83
NAME OF DRUG INDICATION MECAHNISM OF ACTION CONTRAINDICAT ION Side Effects NURSING RESPONSIBILIT Y 1.Telmisa rtan (Micardis ) 80 mg OD Oral Hypertens ion Blocks constrict ing and aldostero ne- secreting effects of angiotens in II by selective ly blocking the binding of angiotens in II to the angiotens in I receptor in many Hypersens itivity to drug and its component s. diarrhea, angioedem a, sinusitis , pharyngit is, backpain Monitor patient for hypotensi on after starting drug. Closely monitor blood pressure. Patients undergoin g dialysis may develop orthostat ic hypotensi on.

Cardiac drugs

Embed Size (px)

Citation preview

Page 1: Cardiac drugs

NAME OF DRUG INDICATION MECAHNISM OF ACTION

CONTRAINDICATION

Side Effects NURSING RESPONSIBILITY

1.Telmisartan (Micardis)80 mgODOral

Hypertension

Blocks constricting and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the angiotensin I receptor in many tissues, such as vascular smooth muscle and the adrenal gland.

Hypersensitivity to drug and its components.

diarrhea,angioedema,sinusitis,pharyngitis,backpain

Monitor patient for hypotension after starting drug.

Closely monitor blood pressure. Patients undergoing dialysis may develop orthostatic hypotension.

Page 2: Cardiac drugs

PharmacologyPharmacologyPharmacologyPharmacology

Drugs that Affect the Cardiovascular System

Drugs that Affect the Cardiovascular System

Page 3: Cardiac drugs

TopicsTopicsTopicsTopics

• Electrophysiology

• Vaughn-Williams classification

• Antihypertensives

• Hemostatic agents

• Electrophysiology

• Vaughn-Williams classification

• Antihypertensives

• Hemostatic agents

Page 4: Cardiac drugs

Cardiac FunctionCardiac FunctionCardiac FunctionCardiac Function

• Dependent upon– Adequate amounts of ATP– Adequate amounts of Ca++

– Coordinated electrical stimulus

• Dependent upon– Adequate amounts of ATP– Adequate amounts of Ca++

– Coordinated electrical stimulus

Page 5: Cardiac drugs

Adequate Amounts of ATPAdequate Amounts of ATPAdequate Amounts of ATPAdequate Amounts of ATP

• Needed to:– Maintain electrochemical gradients– Propagate action potentials– Power muscle contraction

• Needed to:– Maintain electrochemical gradients– Propagate action potentials– Power muscle contraction

Page 6: Cardiac drugs

Adequate Amounts of CalciumAdequate Amounts of CalciumAdequate Amounts of CalciumAdequate Amounts of Calcium

• Calcium is ‘glue’ that links electrical and mechanical events.

• Calcium is ‘glue’ that links electrical and mechanical events.

Page 7: Cardiac drugs

Coordinated Electrical Coordinated Electrical StimulationStimulationCoordinated Electrical Coordinated Electrical StimulationStimulation• Heart capable of automaticity

• Two types of myocardial tissue– Contractile– Conductive

• Impulses travel through ‘action potential superhighway’.

• Heart capable of automaticity

• Two types of myocardial tissue– Contractile– Conductive

• Impulses travel through ‘action potential superhighway’.

Page 8: Cardiac drugs

A.P. SuperHighwayA.P. SuperHighwayA.P. SuperHighwayA.P. SuperHighway

• Sinoatrial node• Atrioventricular

node• Bundle of His• Bundle Branches

– Fascicles

• Purkinje Network

• Sinoatrial node• Atrioventricular

node• Bundle of His• Bundle Branches

– Fascicles

• Purkinje Network

Page 9: Cardiac drugs

ElectrophysiologyElectrophysiologyElectrophysiologyElectrophysiology

• Two types of action potentials– Fast potentials

• Found in contractile tissue

– Slow potentials• Found in SA, AV node tissues

• Two types of action potentials– Fast potentials

• Found in contractile tissue

– Slow potentials• Found in SA, AV node tissues

Page 10: Cardiac drugs

Fast PotentialFast PotentialFast PotentialFast Potential

-80

-60

-40

-20

0

+20

RMP-80 to 90 mV

Phase 1

Phase 2

Phase 3

Phase 4

controlled by Na+

channels = “fast channels”

Page 11: Cardiac drugs

Fast PotentialFast PotentialFast PotentialFast Potential

• Phase 0: Na+ influx “fast sodium channels”

