vez que la batería se aproxima a su

carga completa la corriente debe disminuir para reducir la gasificación y la

sobrecarga excesiva.

1.6.2.1 Carga Rápida

Cuando se realiza una carga rápida a la batería, se requiere una alta corriente encorto tiempo para reestablecer la energía que ha sido descargada. Además se

necesitan mediciones de control adecuadas de temperatura y corriente de carga

que eviten la sobrecarga cuando la carga rápida se completa. Los requerimientos

básicos para una carga rápida son:

• Suficiente energía disponible que haga posible una recarga rápida.

• Corriente de carga controlada que evite la sobrecarga aún en cargas

prolongadas.• Temperatura ambiente de carga de entre 0°C y 40°C

Page 29: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 29/90

Page 30: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 30/90

cargador opera muy aparte de la fuente normal de energía, la cual provee de

corriente a la carga durante su operación. En caso de que la fuente normal de

energía falle, la batería provee el respaldo de energía necesario hasta que la

fuente normal se reestablezca.

Los cargadores flotantes son comúnmente cargadores de voltaje constante que

operan a bajo voltaje, usualmente a menos de 2.4 voltios por celda, manteniendo

la corriente de carga baja para compensar únicamente la autodescarga.

En carga flotante se debe tener en cuenta el incremento de temperatura, esta

condición ocurre cuando la energía de carga genera calor en el interior de la

batería, mayor al que la misma pueda disiparlo; lo que puede causar fallas en las

celdas al secarse, acortando su vida útil.

1.6.2.4 Carga a Corriente Constante [14,20]

Carga a corriente constante significa que el cargador entrega corriente

relativamente uniforme, sin considerar el estado de carga de la batería.

Los cargadores de corriente constante ayudan a eliminar los desbalances de las

celdas y baterías conectadas en serie. Los cargadores de corriente constante detasa única son los más apropiados para ciclos de operación donde la batería es a

menudo requerida para obtener una carga completa de manera inmediata. A

estas altas tasas de carga existe gasificación y escape de gases.

La oxidación de la rejilla positiva ocurrirá a elevadas temperaturas o sobrecargas

de demasiado tiempo. Debido a esto se debe aplicar la carga de corriente

constante durante periodos de tiempo que permitan una carga completa pero que

eviten la excesiva oxidación de la rejilla.Otro tipo de cargador de corriente constante aplica una elevada corriente inicial a

la celda y luego cambia a una tasa baja de carga en base a un tiempo, voltaje o

ambos. La forma de darse el cambio y el momento al cual hacerlo se determina

en base a la gasificación existente o el balance que se requiera aplicar a las

celdas.

Page 31: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 31/90

1.6.3 ALGORITMO DE CARGA [9]

El cargador de baterías controla el voltaje aplicado a las baterías, la cantidad de

corriente de carga que es entregada a las baterías y según el algoritmo de carga,

el tiempo asociado con el cual se varían los niveles de corriente y voltaje.

El algoritmo de carga es el conjunto de medidas y decisiones de control

(software) aplicados secuencialmente sobre los parámetros eléctricos del sistema

de carga (hardware) a un tiempo determinado, para conseguir la carga de una

batería descargada.

Para satisfacer los requerimientos de las técnicas anteriores y así proveer lamáxima capacidad y vida útil a la batería, el algoritmo de carga a emplearse

divide el ciclo de carga en cinco etapas como se indica en la Figura 1.12

Asumiendo una descarga total de la batería la secuencia de carga, desarrollada

por el algoritmo, a través de las cinco etapas es la siguiente:

1. – Carga mínima:Si el voltaje de la batería es menor a un valor límite mínimo, es un indicativo de

una descarga profunda o la presencia de una o más celdas cortocircuitadas, una

mínima corriente es aplicada para traer a la batería a un voltaje de mayor nivel

correspondiente o cercano a la descarga normal (generalmente 1.7V/celda a

25°C).

La carga mínima a una batería con bajo voltaje, evita que el cargador entregue

deliberadamente elevadas corrientes a una celda en cortocircuito, evitando lasúbita gasificación en la celda dañada.

2. – Carga a corriente constante o carga máxima:

Una vez que la carga mínima supera el límite mínimo requerido de voltaje, el

cargador pasa al estado de carga máxima. Durante esta etapa se entrega la

corriente constante máxima posible a las baterías, las cuales recuperan la

mayoría de su capacidad (80%), a medida que su voltaje se incrementa.

Page 32: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 32/90

3. – Sobrecarga controlada:

Luego de la carga máxima donde se obtiene aproximadamente el 80% de la

carga, la batería es sobrecargada durante un periodo de tiempo donde el

cargador mantiene un voltaje constante en la batería, mientras ésta continúa

absorbiendo energía del cargador. Para baterías ventiladas el tiempo de

sobrecarga es mucho menor, para evitar la deshidratación excesiva.

Inicialmente la corriente de sobrecarga es similar a la de la etapa de carga

máxima, disminuyendo a medida que la batería alcanza su máxima carga (el

restante 20%). La sobrecarga termina luego de un tiempo determinado, o cuando

la corriente disminuye a un valor mínimo, generalmente a un décimo de la

corriente de carga máxima, o un 2% (C/50) o menos de la capacidad de la bateríaPara baterías ventiladas la gasificación se identifica con la visualización y sonido

de burbujeo del electrolito, lo cual sucede al 85% o 90% de la carga completa y es

normal.

En la etapa de sobrecarga la batería consigue aproximadamente el 95% o más de

su carga total.

4. – Ecualización:La etapa de ecualización es opcional, se utiliza para balancear el voltaje y la

densidad del electrolito de cada celda.

La ecualización revierte los efectos de la reacción química como la estratificación

del electrolito, donde la concentración del ácido es mayor en el fondo de la celda

de la batería que en su parte superior, lo que reduce la eficiencia de la batería.

También ayuda a remover los cristales de sulfato (dendritas) que se producen en

la superficie o en los poros de las placas que reducen la capacidad de la batería.La utilización de la ecualización varía de entre una vez al mes y una vez al año

para baterías de descarga profunda móviles y 30 minutos diarios para baterías de

descarga profunda estacionarias o en general cada 10 o 20 ciclos de descarga

profunda.

Para baterías de arranque la ecualización solo se aplica en los siguientes casos:

• Cuando una celda requiere más agua que todas las demás celdas.

• Cuando una celda no utiliza la misma cantidad de agua que todas las

demás celdas.

Page 33: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 33/90

Al iniciar la ecualización la batería tiene un 95% de su carga y se debe verificar la

presencia correcta de electrolito en las celdas.

Para acelerar la entrega del último 5% de carga (ecualización), se recurren a una

de las siguientes dos opciones:

1. El cargador entrega una corriente constante de valor reducido no mayor al

20% de la capacidad de la batería, generalmente entre el 5% y el 10%.

La etapa culmina luego de un tiempo de seguridad o cuando se alcanza un

límite de voltaje máximo.

