56
Carbon Capture using Membrane and Adsorp3on Processes Jennifer Wilcox Department of Energy Resources Engineering RECS Summer School June 5 th , 2012

Carbon Capture Using Adsorption and Membrane Processes

  • Upload
    recsco2

  • View
    157

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Carbon Capture Using Adsorption and Membrane Processes

Carbon  Capture  using  Membrane  and  Adsorp3on  Processes  

Jennifer  Wilcox  Department  of  Energy  Resources  Engineering  

   

RECS  Summer  School  June  5th,  2012  

Page 2: Carbon Capture Using Adsorption and Membrane Processes

Clean  Energy  Conversions  Team  -­‐  2012  

•  Panithita  Rochana  (PhD)  •  Yangyang  Liu  (PhD)  •  Ekin  Ozdogan  (PhD)  •  Jiajun  He  (PhD)  •  Kyoungjin  Lee  (PhD)  •  Abby  Kirchofer  (PhD)  •  Ana  Suarez  Negreira  (PhD,  ChemE)  

•  Tao  Narakornpijit  (MS)  •  Jeremy  Hoffman  (UG,  Chem)  •  Reza  Haghpanah  (Post-­‐doc)  •  Dong-­‐Hee  Lim  (Post-­‐doc)  •  Mahnaz  Firouzi  (Post-­‐doc)  •  Dawn  Geatches  (Post-­‐doc)  •  Erik  Rupp  (Research  Assistant)  

Page 3: Carbon Capture Using Adsorption and Membrane Processes

Agenda  

Work  and  Cost  of  Carbon  Capture  N2-­‐selecWve  membrane  for  carbon  capture  Carbon-­‐based  sorbents  for  carbon  capture  

 

Page 4: Carbon Capture Using Adsorption and Membrane Processes

Minimum  Work  for  Separa3on  combined  first  and  second  laws  

Wmin = RT nBCO2 ln(yB

CO2 ) + nBB −CO2 ln(yB

B −CO2 )[ ] + RT nCCO2 ln(yC

CO2 ) + nCC −CO2 ln(yC

C −CO2 )[ ]−RT nA

CO2 ln(yACO2 ) + nA

A −CO2 ln(yAA −CO2 )[ ]

Page 5: Carbon Capture Using Adsorption and Membrane Processes

Minimum  Work  for  Separa3on    

Published  in  APS  Report,  Feasibility  of  DAC  with  Chemicals  (2011)    

Page 6: Carbon Capture Using Adsorption and Membrane Processes

Sherwood  Plot  for  Flue  Gas  Scrubbing  

CalculaWons  carried  out  using  IECM,  all  cases  assume  500-­‐MW  plant  burning  Appalachian  bituminous,  NGCC  (477-­‐MW)  O&M  +  annualized  capital  costs  are  included  in  the  cost  esWmates  

Page 7: Carbon Capture Using Adsorption and Membrane Processes

1Cost  and  Scale  

Process   Price    [$/kg]  

Concentra3on  [mole  frac3on]  

Emissions  [kg/day]  

Cost  [1000s  $/day]  

CO2-­‐PCC   0.045   0.121   8.59  x  106   392  

CO2-­‐NGCC   0.059   0.0373   3.01  x  106   178  

SOx  (MS)   0.66   0.00127   8.94  x  104   59.6  

SOx  (LS)   2.1   0.000399  (399  ppm)   2.32  x  104   50.4  

NOx   1.1   0.000387  (387  ppm)   1.11  x  104   12.5  

Hg   22000   5  x  10-­‐9  (ppb)   0.951   21.6  

1These  can  change  based  upon  coal-­‐type  burned  and  scrubbing  methods;    2EN  Lighdoot,  MCM  Cockrem,  What  Are  Dilute  SoluWons,  Sep.  Sci.  Technol.,  22(2),  165  (1987)  

“the recovery of potentially valuable solutes from dilute solution is dominated by the costs of processing large masses of unwanted materials.”2 -Edwin Lightfoot

Page 8: Carbon Capture Using Adsorption and Membrane Processes

2nd-­‐Law  Efficiency  Drops  with  Concentra3on  

House,  K.Z.  et  al.,  Proc.  Nat.  Acad.  Sci.,  108(51),  20428-­‐20433  (2011)        