• Phase 1: K + efflux

• Phase 2: (Plateau) K + efflux – AND Ca + + influx

• Phase 3: K+ efflux

• Phase 4: Resting Membrane Potential

• Phase 0: Na+ influx “fast sodium channels”

• Phase 1: K + efflux

• Phase 2: (Plateau) K + efflux – AND Ca + + influx

• Phase 3: K+ efflux

• Phase 4: Resting Membrane Potential

Page 12: Cardiac drugs

Cardiac Conduction CycleCardiac Conduction CycleCardiac Conduction CycleCardiac Conduction Cycle

Page 13: Cardiac drugs

Slow PotentialSlow PotentialSlow PotentialSlow Potential

-80

-60

-40

-20

0

Phase 4 Phase 3

dependent upon Ca++ channels = “slow channels”

Page 14: Cardiac drugs

Slow PotentialSlow PotentialSlow PotentialSlow Potential

• Self-depolarizing– Responsible for automaticity

• Phase 4 depolarization– ‘slow sodium-calcium channels’– ‘leaky’ to sodium

• Phase 3 repolarization– K+ efflux

• Self-depolarizing– Responsible for automaticity

• Phase 4 depolarization– ‘slow sodium-calcium channels’– ‘leaky’ to sodium

• Phase 3 repolarization– K+ efflux

Page 15: Cardiac drugs

Cardiac Pacemaker Cardiac Pacemaker DominanceDominanceCardiac Pacemaker Cardiac Pacemaker DominanceDominance• Intrinsic firing rates:

– SA = 60 – 100 – AV = 45 – 60– Purkinje = 15 - 45

• Intrinsic firing rates:– SA = 60 – 100 – AV = 45 – 60– Purkinje = 15 - 45

Page 16: Cardiac drugs

Cardiac PacemakersCardiac PacemakersCardiac PacemakersCardiac Pacemakers

• SA is primary– Faster depolarization rate

• Faster Ca++ ‘leak’

• Others are ‘backups’– Graduated depolarization rate

• Graduated Ca++ leak rate

• SA is primary– Faster depolarization rate

• Faster Ca++ ‘leak’

• Others are ‘backups’– Graduated depolarization rate

• Graduated Ca++ leak rate

Page 17: Cardiac drugs

Potential TermsPotential TermsPotential TermsPotential Terms

APD

ERP

RRP relative refractoryperiod

effective refractory period

action potential duration

Page 18: Cardiac drugs

Dysrhythmia GenerationDysrhythmia GenerationDysrhythmia GenerationDysrhythmia Generation

• Abnormal genesis– Imbalance of ANS stimuli– Pathologic phase 4 depolarization

• Ectopic foci

• Abnormal genesis– Imbalance of ANS stimuli– Pathologic phase 4 depolarization

• Ectopic foci

Page 19: Cardiac drugs

Dysrhythmia GenerationDysrhythmia GenerationDysrhythmia GenerationDysrhythmia Generation

• Abnormal conduction

• Analogies:– One way valve

– Buggies stuck in muddy roads

• Abnormal conduction

• Analogies:– One way valve

– Buggies stuck in muddy roads

Page 20: Cardiac drugs

Reentrant CircuitsReentrant CircuitsReentrant CircuitsReentrant Circuits

Page 21: Cardiac drugs

Warning!Warning!Warning!Warning!

• All antidysrhythmics have arrythmogenic properties

• In other words, they all can CAUSE dysrhythmias too!

• All antidysrhythmics have arrythmogenic properties

• In other words, they all can CAUSE dysrhythmias too!

Page 22: Cardiac drugs

AHA Recommendation AHA Recommendation ClassificationsClassificationsAHA Recommendation AHA Recommendation ClassificationsClassifications• Describes weight of

supporting evidence NOT mechanism

• Class I• Class IIa• Class IIb • Indeterminant• Class III

• Describes weight of supporting evidence NOT mechanism

• Class I• Class IIa• Class IIb • Indeterminant• Class III

• View AHA definitions• View AHA definitions

Page 23: Cardiac drugs

Vaughn-Williams Vaughn-Williams ClassificationClassificationVaughn-Williams Vaughn-Williams ClassificationClassification• Class 1

– Ia– Ib– Ic

• Class II• Class III• Class IV• Misc

• Class 1– Ia– Ib– Ic

• Class II• Class III• Class IV• Misc

• Description of mechanism NOT evidence

• Description of mechanism NOT evidence

Page 24: Cardiac drugs

Class I: Sodium Channel Class I: Sodium Channel BlockersBlockersClass I: Sodium Channel Class I: Sodium Channel BlockersBlockers• Decrease Na+ movement in phases 0 and 4