2. El cargador entrega un voltaje superior en 3 o 4 voltios al voltaje de la

batería totalmente cargada, se verifica una gasificación excesiva que nodebe llevar a la batería a más de 51.5ºC de temperatura. El cargador es

forzado a entregar una máxima corriente a la batería, no mayor al 5% de su

capacidad, esta corriente paulatinamente disminuye hasta cumplirse el

tiempo de la etapa. Esto se puede comparar como una pequeña etapa de

carga máxima y sobrecarga en un corto tiempo con diferentes niveles de

voltaje.

Gracias a la elevada tensión de la ecualización los cristales de sulfato norecombinables se rompen y se precipitan al fondo de la batería, limpiando las

placas y exponiendo plomo nuevo frente al electrolito. También, al ecualizar, la

gasificación (burbujeo) hace que se forme una mezcla pareja de ácido y agua

evitando la estratificación. [18]

5. – Flotación:

Se utiliza para mantener la capacidad de la batería evitando su autodescarga. Laflotación se realiza aplicando un voltaje constante mayor en algunas décimas al

voltaje de la batería totalmente cargada. El cargador entregará cualquier corriente

necesaria para mantener el voltaje constante. Esta corriente es de alrededor del

1% de la capacidad o menos.

Mientras se encuentre conectado a la alimentación principal, el cargador debe

mantener la batería en flotación. El sistema determina un error en el caso de que,

por monitoreo, se detecta una corriente superior a la corriente de flotación, lo que

Page 34: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 34/90

puede estar indicando la presencia de una carga parásita que esta comenzando a

descargar la batería.

Figura 1.12 Algoritmo de carga por etapas.

Page 35: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 35/90

CAPÍTULO 2

DISEÑO Y CONSTRUCCIÓN DE LOS ELEMENTOS DE

FUERZA

El banco de baterías requiere para su carga de voltaje y corriente positivos; es

necesario poder controlar el nivel del voltaje aplicado a las baterías para modificar

la corriente suministrada y cumplir de la mejor manera con las diferentes etapas

de carga del banco de baterías. Un conversor AC/DC controlado o puente

rectificador controlado con diodo de conmutación es la mejor opción, ya que éste

trabaja en el primer cuadrante y al variar el ángulo de disparo de sus tiristores se

controla el nivel de voltaje que se entrega al banco de baterías. Se consiguió

comercialmente un puente rectificador semicontrolado que brinda los mismos

resultados que un puente controlado con diodo de conmutación, a un menor costo

a la vez que simplifica el sistema de control al solamente tener que disparar dos

tiristores.

En la Figura 2.1 se muestra el circuito de fuerza que abastecerá la energía de

carga requerida por el banco de baterías; el circuito queda constituido por los

siguientes elementos de potencia: el transformador de alimentación y aislamiento,

el puente rectificador semicontrolado, y el inductor que permite una conducción

continua a través de la carga.

El circuito, a través del transformador, se alimenta de una toma normal

monofásica de 110Vac a 60Hz.

G2G1

60 Hz

V

+E

nN1 a N2

Df

L

D1

T1 T2

D2

Figura 2.1 Circuito de potencia [7]

Page 36: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 36/90

El voltaje máximo requerido por el banco de baterías esta en función de la etapa

de ecualización del mismo, obteniéndose que para una batería de 12Vcc el voltaje

de ecualización se encuentra en 15Vcc [9]; y debido a que el banco de baterías

consta de 2 grupos de 4 baterías en serie, el voltaje requerido para ecualización

asciende a 60Vcc. Se asume además un voltaje de 4Vcc que involucra caídas de

voltaje en tiristores, diodos, inductor, cables y conectores; lo que da un total de

64Vcc máximos requeridos.

Se selecciona una tasa de carga de la capacidad dividido para cinco punto cinco

(C/5.5), ya que se requiere una carga rápida; que para baterías de 55Ah de

capacidad nos determina una corriente de carga de:

; donde C es la capacidad

Como el banco de baterías esta conformado de dos ramales en paralelo la

corriente total requerida para la etapa de corriente constante o corriente máxima

es de 20A.

2.1 CONVERSOR AC/DC SEMICONTROLADO MONOFÁSICO

Un conversor AC/DC semicontrolado monofásico, esta constituido de dos diodos y

dos tiristores en configuración puente; mediante el disparo de los tiristores a un

tiempo o ángulo determinado se modifica la componente continua del voltaje de

salida, que se convierte en la variable controlada.

2.1.1 ANALISIS DE FUNCIONAMIENTO

En la Figura 2.2 se muestra el voltaje tanto de entrada como de salida al puente

semicontrolado monofásico, a un ángulo α de disparo.

Ah

Ah I

C I

105.5

555.5

==

=

Page 37: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 37/90

Voltaje de salida

( )

( )

( )α π

α

ω ω π

α

ω ω π

α

α

π

α

π

α

cos12

21

1

)(1

+=

=

=

=

==

Vf Vd

t d t Vfsen Vd

t d t Vmsen Vd

dt t vs

T

Vd

Vo Vd Vdc

Figura 2.2 Formas de onda de voltaje de salida (Vo) y

entrada (Vs) al conversor [7]

Se puede determinar que variando el ángulo de disparo α se varía el voltaje de

salida de entre 0 (α = 180°) y 0.90032Vf ( α = 0°) voltios.

De esto se puede determinar el voltaje alterno necesario:

V Vf

Vdc Vf

Vf Vdc

7122

6422

0;22

==

=

==

π

π

α π

Por otro lado, es necesario el cálculo del ángulo mínimo de disparo (αmin) ya que

la carga es una fuente de voltaje que, por debajo de su valor, no permite la

polarización directa de los tiristores para su disparo. Asumiendo un nivel normal

de voltaje del banco de baterías, es decir E = 48V se tiene que:

°=

=

=

=

28712

48

2

2

1min

1min

min

sen

Vf

E sen

E Vfsen

α

α

α

En la Figura 2.3 se muestra la corriente de salida a través del inductor, en el limitede conducción continua para un ángulo de disparo α.

Page 38: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 38/90

Se analiza en el límite de conducción continua y se evalúa en dos intervalos:

Para π ω −≤≤ t 0

( )

( )

( )

( )

( ) ( )

−−+=

−=

−+−=

=

−+=

+=

=−−

−=

=

α π α ω

α π ω

ω α ω α ω

α ω

α ω

α π ω

ω

Vf

E

L

Vf i

tiene se t En

t Vf

E t

L

Vf i

i que sabiendo

Vf

E t sen

L

Vf

dt

di

t Vfsen vs

i dt

d

LE vs

t L

L

t L

L

L

21cos

2

:

2coscos

2

0

;2

2

20

1

1

01

1

1

Para π ω ≤≤− t

( ) ( )

−+=

=

−=

=+

−=−=

t Vf

E

L

Vf i

i i que sabiendo

L

E i

dt

d

i

dt

d LE

L

t Lt L

L

L

ω α ω

α π ω α π ω

21cos

2

;

0

0

10

0

0

Figura 2.3 Formas de onda de corriente

[4]

Total

( ) ( )

−−++=

+= ∫ ∫

α π α α π

πω

ω ω π

α π π

α π

sen L

Vf Id

t d i t d i Id LL

1cos2

2

1

001

Con la deducción de las corrientes se puede realizar el diseño del inductor y

conocer su comportamiento

Page 39: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 39/90

2.1.2 DISEÑO DEL PUENTE RECTIFICADOR SEMICONTROLADO

El puente rectificador, como valores principales máximos, debe ser capaz de

manejar corrientes superiores a 20 amperios, voltaje de alimentación alterno

superior a 712 × voltios y debe ser capaz de entregar un voltaje de salida de al

menos 60 voltios continuos.

