95
CARDIOVASCULAR CARDIOVASCULAR PHYSIOLOGY PHYSIOLOGY STUDENT MANUAL Dr. Guido E. Santacana

CARDIOVASCULAR PHYSIOLOGY

  • Upload
    liluye

  • View
    99

  • Download
    0

Embed Size (px)

DESCRIPTION

CARDIOVASCULAR PHYSIOLOGY. STUDENT MANUAL Dr. Guido E. Santacana. CARDIOVASCULAR PHYSIOLOGY LECTURES. STUDENT LECTURE NOTEBOOK Guido E. Santacana Ph.D. DEPT. of PHYSIOLOGY. INTRODUCTION TO CARDIOVASCULAR PHYSIOLOGY. GENERAL ASPECTS OF THE CARDIOVASCULAR SYSTEM. - PowerPoint PPT Presentation

Citation preview

Page 1: CARDIOVASCULAR PHYSIOLOGY

CARDIOVASCULAR CARDIOVASCULAR PHYSIOLOGYPHYSIOLOGY

STUDENT MANUAL Dr. Guido E. Santacana

Page 2: CARDIOVASCULAR PHYSIOLOGY

CARDIOVASCULAR CARDIOVASCULAR PHYSIOLOGYPHYSIOLOGY

LECTURESLECTURES

STUDENT LECTURE NOTEBOOKSTUDENT LECTURE NOTEBOOK

Guido E. Santacana Ph.D.Guido E. Santacana Ph.D.

DEPT. of PHYSIOLOGYDEPT. of PHYSIOLOGY

Page 3: CARDIOVASCULAR PHYSIOLOGY

INTRODUCTION TO INTRODUCTION TO CARDIOVASCULAR CARDIOVASCULAR

PHYSIOLOGYPHYSIOLOGY

GENERAL ASPECTS OF THE GENERAL ASPECTS OF THE CARDIOVASCULAR SYSTEMCARDIOVASCULAR SYSTEM

Page 4: CARDIOVASCULAR PHYSIOLOGY

MAIN FUNCTIONS OF THE MAIN FUNCTIONS OF THE CIRCULATORY SYSTEMCIRCULATORY SYSTEM

Transport and distribute essential Transport and distribute essential substances to the tissues.substances to the tissues.

Remove metabolic byproducts.Remove metabolic byproducts. Adjustment of oxygen and nutrient Adjustment of oxygen and nutrient

supply in different physiologic states.supply in different physiologic states. Regulation of body temperature.Regulation of body temperature. Humoral communication.Humoral communication.

Page 5: CARDIOVASCULAR PHYSIOLOGY

PUMP

DISTRIBUTINGTUBULES

THINVESSELS

COLLECTINGTUBULES

THE MAIN CIRCUIT

Page 6: CARDIOVASCULAR PHYSIOLOGY

Pressure Profile of the Circulatory Pressure Profile of the Circulatory SystemSystem

ELASTIC TISSUE

MUSCLE

Page 7: CARDIOVASCULAR PHYSIOLOGY

Distribution of Blood in the Distribution of Blood in the Circulatory SystemCirculatory System

Page 8: CARDIOVASCULAR PHYSIOLOGY

Organization in the Organization in the Circulatory SystemCirculatory System

SERIES AND

PARALLEL CIRCUITS

Page 9: CARDIOVASCULAR PHYSIOLOGY

CARDIAC CARDIAC ELECTROPHYSIOLOGYELECTROPHYSIOLOGY

LECTURE NOTEBOOKLECTURE NOTEBOOK

Guido E. Santacana Ph.D.Guido E. Santacana Ph.D.

Page 10: CARDIOVASCULAR PHYSIOLOGY

GENESIS OF THE MEMBRANE GENESIS OF THE MEMBRANE POTENTIAL AND EQUATIONS TOPOTENTIAL AND EQUATIONS TO

REMEMBER!!REMEMBER!!

EK = -60 LOG ([Ki]/[Ko]) = -94mv

ENa = -60 LOG ([Nai]/[Nao]) = +70mv

Em = RT/F ln

PK (K+)o + PNa(Na+)o + PCl(Cl-)i

PK (K+)I + PNa(Na+)i + PCl(Cl-)o

Page 11: CARDIOVASCULAR PHYSIOLOGY

THE RESTING MEMBRANE POTENTIAL THE RESTING MEMBRANE POTENTIAL OF THE CARDIAC CELLOF THE CARDIAC CELL

If membrane permeableonly to K+

If membrane permeableTo both Na+ and K+

If membrane permeableTo Na+, K+ plus withA Na+/K+ Pump

Page 12: CARDIOVASCULAR PHYSIOLOGY

WHY NOT Na+ 0R Ca++ FOR THE CARDIAC CELLMEMBRANE POTENTIAL ?

Na+

EXTRACELL.