• Decreases rate of propagation (conduction) via tissue with fast potential (Purkinje)– Ignores those with slow potential (SA/AV)

• Indications: ventricular dysrhythmias

• Decrease Na+ movement in phases 0 and 4

• Decreases rate of propagation (conduction) via tissue with fast potential (Purkinje)– Ignores those with slow potential (SA/AV)

• Indications: ventricular dysrhythmias

Page 25: Cardiac drugs

Class Ia AgentsClass Ia AgentsClass Ia AgentsClass Ia Agents

• Slow conduction through ventricles

• Decrease repolarization rate– Widen QRS and QT

intervals• May promote Torsades

des Pointes!

• Slow conduction through ventricles

• Decrease repolarization rate– Widen QRS and QT

intervals• May promote Torsades

des Pointes!

• PDQ:– procainamide

(Pronestyl®)

– disopyramide (Norpace®)

– qunidine

– (Quinidex®)

• PDQ:– procainamide

(Pronestyl®)

– disopyramide (Norpace®)

– qunidine

– (Quinidex®)

Page 26: Cardiac drugs

Class Ib AgentsClass Ib AgentsClass Ib AgentsClass Ib Agents

• Slow conduction through ventricles

• Increase rate of repolarization

• Reduce automaticity– Effective for ectopic

foci

• May have other uses

• Slow conduction through ventricles

• Increase rate of repolarization

• Reduce automaticity– Effective for ectopic

foci

• May have other uses

• LTMD:– lidocaine (Xylocaine®)

– tocainide (Tonocard®)

– mexiletine (Mexitil®)

– phenytoin (Dilantin®)

• LTMD:– lidocaine (Xylocaine®)

– tocainide (Tonocard®)

– mexiletine (Mexitil®)

– phenytoin (Dilantin®)

Page 27: Cardiac drugs

Class Ic AgentsClass Ic AgentsClass Ic AgentsClass Ic Agents

• Slow conduction through ventricles, atria & conduction system

• Decrease repolarization rate

• Decrease contractility• Rare last chance drug

• Slow conduction through ventricles, atria & conduction system

• Decrease repolarization rate

• Decrease contractility• Rare last chance drug

• flecainide (Tambocor®)

• propafenone (Rythmol®)

• flecainide (Tambocor®)

• propafenone (Rythmol®)

Page 28: Cardiac drugs

Class II: Beta BlockersClass II: Beta BlockersClass II: Beta BlockersClass II: Beta Blockers

• Beta1 receptors in heart attached to Ca++ channels– Gradual Ca++ influx responsible for

automaticity

• Beta1 blockade decreases Ca++ influx– Effects similar to Class IV (Ca++ channel

blockers)

• Limited # approved for tachycardias

• Beta1 receptors in heart attached to Ca++ channels– Gradual Ca++ influx responsible for

automaticity

• Beta1 blockade decreases Ca++ influx– Effects similar to Class IV (Ca++ channel

blockers)

• Limited # approved for tachycardias

Page 29: Cardiac drugs

Class II: Beta BlockersClass II: Beta BlockersClass II: Beta BlockersClass II: Beta Blockers

• propranolol (Inderal®)

• acebutolol (Sectral®)

• esmolol (Brevibloc®)

• propranolol (Inderal®)

• acebutolol (Sectral®)

• esmolol (Brevibloc®)

Page 30: Cardiac drugs

Class III: Potassium Channel Class III: Potassium Channel BlockersBlockersClass III: Potassium Channel Class III: Potassium Channel BlockersBlockers• Decreases K+ efflux during repolarization• Prolongs repolarization• Extends effective refractory period• Prototype: bretyllium tosylate (Bretylol®)

– Initial norepi discharge may cause temporary hypertension/tachycardia

– Subsequent norepi depletion may cause hypotension

• Decreases K+ efflux during repolarization• Prolongs repolarization• Extends effective refractory period• Prototype: bretyllium tosylate (Bretylol®)

– Initial norepi discharge may cause temporary hypertension/tachycardia

– Subsequent norepi depletion may cause hypotension

Page 31: Cardiac drugs

Class IV: Calcium Channel Class IV: Calcium Channel BlockersBlockersClass IV: Calcium Channel Class IV: Calcium Channel BlockersBlockers• Similar effect as ß

blockers

• Decrease SA/AV automaticity

• Decrease AV conductivity

• Useful in breaking reentrant circuit

• Prime side effect: hypotension & bradycardia

• Similar effect as ß blockers

• Decrease SA/AV automaticity

• Decrease AV conductivity

• Useful in breaking reentrant circuit

• Prime side effect: hypotension & bradycardia

• verapamil (Calan®)• diltiazem (Cardizem®)