Corriente eficaz de un tiristor (IRMS)

Para α = 0°(peor condición) se tiene:

( )2

021

21

1

2

0

2

2

I I I

dt I I

dt I T I

RMS

RMS

RMS

=−=

=

=

π π

π

π

Para I = 20A:

AI RMS 14.14

2

20==

Corriente media de un tiristor (IAV)

Debido a que un tiristor trabaja en un semiciclo, la corriente media que circula por

el mismo es la mitad de la máxima que requiere la carga. De esta manera la

corriente promedio máxima que el tiristor debe soportar es IAV = 10A.

Voltaje pico inverso

Vf V PI 2= ; donde Vf es el voltaje secundario

El voltaje máximo pico inverso se dimensiona al 200%:

V V

Vf V

PI

PI

2017122

22

=××=

×=

Por disponibilidad en el mercado se selecciona el módulo de tiristores de potencia

NTE5700, puente hibrido monofásico de cátodo común y diodo de conmutación, apesar de que el VDRM es aproximadamente seis veces mayor al VPI calculado.

Page 40: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 40/90

Page 41: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 41/90

Corriente secundaria Is

Asumiendo que el inductor mantiene una corriente continua libre de componentes

ondulatorias en la carga y con α = 0°(máximo voltaje) se tiene:

Idc = 20A

; donde Is es IRMS del secundario

Potencia S

Asumiendo una eficiencia η = 95%, se tiene:

( )

( ) KVAS

Is Vf S

495.195.01

2071

1

=×=

×=η

Producto de áreas Ap

Coeficiente de forma de onda (sinusoidal) K = 4.44

Frecuencia f = 60Hz

Densidad de flujo Bm = 1 Tesla

Factor de utilización de la ventana Ku = 0.423

Coeficiente de densidad de corriente Kj = 366

4

16.14

16.14

62.930366423.060144.4

101495

10

cm Ap

Kj Ku f Bm K

S Ap

=

××××

×=

××××

×=

Laminación E I

Se selecciona y utiliza la laminación EI-225s

Superficie de ventana Wa = 28.478 cm2

( )

AIs

Idc Is

t d Idc Is

20180

0120

1

21

22 / 1

2

=−=

−=

= ∫

π

α

ω π

π

α

Page 42: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 42/90

Superficie del núcleo (cuadrado) Ac = 32.661 cm2

412.930661.32478.28 cm Ap

Ac Wa Ap

=×=

×=

Número de vueltas del primario Np

vueltas Np

f Ac Bm

Vin Np

1403.14060661.3214

101104

10

4

4

→=×××

×=

×××

×=

Densidad de corriente J

214.0

14.0

56.14062.930366cm

AJ

Ap Kj J

=×=

×=

Debido a que el transformador no trabajara en régimen permanente a la máxima

corriente, se puede incrementar la densidad de corriente sin mayores efectos;

esto se lo realiza para disminuir costos en el conductor esmaltado.

2250cm

AJ =

Corriente primaria Ip y tamaño de su conductor Awp

AIp

Vp

S Ip

6.131101495

==

=

20544.0250

6.13cm Awp

J

Ip Awp

==

=

Se selecciona el conductor AWG N°10 de 0.0526 cm 2

Número de vueltas del secundario Ns y tamaño del conductor secundario Aws

Page 43: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 43/90

Page 44: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 44/90

Seguidamente se determina el inductor que: a ωt = 88.5°presente un rizado

máximo del 25%, es decir iL1 = 0.25I, para el limite de conducción continua (iL1(ωt=0)

= 0 )

Sin embargo las condiciones de tamaño y peso del proyecto obligan a

incrementar el rizado de corriente a un 40% para que de esta manera se pueda

obtener un inductor de tamaño y peso razonable.

Se conoce que:

ω = 2πf

f = 60Hz, frecuencia de la red

Vf = 71V voltaje del secundario

( )

( )

( )

( ) mH L

t Vs

E t

I f

Vf L

t Vf

E t

Vf i

t Vf

E t

Vf i

L

L

20180

5.88712

48605.88cos60cos

204.0602712

2coscos

4.022

2coscos

fL22

2coscos

L2

1

1

=

°°−°+°−°

××=

−+−=

−+−=

−+−=

π

π

ω α ω α π

ω α ω α π

ω α ω α ω

2.3.1 DISEÑO DEL INDUCTOR [5 ]

Energía Eng

( )Ws Eng

LI Eng

4

2

2002.0

22

2

==

=

Producto de áreas Ap

4

16.14

16.14

1136366423.02.1

1042

102

cm Ap

BmKuKj

Eng Ap

=

××

××=

×=

Page 45: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 45/90

Laminación E I

Se selecciona y utiliza la laminación EI-200s

Superficie de ventana Wa = 19.335 cm2

Superficie del núcleo (cuadrado) Ac = 25.806 cm2

4500806.25335.19 cm Ap

Ac Wa Ap

=×=

×=

Realizando un ajuste del núcleo (este deja de ser cuadrado), se tiene:

( ) 4110016.1108.5335.19 cm Ap

Ac Wa Ap

=××=

×=

No se selecciona una laminación superior por razones de costo y peso.

Densidad de corriente J

214.0

14.0

7.1361136366cm

AJ

Ap Kj J

=×=

×=

Debido a que el inductor no trabajara en régimen permanente a la máxima

corriente, se puede incrementar la densidad de corriente sin mayores efectos;

esto se lo realiza para disminuir costos en el conductor esmaltado.