INTRA-CELL. Em

145Mm 15Mm 70mv

Ca++ 3Mm 10-7 M 132mv

K+ 5Mm 145Mm -100mv

Page 13: CARDIOVASCULAR PHYSIOLOGY

ACTION POTENTIALS FROM DIFFERENT ACTION POTENTIALS FROM DIFFERENT AREAS OF THE HEARTAREAS OF THE HEART

mv

0

-80mv

mv

0

-80mv

mv

0

-80mv

ATRIUM VENTRICLE

SA NODE

time

Page 14: CARDIOVASCULAR PHYSIOLOGY

ELECTROPHYSIOLOGY OF THE FAST ELECTROPHYSIOLOGY OF THE FAST RESPONSE FIBERRESPONSE FIBER

Page 15: CARDIOVASCULAR PHYSIOLOGY

PHASE 0 OF THE FAST FIBER ACTION PHASE 0 OF THE FAST FIBER ACTION POTENTIALPOTENTIAL

hm

Na+

-90mv

A

Na+

mmh-65mv

B

mh

Na+

0mvC m

h

Na+

D+20mv

Na+

mh+30mv

E

ChemicalGradient

ElectricalGradient

Page 16: CARDIOVASCULAR PHYSIOLOGY

KK++ CURRENTS AND REPOLARIZATION CURRENTS AND REPOLARIZATION

PHASE 1-TRANSIENT OUTWARD PHASE 1-TRANSIENT OUTWARD CURRENT (TOC) ICURRENT (TOC) Itoto

PHASE 1-3-DELAYED RECTIFIER PHASE 1-3-DELAYED RECTIFIER CURRENT ICURRENT IKK

PHASE 1-4-INWARDLY RECTIFIED PHASE 1-4-INWARDLY RECTIFIED CURRENT ICURRENT IKlKl

Page 17: CARDIOVASCULAR PHYSIOLOGY

THE PLATEAU PHASE AND THE PLATEAU PHASE AND CALCIUM IONSCALCIUM IONS

L Ca++ CHANNELS

L Ca++ CHANNELS

T Ca++ CHANNELS

T Ca++ CHANNELS

OPEN

+10MV

-20MV

CLINICAL VALUE

Ca++ BLOCKERS

NO (physiological)

Page 18: CARDIOVASCULAR PHYSIOLOGY

EFFECTS OF Ca++ CHANNEL BLOCKERS EFFECTS OF Ca++ CHANNEL BLOCKERS AND THE CARDIAC CELL ACTION AND THE CARDIAC CELL ACTION

POTENTIALPOTENTIAL

DILTIAZEM

10 uMol/L30 uMol/L10

30

10

FO

RC

EA

CT

ION

PO

TE

NT

IAL

TIME

CONTROL

CONTROL

30

Page 19: CARDIOVASCULAR PHYSIOLOGY

Clinical CorrelationClinical CorrelationEarly After-DepolarizationsEarly After-Depolarizations

Early After-Depolarization

0mV

-60mV

-90mV

Torsades de Pointes

Page 20: CARDIOVASCULAR PHYSIOLOGY

OVERVIEW OF SPECIFIC EVENTS IN OVERVIEW OF SPECIFIC EVENTS IN THE VENTRICULAR CELL ACTION THE VENTRICULAR CELL ACTION

POTENTIALPOTENTIAL

Page 21: CARDIOVASCULAR PHYSIOLOGY

Overview of Important Channels in Cardiac Overview of Important Channels in Cardiac ElectrophysiologyElectrophysiology

Sodium Channels

 

     Fast Na+ Phase 0 depolarization of non-pacemaker cardiac action potentials

     Slow Na+ "Funny" pacemaker current (If) in cardiac nodal tissue

Potassium Channels

 

     Inward rectifier (Iir

or IK1)Maintains phase 4 negative potential in cardiac cells

     Transient outward (Ito)

Contributes to phase 1 of non-pacemaker cardiac action potentials

     Delayed rectifier (IKr)

Phase 3 repolarization of cardiac action potentials

Page 22: CARDIOVASCULAR PHYSIOLOGY

More Channels!More Channels!

Calcium Channels

 

     L-type (ICa-L)Slow inward, long-lasting current; phase 2 non-pacemaker cardiac action

potentials and phases 4 and 0 of SA and AV nodal cells; important in vascular smooth muscle contraction

     T-type (ICa-T) Transient current that contributes to phase 4 pacemaker currents in SA and AV nodal cells