• Note: nifedipine doesn’t work on heart

• verapamil (Calan®)• diltiazem (Cardizem®)

• Note: nifedipine doesn’t work on heart

Page 32: Cardiac drugs

Misc. AgentsMisc. AgentsMisc. AgentsMisc. Agents

• adenosine (Adenocard®)– Decreases Ca++ influx & increases K+ efflux via

2nd messenger pathway• Hyperpolarization of membrane

• Decreased conduction velocity via slow potentials

• No effect on fast potentials

• Profound side effects possible (but short-lived)

• adenosine (Adenocard®)– Decreases Ca++ influx & increases K+ efflux via

2nd messenger pathway• Hyperpolarization of membrane

• Decreased conduction velocity via slow potentials

• No effect on fast potentials

• Profound side effects possible (but short-lived)

Page 33: Cardiac drugs

Misc. AgentsMisc. AgentsMisc. AgentsMisc. Agents

• Cardiac Glycocides

• digoxin (Lanoxin®)– Inhibits NaKATP pump– Increases intracellular Ca++

• via Na+-Ca++ exchange pump

– Increases contractility– Decreases AV conduction velocity

• Cardiac Glycocides

• digoxin (Lanoxin®)– Inhibits NaKATP pump– Increases intracellular Ca++

• via Na+-Ca++ exchange pump

– Increases contractility– Decreases AV conduction velocity

Page 34: Cardiac drugs

PharmacologyPharmacologyPharmacologyPharmacology

AntihypertensivesAntihypertensives

Page 35: Cardiac drugs

Antihypertensive ClassesAntihypertensive ClassesAntihypertensive ClassesAntihypertensive Classes

• diuretics

• beta blockers

• angiotensin-converting enzyme (ACE) inhibitors

• calcium channel blockers

• vasodilators

• diuretics

• beta blockers

• angiotensin-converting enzyme (ACE) inhibitors

• calcium channel blockers

• vasodilators

Page 36: Cardiac drugs

Blood Pressure = CO X PVRBlood Pressure = CO X PVRBlood Pressure = CO X PVRBlood Pressure = CO X PVR

• Cardiac Output = SV x HR

• PVR = Afterload

• Cardiac Output = SV x HR

• PVR = Afterload

Page 37: Cardiac drugs

BP = CO x PVRBP = CO x PVR

Key:

CCB = calcium channel blockers

CA Adrenergics = central-acting adrenergics

ACEi’s = angiotensin-converting enzyme inhibitors

cardiac factors circulating volume

heart rate

contractility

1. Beta Blockers2. CCB’s3. C.A. Adrenergics

salt

aldosterone

ACEi’s

Diuretics

Page 38: Cardiac drugs

BP = CO x PVR

Hormones

1. vasodilators2. ACEI’s3. CCB’s

Central Nervous System

1. CA Adrenergics

Peripheral SympatheticReceptors

alpha beta

1. alpha blockers 2. beta blockers

Local Acting1. Peripheral-Acting Adrenergics

Page 39: Cardiac drugs

AlphaAlpha11 Blockers BlockersAlphaAlpha11 Blockers Blockers

Stimulate alpha1 receptors -> hypertension

Block alpha1 receptors -> hypotension

Stimulate alpha1 receptors -> hypertension

Block alpha1 receptors -> hypotension

• doxazosin (Cardura®)

• prazosin (Minipress®)

• terazosin (Hytrin®)

• doxazosin (Cardura®)

• prazosin (Minipress®)

• terazosin (Hytrin®)

Page 40: Cardiac drugs

Central Acting AdrenergicsCentral Acting AdrenergicsCentral Acting AdrenergicsCentral Acting Adrenergics

• Stimulate alpha2 receptors – inhibit alpha1 stimulation

• hypotension

• Stimulate alpha2 receptors – inhibit alpha1 stimulation

• hypotension

• clonidine (Catapress®)

• methyldopa (Aldomet®)

• clonidine (Catapress®)

• methyldopa (Aldomet®)

Page 41: Cardiac drugs

Peripheral Acting AdrenergicsPeripheral Acting AdrenergicsPeripheral Acting AdrenergicsPeripheral Acting Adrenergics

• reserpine (Serpalan®)