Tamaño del conductor Awl

208.025020

cm Awl

J

Ip Awl

==

=

Se selecciona el conductor AWG N°8 de 0.0834 cm 2

Número de vueltas Nl

Para un factor del 60% de área efectiva del conductor, se tienen 7 vueltas de

AWG N°8 por cm 2. Y para un área efectiva de ventana del 80 %, se obtiene:

vueltas Nl

Wa Nl

1082.1087335.198.0

7

→=××=

×=

2250cm

AJ =

Page 46: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 46/90

Page 47: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 47/90

Para el máximo voltaje pico de conmutación en α = 90° (peor condición) y

asumiendo dicho voltaje constante durante la conmutación se tiene la corriente

máxima partiendo de:

s

A

s

A

dt

di

L

Vf

dt

di

C

µ 1066.0106591

000471.02712

22

==×

=

=

De este modo, para un tiempo de recuperación de t rr = 10µs la corriente de

recuperación es:

AI

t dt

di I

rr

rr rr

066.1101066.0 =×=

=

Capacitor Cs

nF y entre nF C

Vs

I LC

s

rr C s

20010017.10971066.1

000471.02

2

→=

=

=

Resistencia Rs

Ω→Ω==

=

15010045.122066.1

71

23.1

23.1

y entre R

I

Vs R

s

rr

s

Perdidas Ws

( ) W de menos mW nF W

f Vf C W

s

s s

41

5.606071200 2

2

→==

=

Se verifica el dv/dt al voltaje máximo de conmutación en α = 90°

Page 48: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 48/90

s

V

s

V

dt

dv

L

R Vs

dt

dv

C

µ 1.2626104000

000471.0

45.122712

2

==×

=

×=

2.4.2 FUSIBLES

Los fusibles desconectan los circuitos en caso de sobrecarga mediante su

accionar térmico.

En serie al devanado primario del transformador, donde la corriente puede llegar a

13.6A, se incluye un breaker de 16A.En serie al devanado secundario del transformador, donde la corriente llega a

20A, se incluye un fusible de fusión normal de 25A 110V.

2.4.3 VARISTOR

Como se indica en la Figura 2.6; conectado en paralelo al devanado primario del

transformador, el varistor brida una protección contra transitorios de alto voltajeprovenientes de la red hacia el sistema. El varistor modifica su resistencia interna

en función del voltaje aplicado a sus terminales, sea este positivo o negativo,

razón por la cual es ideal para voltaje alterno. Al aplicarse un voltaje superior al

de operación normal, el varistor disminuye su resistencia, creando un camino de

baja impedancia que eleva la corriente y hace entrar en operación al breaker.

El fabricante del puente semicontrolado de igual manera sugiere la utilización de

un varistor en los terminales de alterna, sin embargo dada la utilización del

transformador, el varistor se lo utiliza en la ubicación antes mencionada.

Se selecciona el varistor NTE1V115 cuyas características son:

VACM = 115 V

VCL = 295 V

WTM = 9 J

PD = 0.25 W

Page 49: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 49/90

Page 50: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 50/90

Se selecciona el disipador ECG441A de RTd = 1°C/W, o uno de similares

dimensiones de disponibilidad en el mercado.

Este disipador es también sugerido por el fabricante del puente semicontrolado.

Figura 2.8 Disipador de calor

2.5 DISPOSITIVO DE PROTECCIÓN Y DESCONEXIÓN

VEHÍCULO-BATERÍAS

El dispositivo de protección y desconexión, que se muestra en la Figura 2.9, se

implemento con el objeto de que; al momento de cargar el banco de baterías el

vehículo esté desconectado del mismo, caso contrarío la red eléctrica, a través

del cargador, alimentaría innecesaria y peligrosamente el sistema que controla al

elemento motriz.

El dispositivo funciona de la siguiente manera: en el momento en que se apaga el

vehículo mediante la llave de interrupción, existe un relé que desconecta el

vehículo del banco de baterías automáticamente.Cuando se vuelve a conectar la llave de interrupción, una vez terminado el

proceso de carga y desconectado el cargador de la red eléctrica, el relé vuelve a

conectar al banco de baterías con el vehículo para su funcionamiento normal.

Page 51: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 51/90

Page 52: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 52/90

Page 53: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 53/90

Page 54: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 54/90

Page 55: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 55/90

Page 56: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 56/90

corriente se mantiene uniforme y la diferencia de potencial en las conexiones de

salida es cero.

Figura 3.2 Principio básico del efecto Hall

Cuando aparece un campo magnético perpendicular a la corriente, como muestra

la Figura 3.3, la fuerza de Lorentz actúa sobre dicha corriente. Esta fuerza

perturba la distribución de la corriente, resultando en una diferencia de potencial

en las conexiones de salida. Este voltaje generado es el voltaje Hall (VH).

El voltaje Hall es proporcional a la fuerza del campo magnético. Este voltaje es

muy pequeño (µV) y requiere un acondicionamiento especial para llevarlo a

niveles útiles. Cuando el elemento Hall se combina con un acondicionador

electrónico se convierte en un sensor de efecto Hall.

Figura 3.3 Campo magnético en el efecto Hall

Sensor de corriente de laso cerrado

Los sensores de laso cerrado amplifican la salida del sensor de efecto Hall

llevando la corriente a través de un conductor devanado alrededor de un núcleo.

El flujo magnético creado por la bobina es exactamente opuesto al campo

magnético en el núcleo creado por el conductor a ser medido (corriente primaria).

El efecto neto es que el flujo magnético total en el núcleo es llevado a cero, así

estos tipos de sensores son llamados sensores de corriente de balance nulo. La

corriente secundaria en la bobina es una imagen exacta de la corriente a ser

Page 57: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 57/90

Page 58: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 58/90

Page 59: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 59/90

Vs = 24Vca

Vs1 = Vs2 = 12Vca

D1 = D2 = 1N4007

C1 = C2 = 470µF

LM7815 Regulador de voltaje de +15Vcc

LM7915 Regulador de voltaje de -15Vcc

Acondicionamiento de señal del sensor de corriente

El acondicionamiento se reduce a una etapa de amplificación a través de

amplificadores operacionales en configuraciones de seguidor y amplificador sininversión. Seguida de esta etapa se incluye un filtro que pretende obtener una

respuesta proporcional en DC a la señal instantánea obtenida de la amplificación

de la respuesta del sensor.

Para diseñar el amplificador no inversor de la Figura 3.7, se tiene los siguientes

datos:

Se asume un pico máximo de corriente de carga del banco de baterías de 24A.

Voltaje de salida del transductor para una IN = 24 A con la especificación de50mV/A es:

V

A

mV I N

2.1050.024

50

×

v o = 5V

v i = 1.2V

Se asume R 1 = 10KΩ de donde; Figura 3.7 Amplificador sin inversión

Ω→Ω=−×

=

−=

+=

K de tro potencióme K R

R v

R v R

v R R

R v

i

o

o i

50667.31100002.1

1000052

11

2

21

1

Debido a que no es suficiente con amplificar la señal que entrega el transductor,

se incluyen dos seguidores de voltaje uno a la entrada del amplificador y otro a su

salida.

Page 60: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 60/90

Page 61: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 61/90

La reactancia capacitiva (XC) cambia con la frecuencia. Para altas frecuencias XC

es baja logrando con esto que las señales de estas frecuencias sean atenuadas.

En cambio a bajas frecuencias (por debajo de la frecuencia de corte) la reactancia

capacitiva es grande, lo que causa que estas frecuencias no se vean afectadas o

son afectadas muy poco por el filtro.