η2nd =Wmin

Wreal

Page 9: Carbon Capture Using Adsorption and Membrane Processes

How  to  Increase  the  2nd-­‐Law  Efficiency?    Current  State-­‐of-­‐the-­‐Art  Technology:    Taking  a  closer  look  at  ABsorpWon  via  MEA  as  an  example:    

1.  RegeneraWon  2.  Compression  3.  Blower/Fan  4.  Pumping  

Regenera9on:  Consider  separaWon  processes  that  do  not  involve  solvents  Compression:  Consider  separaWon  processes  that  incorporate  compression  

Improvements:    

Page 10: Carbon Capture Using Adsorption and Membrane Processes

Benefits  of  Adsorp3on  and  Membrane  Processes  

•  Both  processes  are  based  primarily  upon  physical  separaWon  processes,  with  CO2  maintaining  its  linear  form  throughout  separaWon  

•  Water  does  not  need  to  be  unnecessarily  heated  in  either  process;  most  solvents  are  aqueous-­‐based  w/  the  chemical  ~  30  %  

 Membrane  Process:    •  Major  challenge  w/  CO2-­‐selecWve  polymers:  lack  of  driving  force  in  flue  gas  w/  CO2  

concentraWon  ~  12  %  -­‐  consider  N2-­‐selecWve  membrane  instead  •  Membranes  have  fairly  small  footprints  and  require  no  regeneraWon  

Adsorp9on  Process:    •  Mesoporous  carbons  are  scalable  and  can  be  cost-­‐effecWve  •  Carbons  have  opWmal  heat  properWes  •  Major  challenge  w/  MOFs  and  zeolites:  water  compeWWon  and  acid  gases  –  

consider  chemistries  in  which  H2O  assists  in  the  capture  mechanism,  recall  flue  gas  water  concentraWon  is  ~  10  %  

 

Page 11: Carbon Capture Using Adsorption and Membrane Processes

Agenda  

Work  and  cost  of  carbon  capture  N2-­‐Selec3ve  Membrane  for  Carbon  Capture  Carbon-­‐based  sorbents  for  carbon  capture  

 

Page 12: Carbon Capture Using Adsorption and Membrane Processes

N2-­‐Selec3ve  Membrane  for  Carbon  Capture  

PhD  students:    Ni  Rochana,  Ekin  Ozdogan,  Kyoungjin  Lee  

•  Flux:                                                                      Q  =  permeability,    L  =  membrane  thickness,        

•  InspiraWon  –  ARPA-­‐E  brainstorm  session  in  2010  •  Capture  CO2  on  the  high-­‐pressure  side  of  the  membrane  may  lead  to  cost  

savings  in  terms  of  compression  energy  •  System/OpWmizaWon  will  be  crucial,  but  let’s  see  if  it’s  possible  first    

Feed  

Residue  (retentate)  

Permeate  

Page 13: Carbon Capture Using Adsorption and Membrane Processes

N2  

Mem

bran

e  

Step  1  Adsorp3on   Step  2  

Dissocia3on  N2   N    

N  Step  3  

Bulk  Diffusion  

N  N  N  

H2   NH3  

Poten3al  Applica3ons:  •  Carbon  capture  •  Ammonia  synthesis  •  Methane/N2  mixtures      •  Air  separaWon  (selecWve  O2)            (IGCC,  oxy-­‐combusWon)    

Goals:    •  Use   theoreWcal   modeling   to   provide   insight   into   tuning   the   electronic  

structure  of  materials  for  enhanced  nitrogen  reacWvity  •  Benchmark  DFT  predicWons  with  UHV  experiments  on  single-­‐crystal  surfaces  •  Perform  permeaWon  tests  on  the  Group  V  materials  

Mo3va3on  for  N2-­‐Selec3ve  Membrane  

Page 14: Carbon Capture Using Adsorption and Membrane Processes

N2  Dissocia3on  is  Difficult!  

•  Bond  dissociaWon  energies  –  N2  ~  225  kcal/mol;  944  kJ/mol;  9.7eV  –  O2  ~  119  kcal/mol;  498  kJ/mol;  5.1  eV  –  H2  ~  104  kcal/mol;  435  kJ/mol;  4.4eV  

•  Common  N2  dissociaWon  catalysts  (H-­‐B,  ammonia  synthesis)  –  Fe,  Ru  

•  d-­‐band  center  model  (Hammer  and  Nørskov)  provides  insight  

Page 15: Carbon Capture Using Adsorption and Membrane Processes

The  density  of  states  (DOS)  of  a  system  describes  the  number  of  states  at  each  energy  level  that  are  available  to  be  occupied.        