• inhibits the release of NE

• diminishes NE stores

• leads to hypotension

• Prominent side effect of depression– also diminishes serotonin

• reserpine (Serpalan®)

• inhibits the release of NE

• diminishes NE stores

• leads to hypotension

• Prominent side effect of depression– also diminishes serotonin

Page 42: Cardiac drugs

Adrenergic Side EffectsAdrenergic Side EffectsAdrenergic Side EffectsAdrenergic Side Effects

• Common– dry mouth, drowsiness, sedation & constipation– orthostatic hypotension

• Less common– headache, sleep disturbances, nausea, rash &

palpitations

• Common– dry mouth, drowsiness, sedation & constipation– orthostatic hypotension

• Less common– headache, sleep disturbances, nausea, rash &

palpitations

Page 43: Cardiac drugs

Angiotensin I

ACE

Angiotensin II

1. potent vasoconstrictor

- increases BP

2. stimulates Aldosterone

- Na+ & H2O

reabsorbtion

ACE Inhibitors ACE Inhibitors ACE Inhibitors ACE Inhibitors .

RAAS

Page 44: Cardiac drugs

Renin-Angiotensin Renin-Angiotensin Aldosterone SystemAldosterone SystemRenin-Angiotensin Renin-Angiotensin Aldosterone SystemAldosterone System• Angiotensin II = vasoconstrictor• Constricts blood vessels & increases BP• Increases SVR or afterload• ACE-I blocks these effects decreasing SVR &

afterload

• Angiotensin II = vasoconstrictor• Constricts blood vessels & increases BP• Increases SVR or afterload• ACE-I blocks these effects decreasing SVR &

afterload

Page 45: Cardiac drugs

ACE InhibitorsACE InhibitorsACE InhibitorsACE Inhibitors

• Aldosterone secreted from adrenal glands

cause sodium & water reabsorption

• Increase blood volume

• Increase preload

• ACE-I blocks this and decreases preload

• Aldosterone secreted from adrenal glands

cause sodium & water reabsorption

• Increase blood volume

• Increase preload

• ACE-I blocks this and decreases preload

Page 46: Cardiac drugs

Angiotensin Converting Angiotensin Converting Enzyme InhibitorsEnzyme InhibitorsAngiotensin Converting Angiotensin Converting Enzyme InhibitorsEnzyme Inhibitors• captopril (Capoten®)

• enalapril (Vasotec®)

• lisinopril (Prinivil® & Zestril®)

• quinapril (Accupril®)

• ramipril (Altace®)

• benazepril (Lotensin®)

• fosinopril (Monopril®)

• captopril (Capoten®)

• enalapril (Vasotec®)

• lisinopril (Prinivil® & Zestril®)

• quinapril (Accupril®)

• ramipril (Altace®)

• benazepril (Lotensin®)

• fosinopril (Monopril®)

Page 47: Cardiac drugs

Calcium Channel BlockersCalcium Channel BlockersCalcium Channel BlockersCalcium Channel Blockers

• Used for:

• Angina

• Tachycardias

• Hypertension

• Used for:

• Angina

• Tachycardias

• Hypertension

Page 48: Cardiac drugs

CCB Site of ActionCCB Site of ActionCCB Site of ActionCCB Site of Action

diltiazem & verapamil

nifedipine (and otherdihydropyridines)

Page 49: Cardiac drugs

CCB ActionCCB ActionCCB ActionCCB Action

• diltiazem & verapamil

• decrease automaticity & conduction in SA & AV nodes

• decrease myocardial contractility

• decreased smooth muscle tone

• decreased PVR

• nifedipine

• decreased smooth muscle tone

• decreased PVR

• diltiazem & verapamil

• decrease automaticity & conduction in SA & AV nodes

• decrease myocardial contractility

• decreased smooth muscle tone

• decreased PVR

• nifedipine

• decreased smooth muscle tone

• decreased PVR

Page 50: Cardiac drugs

Side Effects of CCBsSide Effects of CCBsSide Effects of CCBsSide Effects of CCBs

• Cardiovascular

• hypotension, palpitations & tachycardia

• Gastrointestinal

• constipation & nausea

• Other

• rash, flushing & peripheral edema

• Cardiovascular

• hypotension, palpitations & tachycardia

• Gastrointestinal

• constipation & nausea

• Other

• rash, flushing & peripheral edema

Page 51: Cardiac drugs

Calcium Channel BlockersCalcium Channel BlockersCalcium Channel BlockersCalcium Channel Blockers

• diltiazem (Cardizem®)