Page 23: CARDIOVASCULAR PHYSIOLOGY

ELECTROPHYSIOLOGY OF THE ELECTROPHYSIOLOGY OF THE SLOW RESPONSE FIBERSLOW RESPONSE FIBER

RECALL: INWARD Ca++ CURRENT CAUSES DEPOLARIZATION

0

-80

-400

2

34

ERP RRP

time (msec)

mvs

Page 24: CARDIOVASCULAR PHYSIOLOGY

CONDUCTION OF THE ACTION CONDUCTION OF THE ACTION POTENTIAL IN CARDIAC FIBERSPOTENTIAL IN CARDIAC FIBERS

---

----- - ----- --+ +

+ + + + + + ++ + + ++ +

FIBER A FIBER B

DEPOLARIZEDZONE

POLARIZED ZONE

LOCAL CURRENTS

Page 25: CARDIOVASCULAR PHYSIOLOGY

CONDUCTION OF THE ACTION CONDUCTION OF THE ACTION POTENTIALPOTENTIAL

FAST RESPONSE: Depends on FAST RESPONSE: Depends on Amplitude,Rate of Change,level of Amplitude,Rate of Change,level of Em.Em.

SLOW RESPONSE: Slower SLOW RESPONSE: Slower conduction.More apt to conduction conduction.More apt to conduction blocks.blocks.

WHAT ABOUT MYOCARDIAL WHAT ABOUT MYOCARDIAL INFARCTS AND CONDUCTION?INFARCTS AND CONDUCTION?

Page 26: CARDIOVASCULAR PHYSIOLOGY

EFFECTS OF HIGH K+ ON CONDUCTION EFFECTS OF HIGH K+ ON CONDUCTION AND AP OF FAST FIBERSAND AP OF FAST FIBERS

WHAT HAS VARIED? LOOK AT: Em,AP SLOPE-AMPLITUDE

0MV

0MV

K+=3mM K+=7mM K+=14mM

K+=16mM

K+=3mM

Em

AP

-AM

P

Page 27: CARDIOVASCULAR PHYSIOLOGY

HIGH K+ AND m/h Na+ GATESHIGH K+ AND m/h Na+ GATES

HIGH K+LOWEREm

CLOSED h GATES(SOME)

LOWER Na+ ENTRYLOWER APAMPLITUDE

Page 28: CARDIOVASCULAR PHYSIOLOGY

EXCITABILITY OF FAST AND SLOW EXCITABILITY OF FAST AND SLOW FIBERSFIBERS

FAST m/h GATES COMPLETE RESET AFTERPHASE 3CONSTANT AND COMPLETE RESPONSE IN PHASE 4

SLOW LONG RELATIVE REFRACTORYPERIOD.POST-REPOLARIZATION REFRACTORINESS

Page 29: CARDIOVASCULAR PHYSIOLOGY

AFTER THE EFFECTIVE OR AFTER THE EFFECTIVE OR ABSOLUTE REFRACTORY ABSOLUTE REFRACTORY

PERIOD (FAST FIBER)PERIOD (FAST FIBER)

TIME

MV

-80

0

RRP

ARP

Page 30: CARDIOVASCULAR PHYSIOLOGY

POST-REPOLARIZATION POST-REPOLARIZATION REFRACTORINESS (SLOW FIBER)REFRACTORINESS (SLOW FIBER)

A

B

C

MV

TIME

-60

0

200 MSEC

POSTREPO

Page 31: CARDIOVASCULAR PHYSIOLOGY

AUTOMATICITY RHYTMICITY

SA NODE

AV NODE

IDIOVENTRICULAR-PACEMAKERS

ectopicfoci

Page 32: CARDIOVASCULAR PHYSIOLOGY

THE SA NODE PACEMAKER POTENTIALTHE SA NODE PACEMAKER POTENTIAL

Page 33: CARDIOVASCULAR PHYSIOLOGY

CHARACTERISTICS OF THE CHARACTERISTICS OF THE PACEMAKER POTENTIALPACEMAKER POTENTIAL

RECALL: PHASE 4-PACEMAKER POTENTIAL(PP) OBSERVED HERE. FREQUENCY DEPENDS ON: THRESHOLD,RESTING POTENTIALS AND SLOPE OF THE PP

Page 34: CARDIOVASCULAR PHYSIOLOGY

CAUSES OF THE PACEMAKER CAUSES OF THE PACEMAKER POTENTIALPOTENTIAL

OUT

IN

Na+

if

Ca++

iCaK+

iK

Page 35: CARDIOVASCULAR PHYSIOLOGY

THE PACEMAKER POTENTIAL THE PACEMAKER POTENTIAL CURRENTS AFTER CURRENTS AFTER DEPOLARIZATIONDEPOLARIZATION

if iCa

iKWHICH CURRENT WILL BE MORE AFFECTED BYADRENERGIC STIMULATION? WHICH BY CHOLINERGICSTIMULATION?