La frecuencia de corte es aquella donde la amplitud de la señal entrante cae hasta

un 70.7% de su valor máximo; y esto ocurre cuando XC = R (reactancia capacitiva

= resistencia)

Si XC = R, la frecuencia de corte será:

C R

F C

××

=

π 2

1

Asumiendo una frecuencia de corte muy baja de alrededor de 1Hz y asumiendo

un valor de C = 47µF, se tiene:

Ω→Ω=××

=

××=

K K R

C F R

C

7.282.2472.12

1

21

µ π

π

Para los amplificadores operacionales se utiliza el circuito integrado LM324,

cuádruple amplificador operacional de baja potencia, operable con una sola fuente

de alimentación.

El circuito completo del sensor de corriente es el que se ilustra en la Figura 3.10.

Vo/I

+

47uF

2.7k

LTA100P/SP1

1 2 3 4 65

50k 66%

10k

+ U1CLM324

+ U1BLM324

+ U1ALM324

60 Hz

-155/155V

IN

COM

OUT

LM7915

IN

COM

OUT

LM7815

+

470uF

+

470uF

1N4007

1N4007

120 a 24

Figura 3.10 Circuito sensor de corriente

Page 62: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 62/90

3.1.2 SENSOR DE TEMPERATURA

Para el diseño del sensor de temperatura se utilizó como elemento principal un

transductor de temperatura LM35, su circuito de polarización y su respectivoacondicionamiento de señal.

El transductor de temperatura de precisión LM35 entrega una salida de voltaje

linealmente proporcional a la temperatura en grados centígrados.

Principales características LM35DT:

Factor de escala 10.0mV/ °C lineales

Precisión ±0.6°C @ +25°CRango 0°C a 100°C

Voltaje de alimentación de 4 a 30Vcc

Corriente de fuga 60µA (0.08°C de calor propio)

Encapsulado TO-220

3.1.2.1 Diseño del sensor de temperatura

En la Figura 3.11 se puede apreciar la distribución de pines del transductor de

temperatura de encapsulado TO-220 y su polarización.

Figura 3.11 Transductor de temperatura LM35DT, distribución de pines y

polarización

Como fuente de alimentación (+Vs), el transductor se conecta directamente a

+12Vcc de la batería que posee la referencia del sistema de control.

*El tab esta conectado al pin GND

Page 63: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 63/90

Page 64: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 64/90

3.1.3 SENSOR DE VOLTAJE

El sensor de voltaje se reduce a un divisor de voltaje mediante un potenciómetro,

como muestra la Figura 3.13.

El sistema de control recibirá la señal análoga del sensor de voltaje únicamente

en la descarga del banco de baterías; es decir el sensor de voltaje se aplica solo

para monitorización del estado de voltaje del banco. Esto se debe a que en el

proceso de carga la visualización del voltaje de carga se obtiene directamente por

software, en base al ángulo de disparo del puente rectificador.

Una vez completado el algoritmo de carga, el banco de baterías debe reflejar un

voltaje máximo de 55V, mismos que deben ser acondicionados a un nivel

aplicable al sistema de control; según esto se tiene:

vi = 55V

vo = 5V

Asumiendo R2 = 10KΩ → potenciómetro de 20KΩ

Ω=−×

=

−=

+=

K R

R v

v R R

v R R

R v

o

i

i o

100100005

55100001

22

1

21

2

Figura 3.13 Circuito sensor de voltaje

Vo/V R2 20k 50%

+ 12V

+ 12V

+ 12V

+ 12V

+ 12V

+ 12V

+ 12V

+ 12V

R1 100K

Page 65: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 65/90

Page 66: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 66/90

Page 67: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 67/90

Los tiempos no superan los dos ciclos (33.33ms) y son suficientemente rápidos

para una buena detección de conexión o desconexión del sistema a la

alimentación alterna.

En la Figura 3.14 se puede apreciar el circuito detector de cruce por cero y el de

detección de alimentación alterna.

Vo/Z

Vo/A

Vcc15V

PC817OPTOISO

+C

47uF

60 Hz

V

-100/100V

Vcc5V

PC817aOPTOISO

DF10

R2

220

R4

220

R3220

R14.7k

B A

C

Figura 3.14 Circuito detector de cruce por cero y de alimentación alterna.

3.2 ELEMENTOS DE CONTROL

El sistema de control que ejecuta el algoritmo de carga es desarrollado mediante

software; para este fin se utiliza un microcontrolador programable; los principales

valores de control, tanto para monitorización y en la etapa de carga, son

visualizados mediante una pantalla de cristal líquido (LCD) y diodos luminosos(LED).

3.2.1 MICROCONTROLADOR PROGRAMABLE

Por disponibilidad en el mercado y dado que cumple con todos los requerimientos

básicos necesarios, se selecciona y utiliza el microcontrolador programable

PIC16F877A (Figura 3.15) cuyas características importantes para la aplicación

son:

Page 68: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 68/90

Page 69: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 69/90

Para implementar el algoritmo de carga en el microcontrolador se toma como

referencia las etapas de carga indicadas en la Figura 3.17

Figura 3.17 Algoritmo de carga

En base al diagrama de bloques y al algoritmo de carga de las Figuras 3.16 y 3.17

respectivamente, se desarrolla el programa de control considerando los siguientes

aspectos:

• Se realiza un retardo general debido a que el proceso y la variación de sus

magnitudes son relativamente lentos comparados con el procesamiento del

microcontrolador. Dicho retardo es de aproximadamente medio segundo.

• El registro de 8 bits PR2 perteneciente el TIMER2, determina el tiempo,

luego del cual, se ejecuta el disparo.

• El TIMER2 cuenta únicamente con un preescalamiento de 16, lo que

determina que cada paso de control del ángulo de disparo es de 16µs,

debido a que cada instrucción toma 1µs.

• El registro de 8 bits PR2 determina 256 pasos, lo que determina un ángulo

máximo de disparo de:

3A

20A

3A 3A

41V

49

5056

55V

ETAPA 2Corriente constante

ETAPA 3Voltaje constante

ETAPA 4Ecualización

ETAPA 5Flotación

ETAPA 1Corriente mínima

Page 70: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 70/90

o °=°

×→=× 13.8833.8180

08.408.425616ms

ms ms s µ

En general el valor del registro PR2 se relaciona con el ángulo de

disparo, expresado en grados, en función de:

s

ms

PR µ

α

1618033.8

2 °×

=

• El tiempo de duración del disparo lo determina el TIMER0.