Density  of  States  

unoccupied occupied

Fermi level

TransiWon  metal  reacWvity  is  disWnguished  by  its  d-­‐states,  with  each  transiWon  metal  having  a  characterisWc  d-­‐band  center    

Page 16: Carbon Capture Using Adsorption and Membrane Processes

d-­‐band  Center  Model  

•  When  bonding  and  anW-­‐bonding  states  are  formed,  bond  strength  depends  on  the  relaWve  occupancy  of  states  

•  Bonding  states  filled  →  strong  bonds;  anW-­‐bonding  states  filled  →  weakening  •  d-­‐band  center  increases  from  R  to  L  of  periodic  table  (transiWon  metals)  

–  both  bonding  and  anW-­‐bonding  states  are  higher  from  R  to  L  –  Strength  of  adsorbate-­‐metal  bond  increases  

•  Why  use  Fe  and  Ru  for  ammonia  synthesis?  Why  not  Group  V?    –  answer  →  volcano  

 

Hammer  and  Nørskov,  Nature  376  238  (1995);  Hammer  and  Nørskov,  Adv.  Catal.  45  71-­‐129  (2000)  

Page 17: Carbon Capture Using Adsorption and Membrane Processes

N  and  O  Diffusivity  in  Vanadium  Permeability  =  Diffusivity  ×Solubility  

1Keinonen  et  al.  Appl.  Phys.  A  34,  39  (1984);  2Nakajima  et  al.  Philosophical  Magazine  A  67,  557  (1993).  3Holleck,  J.  Phys.  Chem.  74,  503  (1970);  4  Fukai  and  Sugimoto,  Adv.  In  Phys.  34,  263  (1985)  

Page 18: Carbon Capture Using Adsorption and Membrane Processes

Scope  of  Work  

1.  Surface  ac3vity  •  N2  adsorpWon  mechanism  •  N2  dissociaWon  pathway  •  Comparison  to  other  typical  

ammonia  synthesis  catalysts  

2.  Solubility  and  Diffusivity  •  Atomic  N  binding  

mechanism  •  Comparison  to  atomic  H  

binding    

3.  Effect  of  alloying  •  Ru  •  Effect  on  binding  •  ImplicaWons  for  

permeability  

Computa3onal  Methodology    VASP  (Vienna  ab  iniWo  SimulaWon    Package)      Density  funcWonal  theory  (DFT)  •  Projector-­‐augmented  wave  (PAW)  

potenWal  •  GGA  –  PBE      

Bulk vanadium Lattice constant [Å]

This study 2.98

Previous calculation 2.93-2.941

3.0212

Experiment 3.0243

1Mehl  and  Papaconstantopoulos,  Phys.  Rev.  B  54,  4519  (1996);  2Vitos  et  al.,  J.,  Surf.  Sci.  411,  186  (1998);  3Online  CRC  Handbook  of  Chemistry  and  Physics,  91st  ediWon,  2010-­‐2011  

Page 19: Carbon Capture Using Adsorption and Membrane Processes

Molecular  N2  Adsorp3on  Energy  

1Grunze,  et  al.,  Appl.  Phys.  A  44,  19  (1987);  2  Bozso,  et  al.  J.  Catal.  49,  18  (1977);  Ertl  et  al.,  Surf.  Sci.  114,  515  (1982);  3Shevy  et  al.,  J.  Phys.  Chem.  C  112,  17768  (2008)  

strength of N2-metal bond increases

Eads (eV/molecule) = E(surf+N2) – [E(surf)+E(N2)] n(N2)

1 2 3

4

V(110)

1-top 2-short-bridge (SB) 3-long-bridge (LB) 4-three-fold (TF)

1 4

3

2

V(111)