Page 36: CARDIOVASCULAR PHYSIOLOGY

LOOKING AT THE PACEMAKER LOOKING AT THE PACEMAKER CURRENTSCURRENTS

voltage

ionic currentsiCa

iK

if

Page 37: CARDIOVASCULAR PHYSIOLOGY

EFFECTS OF Ca++ CHANNEL EFFECTS OF Ca++ CHANNEL BLOCKERS ON THE PACEMAKER BLOCKERS ON THE PACEMAKER

POTENTIALPOTENTIAL

CONTROL NIFEDIPINE

(5.6 X 10-7 M)0

-60

MV

TIME

Page 38: CARDIOVASCULAR PHYSIOLOGY

OVERDRIVE SUPRESSION AND OVERDRIVE SUPRESSION AND AUTOMATICITY OF PACEMAKER CELLSAUTOMATICITY OF PACEMAKER CELLS

Na+/K+ ATPase ENHANCEMENT Na+/K+ ATPase ENHANCEMENT BY HIGH FREQUENCY.BY HIGH FREQUENCY.

CONSEQUENT CONSEQUENT HYPERPOLARIZATION.HYPERPOLARIZATION.

SUPRESSION OF AUTOMATICITY.SUPRESSION OF AUTOMATICITY. RECOVERY TIME REQUIRED.RECOVERY TIME REQUIRED. ECTOPIC FOCI/SICK SINUS ECTOPIC FOCI/SICK SINUS

SYNDROME.SYNDROME.

Page 39: CARDIOVASCULAR PHYSIOLOGY

THE CONDUCTION SYSTEM OF THE THE CONDUCTION SYSTEM OF THE HEARTHEART

Page 40: CARDIOVASCULAR PHYSIOLOGY

ATRIAL AND ATRIOVENTRICULAR ATRIAL AND ATRIOVENTRICULAR CONDUCTIONCONDUCTION

RA LA

RVLV

SANBACHMANS PATH

INTERNODAL PATHS AN REGION

N REGION

NH REGION

BH

LEFT BUNDLEBRANCH

RIGHT BUNDLE BRANCH

AV NODE

Page 41: CARDIOVASCULAR PHYSIOLOGY

NODAL DELAYNODAL DELAY

REGION OFDELAY

AV NODE

NA REGIONFAST CONDUCTION

N REGION SLOW CONDUCTION

NH REGIONFAST CONDUCTION

LONGER PATH

SHORTER PATH

REFLECTED IN THE P-QRS INTERVALOF THE ECG

Page 42: CARDIOVASCULAR PHYSIOLOGY

UNI AND BIDIRECTIONAL BLOCKUNI AND BIDIRECTIONAL BLOCKCLINICAL IMPLICATIONSCLINICAL IMPLICATIONS

NORMALANTEGRADEBLOCK

BI

REENTRYUNIDIRECTIONALBLOCK

A B

C D

Page 43: CARDIOVASCULAR PHYSIOLOGY

Clinical CorrelationClinical CorrelationRe-entry TachycardiasRe-entry Tachycardias

Paroxysmal Supraventricular TachycardiaParoxysmal Supraventricular Tachycardia

Normal Conduction

Slow Pathway

Fast Pathway

Ischemic Tissue

Fast Pathway

Slow Pathway

Re-Entry Circuit

Page 44: CARDIOVASCULAR PHYSIOLOGY

AV NODE AND AV BLOCKSAV NODE AND AV BLOCKS

FOCUS ON N REGION

NORMAL

ECG

1ST DEGREE

PROLONGUED AVCONDUCTION TIME

2ND DEGREE

1/2 ATRIAL IMPULSES CONDUCTED TO VENTRICLES

3RD DEGREE

VAGAL MEDIATIONIN N REGION/COMPLETEBLOCK

Page 45: CARDIOVASCULAR PHYSIOLOGY

CONDUCTION IN THE VENTRICLESCONDUCTION IN THE VENTRICLES

PURKINJE FIBERS WITH LONG PURKINJE FIBERS WITH LONG REFRACTORY PERIODS.REFRACTORY PERIODS.

PROTECTION AGAINST PREMATURE PROTECTION AGAINST PREMATURE ATRIAL DEPOLARIZATIONS AT SLOW ATRIAL DEPOLARIZATIONS AT SLOW HEART RATES.HEART RATES.

AV NODE PROTECS AT HIGH HEART AV NODE PROTECS AT HIGH HEART RATES.RATES.

Page 46: CARDIOVASCULAR PHYSIOLOGY

QUICK QUIZQUICK QUIZWhich of the following is not true about the effect ofacetylcholine (Ach) in the electrophysiology of the cardiac pacemaker cell:A. Ach lowers the magnitude of the minimum repolarization potential.B. Ach lowers the slope of the pacemaker potential.C. Ach decreases the SA node frequency.D.Ach increases the ik current of the pacemaker cell.E. Ach decreases the iCa++ current of the pacemaker cell.

The main reason why the AV node filters out high stimulation frequencies from the SA node is:A. The long pathway that the stimulus must traverse in the AV node.B. Post Repolarization Refractoriness of AV nodal cells.C. The AV nodal cell is always hyperpolarizedD. Ca++ is the main ion in Phase 0 of the AV nodal cell.E. I need to review this section very fast.