• Las entradas análogas se consideran de 8 bits, haciendo que los 2 bits

menos significativos sean cero (ADFM = 0)

• La resolución para el conversor análogo de corriente es:

o mA

ARs

I Rs

75.9325624256

max

==

=

• La resolución para el conversor análogo de voltaje y temperatura es:

o

)2148.0(8.21425655256

max

C mV V

Rs

V Rs

°==

=

Page 71: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 71/90

Page 72: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 72/90

Page 73: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 73/90

Seguidamente del circuito de polarización del regulador de voltaje ajustable, y a

través del optoacoplador proveniente del circuito de control, se implementan dos

transistores como controladores directos de las compuertas que brindan un

control individual de corriente, los transistores se encuentran en configuración de

emisor común de corte y saturación. Se utilizan los transistores npn BD137 cuyas

principales características son:

Voltaje colector-emisor VCE = 160V

Corriente de colector IC = 1.5A (máx)

Potencia PD = 1W @ 25°C

Frecuencia f = 140MHz

De las características de disparo, de la hoja de datos del puente rectificador, se

tiene como voltaje máximo de disparo VGT = 2V y como corriente máxima IGM =

2A, valores que pueden ser ajustados por el circuito de disparo implementado.

En la Figura 3.21 se muestra el circuito de disparo implementado.

Circuito de control

G2

G1T1

TRANS

Q2ECG16

Q1ECG16

60 Hz

V1-17/17V

R25k 30%

D3

1N4001

D21N4001

C4100nF

+C3

10uF

+

C21uF

+C1

470uF

D12KBB10

IN

COM

OUT

U1LM317

R9 100

R7100

R810k

R610k

R5330

R4330

R310k

R11k

Figura 3.21 Circuito de disparo

3.2.3 VISUALIZADORES

Como visualizador principal se utiliza un LCD TS1620 de 14 pines, de 2 líneas de

16 caracteres cada una, de caracteres de 5x8 puntos cada uno, y que por

alimentación requiere de 5V ±10%.

Page 74: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 74/90

Page 75: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 75/90

Page 76: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 76/90

visual más general y de más fácil reacción para el conductor, en función del color

de los leds, así por ejemplo el indicador de temperatura indica la temperatura

normal en azul, seguido de amarillo, naranja y finalmente rojo en la condición de

alarma, de igual forma para el de voltaje; en verde para la condición normal y en

rojo la de alarma.

Los visualizadores leds, utilizan un solo puerto del microcontrolador, que gracias a

2 latch 74ls373 facilitan su control.

Para la monitorización y durante el proceso de carga los leds de voltaje difieren

las etapas de la siguiente manera:

Etapa 0: funcionamiento normal (voltímetro digital, monitoreo)

Etapa 1 y Etapa 2: incremente de rojo a verde en función del ángulo de disparo(etapa de seguridad y corriente constante)

Etapa 3: encendido alternado, un led prendido seguido de uno apagado (voltaje

constante).

Etapa 4: encendido solamente de los cuatro leds superiores (ecualización).

Etapa 5: todos los leds prendidos (carga completada, flotación).

Page 77: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 77/90

CAPÍTULO 4

PRUEBAS Y RESULTADOS

4.1 CALIBRACIÓN

Las pruebas y resultados de este proyecto se basan en la carga y descarga del

banco de baterías, esto requiere la calibración y ajuste, a valores reales, de las

magnitudes de temperatura, corriente y voltaje entregadas por los respectivos

sensores. De la misma forma se ajustan en el programa de control los niveles de

voltaje y corriente de las diferentes etapas de carga que permitan cumplir de

mejor manera con el algoritmo de carga.

Se utilizó medidores patrones para la calibración de las diferentes variables, para

la calibración de temperatura se usó una termocupla tipo K, para la calibración de

corriente se usó un amperímetro DC analógico YEW de 30 A, para la calibración

de voltaje se usó un voltímetro FLUKE 87 III.

La calibración se efectúo en las instalaciones del Laboratorio de Control de

Máquinas de la carrera de Ingeniería en Electrónica y Control de la E.P.N.

4.1.1 CALIBRACIÓN DE TEMPERATURA

En la calibración y ajuste de la temperatura del banco de baterías, se considera la

temperatura a la cual se encuentra el electrolito dentro del monobloque o carcaza

de una batería. Con un medidor patrón (Termocupla tipo K), se determinó que el

electrolito está a aproximadamente 2oC por encima de la temperatura de su polomás cercano al cual se encuentra acoplado el transductor de temperatura.

Mediante el potenciómetro de calibración se ajusta el valor visualizado en el LCD

al indicado por el patrón de medida.

Page 78: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 78/90

Magnitud Ideal Real

Temperatura [oC] 55º 55.6

Voltaje [V] 5 4.87

Tabla 4.1 Condiciones de calibración de temperatura

4.1.2 CALIBRACIÓN DE CORRIENTE

En cuanto a la calibración del sensor de corriente, el sistema de control necesita

conocer la corriente solo en la implementación del algoritmo de carga, mas no en

el monitoreo de descarga. Con la especificación del transductor de 50mV/A, la

salida del sensor de efecto Hall es amplificada. Con un medidor patrón

(Amperímetro de DC analógico 30 A) y su potenciómetro de ajuste, se calibró

para que cumpla con dicha especificación y pueda ser visualizada en el LCD

según el patrón de medida.

Magnitud Ideal Real

Voltaje [V] 3.1 2.7Corriente [A] 15 15.4

Tabla 4.2 Condiciones de calibración de corriente

4.1.3 CALIBRACIÓN DE VOLTAJE

El sensor de voltaje formado por un divisor de tensión, mediante unpotenciómetro, permite la calibración y ajuste del voltaje que presenta el banco de

baterías, en base al voltímetro FLUKE utilizado como patrón.

El sistema de control recibe la señal análoga del sensor de voltaje únicamente en

la descarga del banco de baterías; es decir el sensor de voltaje se aplica solo

para monitorización del estado de voltaje del banco de baterías.

Page 79: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 79/90

Magnitud Ideal Real

Voltaje1 [V] 5 4.9

Voltaje2 [V] 55 54.7

Tabla 4.3 Condiciones de calibración de voltaje

4.1.4 ERROR

Sobre la base de los valores medidos y reales, se procede a determinar el error

porcentual para mediciones de temperatura, corriente y voltaje.

Magnitud Medido Real Error %

Temperatura [oC] 56 55.6 0.7

Corriente [A] 15.7 15.4 1.9

Voltaje [V] 55.4 54.7 1.2

Tabla 4.4 Error de temperatura, corriente y voltaje.

4.2 PROCESO DE CARGA Y DESCARGA DEL BANCO DE

BATERÍAS

Para probar la eficacia del proceso de carga y descarga del banco de baterías, se

procedió a tomar las lecturas de tiempo, corriente, voltaje y temperatura.

Conocer el tiempo de descarga es muy importante debido a que de acuerdo al

consumo de corriente en un determinado tiempo se puede estimar la autonomía.

4.2.1 PROCESO DE CARGA

Para el proceso de carga el motor eléctrico debe estar desconectado del banco de

baterías, debido a que el cargador se conecta a la red eléctrica y alimenta el

banco de baterías a través del cargador.

Page 80: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 80/90

En el proceso de carga se puede ver las diferentes etapas, corriente, temperatura

y voltaje.