1-top, 2-hcp 3-fcc, 4-bridge

Page 20: Carbon Capture Using Adsorption and Membrane Processes

Effect  of  Ru  Addi3on  

Ru Ru

+2.836

-0.09

-0.254 -0.257

-0.255

-0.141

-0.255

Pure Vanadium Distance (N-Ru)= 0.5 Å Distance (N-Ru)= 0.71 Å

+2.710

-0.292 -0.292

-0.292

-0.374 -0.292

+3.075

-0.235

-0.174

-0.372

-0.372

-0.214

+3.347 +3.075

Lattice Constant= 3.01 Å Eb= -2.132 eV Lattice Expansion= 1.01%

Lattice Constant= 3.02 Å Eb= -0.889 eV Lattice Expansion= 1.34%

Lattice Constant= 3.01 Å Eb= -1.48 eV Lattice Expansion= 1.01%

H  binding  in  V:    O-­‐site  =  -­‐0.076eV;  T-­‐site  =  -­‐0.280eV  

Aboud and Wilcox, J. Phys. Chem. C, 114(24) 10978-10985 (2010); Pauling-Scale Electronegativities: N = 3.04; V = 1.63; Ru = 2.2

Page 21: Carbon Capture Using Adsorption and Membrane Processes

Flux  Measurements  

Test Temperatures: 500°C -1000°C

Membrane Foils

(Group  V  metals)  Diffusion Barrier

(uniformly  rigidized  sheet  of  alumina  fiber  and  binder)

Porous Support

(Hastelloy  X)  

Inside of Membrane Holder

Sweep    Gas  

Permeate  

Retentate  

Feed    Gas  

Test Temperatures: 20 – 90 psi

Page 22: Carbon Capture Using Adsorption and Membrane Processes

 •  Flux  measurements:    

•  Argon  gas  used  to  correct  for  pinhole  and  general  leaks  in  the  membrane  system  •  Each  pure   foil   is   tested  at  a   temperature  range  of  500°C-­‐1000°C.  At  each  temperature,  

feed  pressure  is  changed  between  23.4-­‐93.4  psig.  Retentate  Pressure  is  kept  at  3.4psig  •  Use  Knudsen  diffusion  for  correcWons:    

Membrane  Defect  Correc3ons  

Page 23: Carbon Capture Using Adsorption and Membrane Processes

Gas  Mixtures  Niobium  (ΔP=90  psi)  

 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0.001 0.0011 0.0012 0.0013 0.0014

CO

2 Flu

x ((

mol

e/m

·s)

N2 F

lux

(mol

e/m

·s)

1/T (K-1)

4 mol% CO2-96 mol% N2

N2 CO2

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0.001 0.0011 0.0012 0.0013 0.0014

CO

2 Flu

x ((

mol

e/m

·s)

N2 F

lux

(mol

e/m

·s)

1/T (K-1)

15 mol% CO2-85 mol % N2

N2 CO2

Natural  gas  flue  gas     Coal  flue  gas    

Page 24: Carbon Capture Using Adsorption and Membrane Processes

Next  Steps  

•  ConWnue  DFT  calculaWons  to  predict  alloys  for  enhanced  N2  separaWon  

•  InvesWgate  subsurface  and  bulk  diffusion  predicWons  of  various  alloys  

•  Surface  study  experiments  at  SSRL  to  benchmark  DFT  

•  Repeat  experiments  with  N2  flux  in  pure  foils  and  invesWgate  the  potenWal  of  ammonia  synthesis  with  H2  as  a  sweep  gas  

•  Work  with  SwRI  to  spuver  deposit  alloys  of  VRu  and  NbRu  on  porous  stainless  steel  supports  (Mov)  

•  Measure  N2  and  CO2  fluxes  of  alloys  and  compare  to  pure    

 

Page 25: Carbon Capture Using Adsorption and Membrane Processes

Agenda  

Work  and  cost  of  carbon  capture  N2-­‐selecWve  membrane  for  carbon  capture  Carbon-­‐Based  Sorbents  for  Carbon  Capture  

Page 26: Carbon Capture Using Adsorption and Membrane Processes

Finding  Ways  Not  to  Bend  CO2  

Also  cover  design  of  “Carbon  Capture,”  Springer  (2012)  ISBN  978-­‐1-­‐4614-­‐2214-­‐3    

Page 27: Carbon Capture Using Adsorption and Membrane Processes

How  to  Increase  the  2nd-­‐Law  Efficiency?    Taking  a  closer  look  at  ABsorpWon  as  an  example:    