Page 47: CARDIOVASCULAR PHYSIOLOGY

CARDIAC CARDIAC MECHANICSMECHANICS

MAIN THEMESMAIN THEMES

THE HEART AS A PUMPTHE HEART AS A PUMP

THE CARDIAC CYCLETHE CARDIAC CYCLE

CARDIAC OUTPUTCARDIAC OUTPUTCHAPTER 3 B&L

Page 48: CARDIOVASCULAR PHYSIOLOGY

LENGHT/ TENSION AND THE FRANK-LENGHT/ TENSION AND THE FRANK-STARLING RELATIONSTARLING RELATION

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

INITIAL MYOCARDIAL FIBER LENGHTLEFT VENTRICULAR END-DIASTOLIC VOLUME

Page 49: CARDIOVASCULAR PHYSIOLOGY

PRELOAD AND AFTERLOAD IN THE PRELOAD AND AFTERLOAD IN THE HEARTHEART

INCREASE IN FILLING INCREASE IN FILLING PRESSURE=INCREASED PRELOADPRESSURE=INCREASED PRELOAD

PRELOAD REFERS TO END PRELOAD REFERS TO END DIASTOLIC VOLUME.DIASTOLIC VOLUME.

AFTERLOAD IS THE AORTIC AFTERLOAD IS THE AORTIC PRESSURE DURING THE EJECTION PRESSURE DURING THE EJECTION PERIOD/AORTIC VALVE OPENINGPERIOD/AORTIC VALVE OPENING..

LAPLACES’S LAW & WALL STRESS, LAPLACES’S LAW & WALL STRESS, WS = P X R / 2(wall thickness)WS = P X R / 2(wall thickness)

Page 50: CARDIOVASCULAR PHYSIOLOGY

LEFT VENTRICULAR PRESSURE AND LEFT VENTRICULAR PRESSURE AND AFTERLOAD AT CONSTANT PRELOADSAFTERLOAD AT CONSTANT PRELOADS

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

AFTERLOAD (aortic pressure)

NOTE: WHAT HAPPENS IN THE NORMAL HEART VS ONE IN THE LAST PHASES OF CARDIAC FAILURE?

PEAKISOMETRICFORCE

EFFECT OF INCREASEDPRELOAD

Page 51: CARDIOVASCULAR PHYSIOLOGY

CONTRACTILITY:THE VENTRICULAR CONTRACTILITY:THE VENTRICULAR FUNCTION CURVEFUNCTION CURVE

CHANGES INCONTRACTILITY

EFFECT?

Page 52: CARDIOVASCULAR PHYSIOLOGY

dP/dt AS A VALUABLE INDEX OF dP/dt AS A VALUABLE INDEX OF CONTRACTILITYCONTRACTILITY

LE

FT

VE

NT

RIC

UL

AR

P

RE

SS

UR

E (

mm

Hg) 120

40

TIME (s).2 .6

A

B

C

MAX dP/dt

Page 53: CARDIOVASCULAR PHYSIOLOGY

CARDIAC CYCLECARDIAC CYCLE

Atr

ial

Syst

ole

Mitral Closes

Isov

olum

ic c

ontr

act.

Aortic opens

S1

Rap

id E

ject

ion

Red

uced

Eje

ctio

n

Isov

olum

ic R

elax

.

Aorticcloses

Rap

id V

entr

icul

arF

illi

ng

Mitralopens

S2

Red

uced

Ven

tric

ular

F

illi

ng Atr

ial

Syst

ole

Page 54: CARDIOVASCULAR PHYSIOLOGY

QUICK QUIZQUICK QUIZHow to find out that you know How to find out that you know

the Cardiac Cycle.the Cardiac Cycle.150

50

LE

FTV

EN

TR

ICU

LA

RV

OL

UM

E (

ML

)

TIME (SEC)

Atrialsystole

Mitral closes

Aortic opens

Aortic closes Mitral

opens

Page 55: CARDIOVASCULAR PHYSIOLOGY

Clinical CorrelationClinical CorrelationDiagnosis of Aortic Stenosis by Pressure Diagnosis of Aortic Stenosis by Pressure

GraphsGraphs

Normal

Aorta

Ventricle

Aorta

Ventricle

Aortic Stenosis

Page 56: CARDIOVASCULAR PHYSIOLOGY

LEFT VENTRICULAR LEFT VENTRICULAR PRESSURE/VOLUME P/V LOOPPRESSURE/VOLUME P/V LOOP

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

(m

mH

g)

LEFT VENTRICULAR VOLUME (ml)

A BC

D

EF

100 150500

120

40

80

END OF DIASTOLE

END OF SYSTOLE

Page 57: CARDIOVASCULAR PHYSIOLOGY

EFFECT OF PRELOAD ON EFFECT OF PRELOAD ON THE VENTRICULAR P/V THE VENTRICULAR P/V

LOOPLOOP

VOLUME (ml)