En la Tabla 4.5 se muestra los valores tomados en la carga del banco de baterías

de 48 V.

Voltaje[V]

Etapa Corriente decarga[A]

Temperatura[ºC]

Tiempo[minutos]

Tiempo[h:m]

40 1 0 23 0 0:0040 1 3 23 1 0:0141 1 3 24 2 0:0246 2 20 33 3 0:0349 2 20 34 4 0:0449 2 20 34 5 0:0550 3 24 35 6 0:06

50 3 23 35 7 0:0750 3 19 33 8 0:0850 3 15 32 9 0:0950 3 11 30 10 0:1050 3 11 30 15 0:1550 3 10 29 20 0:2050 3 9 28 25 0:2550 3 9 28 30 0:3050 3 8 28 35 0:3550 3 8 27 40 0:4050 3 8 27 45 0:45

50 3 7 27 50 0:5050 3 7 26 55 0:5550 3 6 26 60 1:0050 3 6 26 65 1:0550 3 6 25 70 1:1050 3 5 25 75 1:1550 3 5 25 80 1:2050 3 4 25 85 1:2550 3 4 24 90 1:3050 3 4 25 95 1:3550 3 4 24 100 1:40

50 3 4 24 105 1:4550 3 4 24 110 1:5050 3 4 24 115 1:5550 3 4 24 120 2:0050 3 4 24 125 2:0550 3 4 24 130 2:1050 3 3 24 135 2:1550 3 3 24 140 2:2050 3 3 24 145 2:2550 3 3 24 150 2:3050 3 3 23 155 2:35

50 3 3 23 160 2:4050 3 3 23 165 2:45

Page 81: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 81/90

Page 82: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 82/90

Gráfico de carga

02468

1012141618202224262830323436384042444648505254565860

Tiempo [minutos]

V ,

º C ,

A

Corriente Voltaje Temperatura

Figura 4.1 Algoritmo en el proceso de carga

Tiempo por etapas

11 16 636

0 5 10 15 20 25 30 35 40 45 50 55 60

1

E t a p a

s

Tiempo [x5min]

ETAPA1

ETAPA2

ETAPA3

ETAPA4

ETAPA5

Figura 4.2 Tiempo requerido por etapas

El banco de baterías se encuentra descargado a 40 V (mínimo permitido), punto

donde se inicia el proceso de carga del banco de baterías de 48 V.

En la etapa 1 (corriente mínima) que se aprecia en la Figura 4.1, inicia el

algoritmo de carga entregando 33V y una corriente de seguridad de 2A a 3A

hasta alcanzar un voltaje de 41V, máximo de la etapa, en un tiempo corto de 3

minutos aproximadamente, tiempo después del cual se pasa a la siguiente etapa.

Page 83: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 83/90

En la etapa 2 (corriente constante) de la Figura 4.1, se muestra que la corriente

alcanza el valor de 20A para el voltaje máximo de la etapa de 49 V.

La duración de esta etapa fue de aproximadamente 3 minutos.

En la etapa 3 (voltaje constante) que se observa en la Figura 4.1, la corriente

máxima requerida por el banco llega a alcanzar los 24A debido al sobrevoltaje de

50V constantes. Dicha corriente empieza a disminuir por debajo de los 3A,

condición para continuar a la siguiente etapa. El tiempo de esta etapa fue de 3

horas aproximadamente.

En la etapa 4 (ecualización) que se observa en la Figura 4.1 se aplica el voltaje

constante de ecualización de 56V, apreciándose un incremento de corriente de

hasta 16A, el tiempo de esta etapa alcanzó una hora con 20 minutos luego de lascuales el banco de baterías entra en flotación y se puede dar por concluido el

proceso de carga.

En la etapa 5 (flotación) como se explica en el capítulo 3 y se muestra en la

Figura 4.1, sirve para mantener en el nivel deseado de carga completa del banco

de baterías, para que en cualquier momento puedan ser usadas. Esto se

consigue abasteciendo una mínima corriente a un voltaje de flotación de 55V.

En el proceso de carga, el banco de baterías estuvo descargado a menos de 40V,

se puede apreciar de acuerdo a la tabla y a la gráfica que se va cumpliendo

satisfactoriamente todas las etapas, cabe destacar que de acuerdo a que tan

descargado estén el banco de baterías se entregará más o menos corriente de

carga.

En cuanto a la temperatura, se puede apreciar en la Figura 4.1 que se mantieneen valores bajos, es decir no superiores a la mitad de la máxima permitida. Se

aprecia que se relaciona directamente con la cantidad de corriente en circulación.

El tiempo total de carga fue de aproximadamente 5 horas, incluyendo 30 minutos

de flotación, tiempo que para un prototipo de estas característica supera las

expectativas. En general, el cargador cumple con el algoritmo de carga propuesto

para un banco de baterías de 48 voltios.

Page 84: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 84/90

4.2.2 PROCESO DE DESCARGA

Para el proceso de descarga, el banco de baterías estuvo cargado a 53V, se

realizaron las pruebas para una corriente de descarga de 17A.

Con estas pruebas se puede determinar el tiempo máximo de descarga del banco

de baterías cargado hasta alcanzar el tiempo mínimo permitido de 38V.

Voltaje[V] Corriente dedescarga[A]

Temperatura[oC]

Tiempo[min]

Tiempo[h:min]

53 17,5 18 0 0:0

47 17,5 18 10 0:10

46 17,5 18 20 0:20

45,6 17,3 19 30 0:30

45,2 17 19 40 0:40

43,2 17 19 50 0:50

42,1 17 19 60 1:00

41,5 17 19 70 1:10

40,3 17 20 80 1:20

39,5 17 20 90 1:30

37,8 17 20 100 1:40

Tabla 4.6 Valores tomados en el proceso de descarga

Como se muestra en la Figura 4.3 la descarga del banco de baterías no es

uniforme ni lineal debido a los siguientes factores: las baterías que se encuentran

en los extremos se descargan más rápido que las del centro como se explico en

el capítulo 1 y las baterías del proyecto no son nuevas ni de las mismas

características.

Gráfico de descarga

0

5

10

15

20

25

30

35

40

4550

55

0 10 20 30 40 50 60 70 80 90 100

Tiempo [minutos]

[ V ,

A ,

º C ]

Voltaje

Corriente

Temperatura

Figura 4.3 Proceso de descarga

Page 85: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 85/90

El tiempo de descarga del banco de baterías es de aproximadamente cien

minutos (1h40min), con una corriente de descarga constante de 17 (A) hasta el

final del proceso.

También se realizó pruebas con una corriente de descarga constante de 5,6 (A) y

el resultado de la descarga hasta llegar a los 40(V) fue en un tiempo de 360

minutos (6 horas), comparando con la prueba actual que fue de 17(A) se puede

apreciar que el tiempo de descarga del banco de baterías es mucho mayor.

La temperatura es normal, sufre un incremento que se relaciona con el tiempo

que dura la descarga.