+  

+  

Envision  a  separa3on  process  that  does  not  involve  bending  CO2  

•  Slow  kineWcs  •  Highly  exothermic  

Page 28: Carbon Capture Using Adsorption and Membrane Processes

Closer  Look  at  Heat  Proper3es  

Assume:    Heat  of  regeneraWon  =  CpΔT  +  ΔH    hea9ng  up  all  material  in  system  from  T1  to  T2    +    breaking  the  CO2  interac9on    

Page 29: Carbon Capture Using Adsorption and Membrane Processes

CCS  Applica3ons  of  Carbon  Materials  •  SorpWon  mechanisms  in  carbon-­‐based  sorbents  and  nanoporous  

natural  systems  for  sequestraWon  are  similar  •  Cost-­‐effecWve  (carbon)  and  scalable  (chemistry)  sorbents    •  Maximize  sorbent  capacity  by  surface  chemistry  •  Appreciate  the  importance  of  transport  kineWcs,  e.g.,  500-­‐MW  

power  plant  emits  ~  11,000  tons  of  CO2  per  day  •  KineWcs:  one  of  the  main  differences  bet/  PCC  and  DAC  

PhD  Students:    Yangyang  Liu,  Abby  Kirchoffer,  and  Jiajun  He  

Research  Associates:    Mahnaz  Firouzi  and  Erik  Rupp  

Page 30: Carbon Capture Using Adsorption and Membrane Processes

Molecular  Simula3on  

1.  Shale  characterizaWon  (XPS,  SEM,  Quantachrome,  FTIR,  etc.)  for  building  accurate  pore  models  

2.  Electronic  structure  theory  -­‐  decorate  pore  surfaces  with  accurate  chemistry,  i.e.,  clay,  carbon,  dissociated  water,  defect  sites  

3.  Grand  Canonical  Monte  Carlo  –  predict  adsorpWon  isotherms  and  compare  to  experiment;    –  How  do  fluid  densiWes  change  at  the  nanoscale?  

4.  Molecular  Dynamics  –  predict  transport  properWes,  e.g.,  permeability  –  How  does  viscosity  change  at  the  nanoscale?  Permeability?    

 

Page 31: Carbon Capture Using Adsorption and Membrane Processes

Molecular  Simula3on  

1.  Shale  characterizaWon  (XPS,  SEM,  Quantachrome,  FTIR,  etc.)  for  building  accurate  pore  models  

2.  Electronic  structure  theory  -­‐  decorate  pore  surfaces  with  accurate  chemistry,  i.e.,  clay,  carbon,  dissociated  water,  defect  sites  

3.  Grand  Canonical  Monte  Carlo  –  predict  adsorpWon  isotherms  and  compare  to  experiment;    –  How  do  fluid  densiWes  change  at  the  nanoscale?  

4.  Molecular  Dynamics  –  predict  transport  properWes,  e.g.,  permeability  –  How  does  viscosity  change  at  the  nanoscale?  Permeability?    

 

Page 32: Carbon Capture Using Adsorption and Membrane Processes

Poten3al  Models  (L-­‐J  and  TraPPE)  

K00.28K 00.240

A40.3 A75.32

2

==

==

kk

CCO

CCO

εε

σσ

K9756.81

A571.32

2

=

=−

k

CCO

CCO

ε

σ

SchemaWc  plot  of  one-­‐center  Lennard-­‐Jones  potenWal  model  of  CO2  in  slit-­‐pore  

Page 33: Carbon Capture Using Adsorption and Membrane Processes

Defining  Adsorp3on  •  Total  Adsorp3on  

 Direct  results  from  GCMC  Modeling  •  Excess  Adsorp3on    

 Direct  results  from  Lab  Measurements  •  Convert  from  Total  to  Excess  AdsorpWon    

 Total  Adsorbed  –  Bulk  =  Excess  

Page 34: Carbon Capture Using Adsorption and Membrane Processes

Adsorp3on  Isotherm  Predic3on  Based  on  PSD  

Original  PSD  of  AC  sample  

PSD  truncated  at  20  nm  

Measured  PSD  →  predict  adsorp3on  isotherm  

•  Assume  the  total  isotherm  consists  of  a  number  of  individual  “single  pore”  isotherms  mulWplied  by  their  relaWve  distribuWon  over  a  range  of  pore  sizes.  