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

(m

mH

g) ESV

1 2 3

EDVs

Page 58: CARDIOVASCULAR PHYSIOLOGY

EFFECT OF AFTERLOAD IN EFFECT OF AFTERLOAD IN THE LEFT VENTRICULAR THE LEFT VENTRICULAR

P/V LOOPP/V LOOP

VOLUME (ml)

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

(m

mH

g)

12

3

EDV

ESPVR

ESV

ESVESV

Page 59: CARDIOVASCULAR PHYSIOLOGY

EFFECT OF CONTRACTILITY EFFECT OF CONTRACTILITY ON THE LV P/V LOOPON THE LV P/V LOOP

VOLUME (ml)

LE

FT

VE

NT

RIC

UL

AR

PR

ES

SU

RE

(m

mH

g)

12

ESPVR 2

ESPVR 1

Page 60: CARDIOVASCULAR PHYSIOLOGY

QUICK QUIZQUICK QUIZ

PRELOAD AFTERLOAD CONTRACTILITY

Page 61: CARDIOVASCULAR PHYSIOLOGY

CARDIAC OUTPUT AND THE FICK CARDIAC OUTPUT AND THE FICK PRINCIPLEPRINCIPLE

BODY O2 CONSUMPTION

250mlO2/min

PaO2

0.15mlO2/ml blood

PvO2

0.20mlO2/ml blood

PULMONARYARTERY

PULMONARYVEIN

CARDIAC OUTPUT=O2 CONSUMPTION (ml/min)

PvO2- PaO2

Pulmonary capillaries

Lungs

Page 62: CARDIOVASCULAR PHYSIOLOGY

HEMODYNAMICSHEMODYNAMICS

VELOCITY,FLOW,PRESSUREVELOCITY,FLOW,PRESSURE LAMINAR FLOWLAMINAR FLOW POISEUILLE’S LAWPOISEUILLE’S LAW RESISTANCE(SERIES-PARALLEL)RESISTANCE(SERIES-PARALLEL) TURBULENT FLOW AND TURBULENT FLOW AND

REYNOLD’S NUMBERREYNOLD’S NUMBER

CHAPTER 5 B&L

Page 63: CARDIOVASCULAR PHYSIOLOGY

REQUIRED CONCEPTSREQUIRED CONCEPTS

VELOCITY = DISTANCE / TIME V = D / T

FLOW = VOLUME / TIME Q = VL / T

VELOCITY -FLOW- AREA

V = Q / A

Page 64: CARDIOVASCULAR PHYSIOLOGY

CROSS SECTIONAL AREA AND CROSS SECTIONAL AREA AND VELOCITYVELOCITY

Q=10ml/s

A= 2cm2 10cm2 1cm2

V= 5cm/s 1cm/s 10cm/s

V = Q / A

a b c

Page 65: CARDIOVASCULAR PHYSIOLOGY

HYDROSTATIC PRESSUREHYDROSTATIC PRESSURE

136cm

0

0100

200

P = p x g x h

P = Pressure mmHgp = densityg = gravityh = height

0100

200

0

100mmHg

0100

200

0100

200

136cm

Page 66: CARDIOVASCULAR PHYSIOLOGY

ENERGY OF A STATIC VS A DYNAMIC ENERGY OF A STATIC VS A DYNAMIC FLUIDFLUID

TOTAL ENERGY= POTENTIAL E. + KINETIC E. TE = PE + KE

FLUID AT REST (HYDROSTATIC )

FLUID IN MOTION (HYDROSTATIC + HYDRODYNAMIC)

Page 67: CARDIOVASCULAR PHYSIOLOGY

VELOCITY AND PRESSUREVELOCITY AND PRESSURE

0

0100

200

Page 68: CARDIOVASCULAR PHYSIOLOGY

POISEUILLE’S LAWPOISEUILLE’S LAW GOVERNING FLUID GOVERNING FLUID FLOW(Q) THROUGH CYLINDRIC TUBESFLOW(Q) THROUGH CYLINDRIC TUBES

(FLOW)Q(FLOW)Q = (Pi - Po) r

DIFFERENCEIN PRESSURE RADIUS

8nL

VISCOSITY

4

LENGHT

Page 69: CARDIOVASCULAR PHYSIOLOGY

RESISTANCE TO FLOW IN THE RESISTANCE TO FLOW IN THE CARDIOVASCULAR SYSTEMCARDIOVASCULAR SYSTEM

BASIC CONCEPTS

Rt = R1 + R2 + R3…. SERIES RESISTANCE

1/Rt = 1/R1 + 1/R2 + 1/R3… PARALLEL RES.

WHAT REALLY HAPPENS IN THE CVS?