• verapamil (Calan®, Isoptin®)

• nifedipine (Procardia®, Adalat®)

• diltiazem (Cardizem®)

• verapamil (Calan®, Isoptin®)

• nifedipine (Procardia®, Adalat®)

Page 52: Cardiac drugs

Diuretic Site of ActionDiuretic Site of ActionDiuretic Site of ActionDiuretic Site of Action

.

loop of Henle

proximaltubule

Distal tubule

Collecting duct

Page 53: Cardiac drugs

MechanismMechanismMechanismMechanism

• Water follows Na+

• 20-25% of all Na+ is reabsorbed into the blood

stream in the loop of Henle

• 5-10% in distal tubule & 3% in collecting ducts

• If it can not be absorbed it is excreted with the

urine

Blood volume = preload !

• Water follows Na+

• 20-25% of all Na+ is reabsorbed into the blood

stream in the loop of Henle

• 5-10% in distal tubule & 3% in collecting ducts

• If it can not be absorbed it is excreted with the

urine

Blood volume = preload !

Page 54: Cardiac drugs

Side Effects of DiureticsSide Effects of DiureticsSide Effects of DiureticsSide Effects of Diuretics

• electrolyte losses [Na+ & K+ ]

• fluid losses [dehydration]

• myalgia

• N/V/D

• dizziness

• hyperglycemia

• electrolyte losses [Na+ & K+ ]

• fluid losses [dehydration]

• myalgia

• N/V/D

• dizziness

• hyperglycemia

Page 55: Cardiac drugs

DiureticsDiureticsDiureticsDiuretics

• Thiazides:

• chlorothiazide (Diuril®) & hydrochlorothiazide

(HCTZ®, HydroDIURIL®)

• Loop Diuretics

• furosemide (Lasix®), bumetanide (Bumex®)

• Potassium Sparing Diuretics

• spironolactone (Aldactone®)

• Thiazides:

• chlorothiazide (Diuril®) & hydrochlorothiazide

(HCTZ®, HydroDIURIL®)

• Loop Diuretics

• furosemide (Lasix®), bumetanide (Bumex®)

• Potassium Sparing Diuretics

• spironolactone (Aldactone®)

Page 56: Cardiac drugs

Mechanism of VasodilatorsMechanism of VasodilatorsMechanism of VasodilatorsMechanism of Vasodilators

• Directly relaxes arteriole smooth muscle

• Decrease SVR = decrease afterload

• Directly relaxes arteriole smooth muscle

• Decrease SVR = decrease afterload

Page 57: Cardiac drugs

Side Effects of VasodilatorsSide Effects of VasodilatorsSide Effects of VasodilatorsSide Effects of Vasodilators

• hydralazine (Apresoline®)– Reflex tachycardia

• sodium nitroprusside (Nipride®)– Cyanide toxicity in renal failure– CNS toxicity = agitation, hallucinations, etc.

• hydralazine (Apresoline®)– Reflex tachycardia

• sodium nitroprusside (Nipride®)– Cyanide toxicity in renal failure– CNS toxicity = agitation, hallucinations, etc.

Page 58: Cardiac drugs

VasodilatorsVasodilatorsVasodilatorsVasodilators

• diazoxide [Hyperstat®]

• hydralazine [Apresoline®]

• minoxidil [Loniten®]

• sodium Nitroprusside [Nipride®]

• diazoxide [Hyperstat®]

• hydralazine [Apresoline®]

• minoxidil [Loniten®]

• sodium Nitroprusside [Nipride®]

Page 59: Cardiac drugs

PharmacologyPharmacologyPharmacologyPharmacology

Drugs Affecting HemostasisDrugs Affecting Hemostasis

Page 60: Cardiac drugs

HemostasisHemostasisHemostasisHemostasis

• Reproduce figure 11-9, page 359 Sherwood • Reproduce figure 11-9, page 359 Sherwood

Page 61: Cardiac drugs

Platelet AdhesionPlatelet AdhesionPlatelet AdhesionPlatelet Adhesion

Page 62: Cardiac drugs

Coagulation CascadeCoagulation CascadeCoagulation CascadeCoagulation Cascade

• Reproduce following components of cascade:– Prothrombin -> thrombin

• Fibrinogen -> fibrin

– Plasminogen -> plasmin

• Reproduce following components of cascade:– Prothrombin -> thrombin

• Fibrinogen -> fibrin

– Plasminogen -> plasmin

Page 63: Cardiac drugs

Platelet InhibitorsPlatelet InhibitorsPlatelet InhibitorsPlatelet Inhibitors

• Inhibit the aggregation of platelets

• Indicated in progressing MI, TIA/CVA

• Side Effects: uncontrolled bleeding

• No effect on existing thrombi

• Inhibit the aggregation of platelets

• Indicated in progressing MI, TIA/CVA

• Side Effects: uncontrolled bleeding

• No effect on existing thrombi

Page 64: Cardiac drugs

AspirinAspirin AspirinAspirin

– Inhibits COX• Arachidonic acid (COX) -> TXA2 ( aggregation)