•  The  set  of  isotherms  for  a  given  system  can  be  obtained  by  GCMC  simulaWons.  

T  =  305  K  

Page 35: Carbon Capture Using Adsorption and Membrane Processes

•  Perfect  graphite:  the  basic  slit-­‐pore  surface  •  Chemical  heterogeneity:  the  possible  funcWonal  groups1  and  the  

mono  vacancy  site  in  the  environment  of  volaWle  components  environment  (e.g.,  water2)  have  been  invesWgated    

epoxy epoxy2 hydroxyl

carbonyl carbonyl - hydroxyl hydroxyl - carbonyl

H2O dissociate on the mono-vacancy

pore  width  

1Bagri,  A.  et  al.  J.  Phys.  Chem.  C  2010;  Kudin,  K.  N.  et  al.  Nano  LeW.  2008.  2Kostov,  M.K.  et  al.  Phys.  Rev.  LeW.  2005.    

Effect  of  surface  func3onali3es  

Page 36: Carbon Capture Using Adsorption and Membrane Processes

Effect  of  surface  func3onali3es  Electronic  properWes  and  parWal  charge  distribuWons  by  Density  FuncWonal  Theory  (DFT)  

parWal  charge  distribuWon  

In  general,  oxygen-­‐containing  funcWonal  groups  increase  the  adsorbed  CO2  density  in  micropores,  especially  in  the  cases  of  hydroxyl  and  carbonyl-­‐funcWonalized  slit  pores;  

0

5

10

15

20

25

30

0 50 100 150 200 250

Tota

l Loa

ding

[mm

ol/c

m3 ]

Pressure [bar] @ 298 K (pore width = 9.2 Å)

Perfect graphite Epoxy functionalized Hydroxyl functionalized Carbonyl functionalized Carbonyl_Hydroxyl functinoalized Hydroxyl_Carbonyl functionalized Carboxyl functionalized Hydrated graphite

0

5

10

15

20

25

30

0 50 100 150 200 250

Tota

l Loa

ding

[mm

ol/c

m3 ]

Pressure [bar] @ 298 K (pore width = 20 Å)

Perfect graphite Epoxy functionalized Hydroxyl functionalized Carbonyl functionalized Carbonyl_Hydroxyl functinoalized Hydroxyl_Carbonyl functionalized Carboxyl functionalized Hydrated graphite

Page 37: Carbon Capture Using Adsorption and Membrane Processes

Effect  of  surface  func3onali3es  

Perfect  graphite  slit-­‐pore  

Page 38: Carbon Capture Using Adsorption and Membrane Processes

Effect  of  surface  func3onali3es  

Perfect  graphite  slit  pore  

epoxy  funcWonalized   hydroxyl  funcWonalized  

carbonyl  funcWonalized  carbonyl_hydroxyl  funcWonalized   hydroxyl_carbonyl  funcWonalized  

hydrated  graphite  slit  pore  

carboxyl  funcWonalized  1.  Local  density  distribuWon  is  not  homogeneous  in  the  slit  pores;  2.  adsorbed  layer  has  high  density  (>  dry  ice)  →  higher  packing  efficiency  

Local  CO2  density  distribuWon  

Page 39: Carbon Capture Using Adsorption and Membrane Processes

Effect  of  surface  func3onali3es  Compared  to  MOFs:      •  At  1.0  bar,  the  loading  

is  up  to  ~12  mmol/g,  compared  to  current  state-­‐of-­‐the-­‐art  MOFs  that  range  between  2~12  mmol/g  at  similar  T  and  P  

 •  The  pore  size  and  

surface  funcWonality  of  GCMC  simulaWons  is  easily  tunable  to  control  adsorpWon  

Supercritical CO2 @ 298K 250 bar Solid CO2 (dry ice)* Adsorbed CO2 in –COOH

@ 298K 1 bar

*CO2  Crystal  structure  data  from  AMCSD  

Page 40: Carbon Capture Using Adsorption and Membrane Processes

Next  Steps    •  ConWnue  GCMC  to  provide  insight  into  opWmal  funcWonality  for  enhanced  

adsorpWon  •  Surface  funcWonalized  (Zn-­‐based)  sorbents  to  catalyze  the  bending  of  CO2  