ARTERY

ARTERIOLES

CAPILLARIES

LOWER R HIGHER R LOWER R

SERIES PARALLELR1 R2 R3

R1

R3R2

Page 70: CARDIOVASCULAR PHYSIOLOGY

LAMINAR VS TURBULENT FLOWLAMINAR VS TURBULENT FLOWTHE REYNOLD’S NUMBERTHE REYNOLD’S NUMBER

LAMINARFLOW

TURBULENTFLOW

Nr = pDv / n

p = densityD = diameterv = velocityn = viscosity

laminar = 2000 or less

Page 71: CARDIOVASCULAR PHYSIOLOGY

QUICK QUIZZQUICK QUIZZ

1. Which of the following vessels will produce a dramatic decrease in blood flow through the tissues by a change in radius?

A. AortaB. VenulesC. ArteriolesD. Capillaries

3. After a bout with hemorrhagic Dengue you would expectto find a heart murmur at a lower level than before the disease.A. True B. False

Page 72: CARDIOVASCULAR PHYSIOLOGY

PV Loop RefresherPV Loop Refresher

A

B A

B

What happens from A to B?

Page 73: CARDIOVASCULAR PHYSIOLOGY

ARTERIAL SYSTEMARTERIAL SYSTEM

COMPLIANCECOMPLIANCE MEAN ARTERIAL PRESSUREMEAN ARTERIAL PRESSURE PULSE PRESSUREPULSE PRESSURE PRESSURE MEASUREMENTPRESSURE MEASUREMENT

CHAPTER 26 B&L

Page 74: CARDIOVASCULAR PHYSIOLOGY

THE CONCEPT OF THE HYDRAULIC THE CONCEPT OF THE HYDRAULIC FILTERFILTER

SYSTOLE DIASTOLE

COMPLIANT

RIGID

Page 75: CARDIOVASCULAR PHYSIOLOGY

EFFECTS OF PUMPING THROUGH A EFFECTS OF PUMPING THROUGH A RIGID VS A COMPLIANT DUCTRIGID VS A COMPLIANT DUCT

O2

CO

NS

UM

PT

ION

(m

lO2/

100g

/bea

t)

0.1

0

STROKE VOLUME (ml)5 15

NATIVE AORTA

PLASTIC TUBING

Page 76: CARDIOVASCULAR PHYSIOLOGY

STATIC P-V RELATIONSHIP STATIC P-V RELATIONSHIP IN THE AORTAIN THE AORTA

% I

NC

RE

AS

E I

N V

OL

UM

E

PRESSURE (mmHg)

Page 77: CARDIOVASCULAR PHYSIOLOGY

ELASTIC MODULUS OR ELASTIC MODULUS OR ELASTANCEELASTANCE

Ep = P / Da/Db

Ep= ELASTIC MODULUS Da= MAX. CHANGE IN AORTIC DIAMETER. Db= MEAN AORTIC DIAM.

ELASTANCE COMPLIANCE

P V PV

EP IS INVERSELY PROPORTIONAL TO C

Page 78: CARDIOVASCULAR PHYSIOLOGY

MEAN ARTERIAL PRESSURE (MAP)

CARDIAC OUTPUT PERIPHERAL RESISTANCE

REMEMBER OHMS LAW?

INSTANTANEOUSINCREASE

STEADY STATEINCREASE

Page 79: CARDIOVASCULAR PHYSIOLOGY

EFFECT OF COMPLIANCE ON EFFECT OF COMPLIANCE ON MAPMAP

Pa = Qh - Qr / Ca

Qh- inflow (CO)Qr- outflowCa- CompliancePa- MAP

AR

TE

RIA

L P

RE

SS

UR

E (

mm

Hg)

TIME

SMALL Ca

LARGE Ca

INCREASE CARDIAC OUTPUT

Page 80: CARDIOVASCULAR PHYSIOLOGY

PULSE PRESSURE

STROKE VOLUME COMPLIANCE

V4

VB

V3

V2VAV1

P1 PA P2 PP33 PB P4

VOLUME

PRESSURE

Page 81: CARDIOVASCULAR PHYSIOLOGY

PULSE PRESSUREEFFECTS OF:

COMPLIANCE TOTAL PERIPHERAL RESISTANCE

TPR

A B

Page 82: CARDIOVASCULAR PHYSIOLOGY

VASCULAR FUNCTION CURVE

HOW CARDIAC OUTPUT REGULATESCENTRAL VENOUS PRESSURE

CARDIAC FUNCTION CURVE

HOW CENTRAL VENOUS PRESSURE (PRELOAD)REGULATES CARDIAC OUTPUT

COUPLING OF THE HEART AND BLOOD VESSELS

CHAPTER 9 B&L

Page 83: CARDIOVASCULAR PHYSIOLOGY

VASCULAR FUNCTION CURVEHOW CHANGES IN CARDIAC OUTPUT INDUCECHANGES IN CENTRAL VENOUS PRESSURE?