– Inhibits COX• Arachidonic acid (COX) -> TXA2 ( aggregation)

Page 65: Cardiac drugs

GP IIB/IIIA InhibitorsGP IIB/IIIA InhibitorsGP IIB/IIIA InhibitorsGP IIB/IIIA Inhibitors

GP GP IIIIb/b/IIIIIIaaInhibitorsInhibitors

Fibrinogen

GP GP IIIIb/b/IIIIIIaaReceptorReceptor

Page 66: Cardiac drugs

GP IIB/IIIA InhibitorsGP IIB/IIIA InhibitorsGP IIB/IIIA InhibitorsGP IIB/IIIA Inhibitors

• abciximab (ReoPro®)

• eptifibitide (Integrilin®)

• tirofiban (Aggrastat®)

• abciximab (ReoPro®)

• eptifibitide (Integrilin®)

• tirofiban (Aggrastat®)

Page 67: Cardiac drugs

AnticoagulantsAnticoagulantsAnticoagulantsAnticoagulants

• Interrupt clotting cascade at various points– No effect on platelets

• Heparin & LMW Heparin (Lovenox®)

• warfarin (Coumadin®)

• Interrupt clotting cascade at various points– No effect on platelets

• Heparin & LMW Heparin (Lovenox®)

• warfarin (Coumadin®)

Page 68: Cardiac drugs

HeparinHeparinHeparinHeparin

• Endogenous– Released from mast cells/basophils

• Binds with antithrombin III• Antithrombin III binds with and inactivates excess

thrombin to regionalize clotting activity.– Most thrombin (80-95%) captured in fibrin mesh.

• Antithrombin-heparin complex 1000X as effective as antithrombin III alone

• Endogenous– Released from mast cells/basophils

• Binds with antithrombin III• Antithrombin III binds with and inactivates excess

thrombin to regionalize clotting activity.– Most thrombin (80-95%) captured in fibrin mesh.

• Antithrombin-heparin complex 1000X as effective as antithrombin III alone

Page 69: Cardiac drugs

HeparinHeparinHeparinHeparin

• Measured in Units, not milligrams

• Indications:– MI, PE, DVT, ischemic CVA

• Antidote for heparin OD: protamine.– MOA: heparin is strongly negatively charged.

Protamine is strongly positively charged.

• Measured in Units, not milligrams

• Indications:– MI, PE, DVT, ischemic CVA

• Antidote for heparin OD: protamine.– MOA: heparin is strongly negatively charged.

Protamine is strongly positively charged.

Page 70: Cardiac drugs

warfarin (Coumadinwarfarin (Coumadin®®))warfarin (Coumadinwarfarin (Coumadin®®))

• Factors II, VII, IX and X all vitamin K dependent enzymes

• Warfarin competes with vitamin K in the synthesis of these enzymes.

• Depletes the reserves of clotting factors.

• Delayed onset (~12 hours) due to existing factors

• Factors II, VII, IX and X all vitamin K dependent enzymes

• Warfarin competes with vitamin K in the synthesis of these enzymes.

• Depletes the reserves of clotting factors.

• Delayed onset (~12 hours) due to existing factors

Page 71: Cardiac drugs

ThrombolyticsThrombolyticsThrombolyticsThrombolytics

• Directly break up clots– Promote natural

thrombolysis

• Enhance activation of plasminogen

• ‘Time is Muscle’

• Directly break up clots– Promote natural

thrombolysis

• Enhance activation of plasminogen

• ‘Time is Muscle’

• streptokinase (Streptase®)

• alteplase (tPA®, Activase®)

• anistreplase (Eminase®)• reteplase (Retevase®)• tenecteplase (TNKase®)

• streptokinase (Streptase®)

• alteplase (tPA®, Activase®)

• anistreplase (Eminase®)• reteplase (Retevase®)• tenecteplase (TNKase®)