–  using  controlled  mesoporous  carbons  (collaboraWon  w/  Bao  and  Stack)  •  ConWnue  PSD  experiments  and  benchmarking  w/  Quantachrome  and  

GCMC  •  Carry  out  adsorpWon  experiments  with  Rubotherm  microbalance  •  InvesWgate  adsorpWon  and  breakthrough  experiments  using  real  flue  gas  

condiWons,  i.e.,  water  vapor,  NOx,  and  SO2  

triblock copolymers to template ordered mesoporous silica

Page 41: Carbon Capture Using Adsorption and Membrane Processes

Sorp3on  and  Transport  at  the  Nanoscale  Coal  and  Shale  

•  Shale  consists  of  organic  (kerogen)  and  clay  components  with  porosity  on  the  nanoscale  

•  Molecular  simulaWon  can  determine  the  mechanisms  of  sorpWon  and  transport  of  fluids  (CO2,  methane,  water)  under  nanoconfinement  

•  Fluid  properWes  of  interest  may  include:    –  Density  –  Viscosity  –  Surface  tension  

•  We  hypothesize  that  fluid  properWes  are  different  at  the  nanoscale  vs  macroscale  due  to:    –  Pore  size  –  Pore  chemistry  (clay  vs  carbon  vs  surface  funcWonality,  e.g.,  dissociated  

water)  •  Improvements  in  understanding  sorpWon  and  transport  may  influence  

capacity  esWmates  and  recovery,  respecWvely  

 

Page 42: Carbon Capture Using Adsorption and Membrane Processes

Research  Outline  

Coal  /  Gas  Shale  /  Carbon-­‐based  Sorbents  

Micro  and  Mesopores  with  Structural  and  

Chemical  Heterogeneity  

Slit  Pores  with  FuncWonalized    

GraphiWc  Surfaces  

AdsorpWon/Transport  Measurements  

Chemical  ComposiWon,  FuncWonal  Groups,  

PSD,  etc.  

Characteriza3on  Quantachrome,  FTIR,  

XPS,  SEM,  etc.  

•  AdsorpWon  Isotherms  •  Capacity  EsWmates  •  SorpWon  Energy  •  Permeability    •  Transport  Mechanism  •  Slippage  Factors  

Modeling  Electronic  Structure,    

GCMC,  and  MD  

AdsorpWon  Isotherms,  PermeabiliWes  

Carbon-­‐  and  Clay-­‐based  Materials  

Compare  

Page 43: Carbon Capture Using Adsorption and Membrane Processes

Sources  and  Sinks  

Unmined  coalbeds  (ECBM)  

Deep  Saline  Aquifers  

Oil  and  Gas  Reservoirs  

Gas  Shale  Reservoirs  (EGR)    

CO2  sta9onary  source  in  the  U.S.    

Overlap  between  sources  and  ECBM/EGR  efforts  

Page 44: Carbon Capture Using Adsorption and Membrane Processes

Making  the  Connec3on  between  Length  Scales  

Page 45: Carbon Capture Using Adsorption and Membrane Processes

Molecular  Simula3on  

1.  Shale  characterizaWon  (XPS,  SEM,  Quantachrome,  FTIR,  etc.)  for  building  accurate  pore  models  

2.  Electronic  structure  theory  -­‐  decorate  pore  surfaces  with  accurate  chemistry,  i.e.,  clay,  carbon,  dissociated  water,  defect  sites  

3.  Grand  Canonical  Monte  Carlo  –  predict  adsorpWon  isotherms  and  compare  to  experiment;    –  How  do  fluid  densiWes  change  at  the  nanoscale?  

4.  Molecular  Dynamics  –  predict  transport  properWes,  e.g.,  permeability  –  How  does  viscosity  change  at  the  nanoscale?  Permeability?    