CE

NT

RA

L V

EN

OU

R P

RE

SS

UR

E (

mm

Hg)

-1

8

CARDIAC OUTPUT (L/min)

0 8

VASCULAR FUNCTIONCURVE

Pmc

B

A

Page 84: CARDIOVASCULAR PHYSIOLOGY

HOW BLOOD VOLUME AND VENOMOTOR TONE CHANGE THE VASCULAR FUNCTIONCURVE?

CE

NT

RA

L V

EN

OU

R P

RE

SS

UR

E (

mm

Hg)

-10 8

VASCULAR FUNCTIONCURVE

CARDIAC OUTPUT (L/min)

TRANSFUSION

NORMAL

HEMORRHAGE

8

Page 85: CARDIOVASCULAR PHYSIOLOGY

TOTAL PERIPHERAL RESISTANCEAND THE VASCULAR FUNCTION CURVE.

CE

NT

RA

L V

EN

OU

R P

RE

SS

UR

E (

mm

Hg)

-1

8

0 8

VASCULAR FUNCTIONCURVE

CARDIAC OUTPUT (L/min)

NORMAL

VASODILATION

VA

SOCO

NSTRICTIO

N

Page 86: CARDIOVASCULAR PHYSIOLOGY

THE CARDIAC FUNCTION CURVE

CENTRAL VENOUS PRESSURE (mmHg)

CA

RD

IAC

OU

TP

UT

(L

/min

)

Page 87: CARDIOVASCULAR PHYSIOLOGY

EFFECTS OF SYMPATHETIC STIMULATIONON THE CARDIAC FUNCTION CURVE

CA

RD

IAC

OU

TP

UT

(L

/min

)

CENTRAL VENOUS PRESSURE (mmHg)

Page 88: CARDIOVASCULAR PHYSIOLOGY

HOW BLOOD VOLUME AND PERIPHERALRESISTANCE CHANGE THE CARDIAC FUNCTION CURVE?

CA

RD

IAC

OU

TP

UT

(L

/min

)

CENTRAL VENOUS PRESSURE (mmHg)

VOLUME RESISTANCE

Page 89: CARDIOVASCULAR PHYSIOLOGY

THE CARDIAC FUNCTION CURVE IN HEART FAILURE

CENTRAL VENOUS PRESSURE (mmHg)

CA

RD

IAC

OU

TP

UT

(L

/min

)

Page 90: CARDIOVASCULAR PHYSIOLOGY

HEART - BLOOD VESSELSHEART - BLOOD VESSELSCOUPLINGCOUPLING

PUMP ARTERIESVEINS

Qh 5L/min

Qr5L/min

PERIPHERAL R= Pa - Pv / Qr

R = 20mmHg/L/min

MPA=102mmHgCPV=2mmHg=Pv

COMPLIANCESCv = 19CaCv>>>>Ca

MORMAL FUNCTION

Pa

Page 91: CARDIOVASCULAR PHYSIOLOGY

CARDIAC ARREST!CARDIAC ARREST!INMEDIATE EFFECTINMEDIATE EFFECT

PUMP ARTERIESVEINS

Qh 0L/min

Qr5L/min

CPV=2mmHg=Pv

Pa

FLOW STOPS HERE

FLOW CONTINUES HRETRANSFER ART-->VEINS

R = 20mmHg/L/minQr= Pa - Pv/20

Qr CONTINUES AS LONG ASA PRESSURE GRADIENT IS SUSTAINED

Page 92: CARDIOVASCULAR PHYSIOLOGY

CARDIAC ARRESTCARDIAC ARRESTSTEADY STATESTEADY STATE

PUMP ARTERIESVEINS

Qh 0L/min

Qr0L/min

Pv = 7mmHg = MEAN CIRCULATORY PRESSURE OR Pmc

Pa = 7mmHg

FLOW STOPPED

FLOW STOPPED

Qr = 0 ( NO Pa - Pv DIFFERENCE)

95mmHg

5mmHg

Page 93: CARDIOVASCULAR PHYSIOLOGY

WE START PUMPING!WE START PUMPING!INMEDIATE EFFECTINMEDIATE EFFECT

PUMP ARTERIESVEINS

Qh 1L/min

Qr0L/min

Pv = 7mmHg

Pa = 7mmHg

FLOW STARTS

NO FLOW HERE YET

SOME VENOUS BLOOD

Page 94: CARDIOVASCULAR PHYSIOLOGY

FLOW RETURNS AT Qr AT FLOW RETURNS AT Qr AT THE NEW QhTHE NEW Qh

PUMP ARTERIESVEINS

Qh 1L/min

Qr1L/min

Pv = 6mmHg

Pa = 26mmHg

FLOW STARTS

R = 20mmHg

Qr = Pa - Pv / 20 = 1L/min

Page 95: CARDIOVASCULAR PHYSIOLOGY

THE END