Page 86: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 86/90

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

Este proyecto ha cumplido con su objetivo general, es decir, se ha diseñado y

construido un cargador de baterías de plomo ácido de 48 V.

El cargador implementado funciona de acuerdo a los requerimientos generales

planteados en la sección 1.7 (Algoritmo de carga). Es decir que, el cargador

conectado a un sistema monofásico de 120 V, 60 Hz permite la carga del banco

de baterías que puede ser monitoreada y visualizada.

El cargador es alimentado por la energía de la red. Cuando se ha terminado la

carga total del banco de baterías, entra en un período de flotación hasta ser

desconectado de la red.

En el momento en que el cargador es desconectado de la red eléctrica, el LCD

permite visualizar automáticamente el nivel de voltaje en las baterías y la

temperatura, debido a que el control está alimentado por una batería del banco.

Durante la descarga, cuando se presenta un exceso de temperatura o un nivel de

voltaje del banco de baterías por debajo del permitido existe una alarma sonora

indicando el problema; de igual manera se visualiza en los indicadores LED la

condición del problema; ya sea exceso de temperatura o bajo nivel de voltaje.

Durante la carga cuando existe sobretemperatura o sobrecorriente, para las

diferentes etapas de carga, el microcontrolador reconoce un error y dispara los

tiristores al máximo ángulo posible, entregando el mínimo voltaje de 33 voltios al

banco de baterías; evitando el daño del cargador o del banco de baterías.

En el proceso de descarga mientras la corriente de descarga sea menor el tiempo

aumenta sustancialmente, por ejemplo como se muestra en el capítulo anterior la

primera corriente de descarga fue de 5,6(A) y en la segunda fue de 17 (A) eltiempo de descarga de esta última fue mucho menor que el de la primera.

Page 87: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 87/90

En el proceso de carga y descarga se puede apreciar que no es lineal, estas

dependen del estado que se encuentren las baterías y en el caso de la descarga

de cuanta carga se van a conectar a los bancos de baterías.

Sabiendo que se obtuvo un tiempo de descarga de 1.667 horas, se puede estimar

aproximadamente una autonomía (a) del vehiculo, para una velocidad máxima

permitida en el sector urbano de 50 Km/h, de:

Km h h

Km a

t v a

33.83667.150 =×=

×=

Cabe especificar que en esta autonomía se considera al consumo de 17amperios, sin considerar incrementos momentáneos de corriente de descarga

propios del arranque de un motor eléctrico.

5.2 RECOMENDACIONES

En el programa del microcontrolador se podrían incluir rutinas para que la carga

sea más lenta, esto con el fin de aumentar la vida útil del banco de baterías. En

este proyecto el banco de baterías se carga en un promedio de cinco horas, perosi el usuario del auto dispone de más tiempo de carga de las baterías se lo podría

realizar, modificando los niveles de corriente en el programa de control.

Como una mejora al sistema implementado, se podría considerar la utilización de

un selector para diferentes rangos de voltaje de carga, pero en este caso se debe

rediseñar el transformador, sobre todo para voltajes superiores, a la ves que se

deben realizar cambios en los niveles referenciales de voltaje y corriente en el

programa de control.

Es recomendable no descargar al banco de baterías a un valor menor a 38 V,

debido a que las baterías de plomo – ácido se consideran descargadas cuando

cada batería se encuentra a 10,2 V (1.7V por celda) y se está considerando un

promedio menor a 10 V por cada batería; de darse esto se ocasionaría la

disminución de su vida útil.

Page 88: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 88/90

Para este proyecto se usó baterías de plomo-ácido normales de arranque para

motores de combustión interna, puesto que lo ideal para este proyecto es usar

baterías de descarga profunda con este tipo de baterías se consigue aprovechar

hasta un 80% de descarga lo cuál implica mayor recorrido. Debido al costo de las

mismas se está usando las baterías normales de plomo – ácido.

Page 89: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 89/90

BIBLIOGRAFÍA

LIBROS y MANUALES

[1] COUGHLIN , Roberth, Amplificadores operacionales y circuitos integrados lineales.

Quinta edición.

[2] ECG SEMICONDUCTORS , Linear Modules and Integrated Circuits Volume3. Primera

edición. Philips ECG. 1985.

[3] FARNELL , The Electronic components catalog, Cuarta edición. 1998

[4] GOTTFRIED, Moltgen, Line Commuteted Thyristor Converters. Pitman Publishing.

Munich. 1973

[5] McLYMAN , William, Transformer and Inductor Design Handbook. Marcel Dekker, Inc.

E.E.U.U. 1978

[6] MOHAN , Ned; UNDELAND , Tore; ROBBINS , Willi, Power Electronics: Converters,

Applications, and Design. John Wiley & Sons, Inc. Canada. 1989

[7] RASHID , Muhammad, Electrónica de potencia, circuitos, dispositivos y aplicaciones.

Segunda edición. Hall Hispanoamericana, S.A. Mexico. 1995

[8] COUGHLIN, Robert, Amplificadores operacionales y circuitos integrados lineales.Quinta edición.

[9] BATTERYFAQ, Car And Deep Cycle Battery Frequently Asked Questions.

http://www.batteryfaq.org/

[10]DELTRAN , Corporation Battery Tender 2008. http://www.batterytender.com/

[11] ENERVOLT , Carga de Baterías: La Teoría. http://www.enervolt.net/

[12]LAMINATION SPECIALTIES , EI Laminations. http://www.laminationspecialties.com/

[13] MAXIM, How to Design Battery Charger Applications that Require External

Microcontrollers and Related System-Level Issues. http://www.maxim-ic.com

Page 90: Cargador de Baterias Plomo Acido 48 Vcc

7/23/2019 Cargador de Baterias Plomo Acido 48 Vcc

http://slidepdf.com/reader/full/cargador-de-baterias-plomo-acido-48-vcc 90/90

[14] MICROCHIP , PIC16F87XA Data Sheet. http://www.microchip.com/

[15] NORTHERN ARIZONA WIND & SUN , The Ultimate Deep Cycle Battery FAQhttp://www.solar-electric.com/

[16] O’CONNOR , John, Simple Switchmode Lead-Acid Battery Charger.

http://www.ti.com/

[17] OPTIMA BATERIES , Frequently Asked Questions.

http://europe.optimabatteries.com

[18] PANASONIC , Charging Methods. http://www.panasonic.com

[19] QMAX, Ecualización de Baterías. http://www.qmax.com.ar/

[20] SMART GAUGE, Technical http://www.smartgauge.co.uk

[21] UNITRODE, Improved Charging Methods For Lead-Acid Batteries Using the Uc3906.

http://www.ti.com/

[22] U.S. DEPARTMENT OF ENERGY, Primer On Lead-Acid Storage Batteries.

http://www.energy.gov/

[23] VERGELS, Federic, Sustainable Batteries. http://www.battery-electric.com/

[24] HONEYWELL, Hall Effect Sensing And Application

http://www.honeywell.com/sensing