Page 72: Cardiac drugs

Occlusion MechanismOcclusion MechanismOcclusion MechanismOcclusion Mechanism

Page 73: Cardiac drugs

tPA MechanismtPA MechanismtPA MechanismtPA Mechanism

Page 74: Cardiac drugs

Cholesterol MetabolismCholesterol MetabolismCholesterol MetabolismCholesterol Metabolism

• Cholesterol important component in membranes and as hormone precursor

• Synthesized in liver– Hydroxymethylglutaryl coenzyme A reductase– (HMG CoA reductase) dependant

• Stored in tissues for latter use• Insoluble in plasma (a type of lipid)

– Must have transport mechanism

• Cholesterol important component in membranes and as hormone precursor

• Synthesized in liver– Hydroxymethylglutaryl coenzyme A reductase– (HMG CoA reductase) dependant

• Stored in tissues for latter use• Insoluble in plasma (a type of lipid)

– Must have transport mechanism

Page 75: Cardiac drugs

LipoproteinsLipoproteinsLipoproteinsLipoproteins

• Lipids are surrounded by protein coat to ‘hide’ hydrophobic fatty core.

• Lipoproteins described by density– VLDL, LDL, IDL, HDL, VHDL

• LDL contain most cholesterol in body– Transport cholesterol from liver to tissues for use

(“Bad”)

• HDL move cholesterol back to liver– “Good” b/c remove cholesterol from circulation

• Lipids are surrounded by protein coat to ‘hide’ hydrophobic fatty core.

• Lipoproteins described by density– VLDL, LDL, IDL, HDL, VHDL

• LDL contain most cholesterol in body– Transport cholesterol from liver to tissues for use

(“Bad”)

• HDL move cholesterol back to liver– “Good” b/c remove cholesterol from circulation

Page 76: Cardiac drugs

Why We Fear CholesterolWhy We Fear CholesterolWhy We Fear CholesterolWhy We Fear Cholesterol

• Risk of CAD linked to LDL levels• LDLs are deposited under endothelial surface and

oxidized where they:– Attracts monocytes -> macrophages

– Macrophages engulf oxidized LDL• Vacuolation into ‘foam cells’

– Foam cells protrude against intimal lining• Eventually a tough cap is formed

– Vascular diameter & blood flow decreased

• Risk of CAD linked to LDL levels• LDLs are deposited under endothelial surface and

oxidized where they:– Attracts monocytes -> macrophages

– Macrophages engulf oxidized LDL• Vacuolation into ‘foam cells’

– Foam cells protrude against intimal lining• Eventually a tough cap is formed

– Vascular diameter & blood flow decreased

Page 77: Cardiac drugs

Why We Fear CholesterolWhy We Fear CholesterolWhy We Fear CholesterolWhy We Fear Cholesterol

• Plaque cap can rupture

• Collagen exposed

• Clotting cascade activated

• Platelet adhesion

• Thrombus formation

• Embolus formation possible

• Occlusion causes ischemia

• Plaque cap can rupture

• Collagen exposed

• Clotting cascade activated

• Platelet adhesion

• Thrombus formation

• Embolus formation possible

• Occlusion causes ischemia

Page 78: Cardiac drugs

Lipid DepositionLipid DepositionLipid DepositionLipid Deposition

Page 79: Cardiac drugs

Thrombus FormationThrombus FormationThrombus FormationThrombus Formation

Page 80: Cardiac drugs

Platelet AdhesionPlatelet AdhesionPlatelet AdhesionPlatelet Adhesion

Page 81: Cardiac drugs

Embolus FormationEmbolus FormationEmbolus FormationEmbolus Formation

Page 82: Cardiac drugs

Occlusion Causes InfarctionOcclusion Causes InfarctionOcclusion Causes InfarctionOcclusion Causes Infarction

Page 83: Cardiac drugs

Antihyperlipidemic AgentsAntihyperlipidemic AgentsAntihyperlipidemic AgentsAntihyperlipidemic Agents

• Goal: Decrease LDL– Inhibition of LDL

synthesis

– Increase LDL receptors in liver

• Target: < 200 mg/dl• Statins are HMG

CoA reductase inhibitors

• Goal: Decrease LDL– Inhibition of LDL

synthesis

– Increase LDL receptors in liver

• Target: < 200 mg/dl• Statins are HMG

CoA reductase inhibitors

• lovastatin (Mevacor®)• pravastatin (Pravachol®)• simvastatin (Zocor®)• atorvastatin (Lipitor®)

• lovastatin (Mevacor®)• pravastatin (Pravachol®)• simvastatin (Zocor®)• atorvastatin (Lipitor®)