 

Page 46: Carbon Capture Using Adsorption and Membrane Processes

Understanding  Transport  in  Micropores  Micropore    <  2nm  

•   Transport  of  equimolar  binary  mixture  of  CH4  and  CO2  has  been  modeled  using  NEMD  simulaWons  in  a  slit  pore  model    •   The  pore  wall  is    assumed  smooth  and  the  interacWon  between  molecules  and  pore  wall  was  modeled  by  the  Steele  and  fluid-­‐fluid  by  the  LJ  potenWals    •     Verlet  algorithm  was  used  to  solve  the  equaWons  of  moWon  

Upstream Pressure

Transport Downstream Pressure

   Length  =  15.2  nm  [152  Å  ]    Width      =  micro  to  mesopore  range  

 Upstream  pressure  =  3  atm,  Downstream  pressure  =  1  atm,  Temperature  =  298  K    

Page 47: Carbon Capture Using Adsorption and Membrane Processes

In  small  pores  the  velocity  profile  is  plug  flow  and  becoming  parabolic  at  approximately  4  nm  pores  for  CH4  and  greater  than  10  nm  pores  for  CO2  

CH4/CO2  Velocity  Profiles  in  Micro  and  Mesopores  

Upstream Pressure

Transport Downstream Pressure

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0 0.3 0.6 0.9 1.2 1.5

Z*

Velocity

-5

-3

-1

1

3

5

-0.3 0 0.3 0.6 0.9 1.2 1.5 Velocity

CH4

CO2

Height    =  1.1  nm     Height    =  3.8  nm    

-10

-6

-2

2

6

10

-0.3 0 0.3 0.6 0.9 1.2 1.5 Velocity

CH4

CO2

Height    =  7.6  nm    

Page 48: Carbon Capture Using Adsorption and Membrane Processes

Pure  CH4,  CO2  Velocity  Profiles  in  Mesopores  

Height = 10 nm

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

Z (Å

)

Velocity x 10-5 (cm/sec)

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

Velocity x 10-5 (cm/sec)

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

Velocity x 10-5 (cm/sec)

As pore sizes increase to 10 nm reduced wall interactions take place in the center of the pore

Upstream Pressure

Transport Downstream Pressure

Page 49: Carbon Capture Using Adsorption and Membrane Processes

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 ΔP (atm)

CH4-76.2 CO2-76.2

0

2

4

6

8

10

0 2 4 6 8 10 12 14

Perm

eabi

lity

((gr

mol

e.cm

)/(m

in.c

m2 .a

tm))x

10- 3

ΔP (atm)

•   Gas  permeability  is  enhanced  for  both  components  in  micropores  •   The  permeability  of  CO2  is  larger  than  CH4  due  to  the  affinity  of  CO2  for  carbon  surfaces  and  lager  density  of  CO2  in  the  pore  and  shielding  effects  

CH4,  CO2  Permeability  Versus  ΔP  

Height =11 Å Height =76 Å

M.  Firouzi  et  al.,  Chemical  Engineering  Science  62,  2777  (2007)  

Page 50: Carbon Capture Using Adsorption and Membrane Processes

50  

•   The  slippage  factor  and  k∞  for  CO2  is  larger  than  CH4  as  expected  

•  As  the  pore  becomes  smaller  the  slippage  factor  and  k∞  becomes  larger  due  to  the  effect  of  the  walls  

CH4,  CO2  Slippage  Factor  

Height =11 Å Height =76 Å

y = 0.0552x + 0.1922

y = 0.1969x + 0.2348

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Inverse mean pressure (atm-1)

CH4-­‐76.2  

CO2-­‐76.2  

y = 1.7728x + 0.8412

y = 7.523x + 1.7447

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Perm

eabi

lity

((gr

mol

e.cm

)/(m

in.c

m2.

atm

))x10

- 3

Inverse mean pressure (atm-1)

CH4:        K∞  =  0.84,  b  =  2.1 CO2:        K∞  =  1.74,  b  =  4.3

CH4: K∞ = 0.19, b = 0.29 CO2: K∞ = 0.23, b = 0.84

 kg=  k∞(1+b/pm)  

Page 51: Carbon Capture Using Adsorption and Membrane Processes

The  viscosity  near  solid  surfaces  are  spaWally  varying    and  needs  to  be  calculated  using  molecular  dynamics:    

Pure  CH4,  CO2  Slippage  Factor  

q/A=k/μ  (-­‐dp/dL)  

       Slit  Pore:  Height  =11  Å      

y = 19.104x + 3.8256 R² = 0.95475

y = 34.924x + 5.0398 R² = 0.98012

0  

5  

10  

15  

20  

25  

30  

0.0   0.4   0.8   1.2   1.6   2.0  

Perm

eability  (m

d)  

Inverse  mean  pressure  (atm-­‐1)  

CH4  CO2  

CH4:        K∞  =  3.8,  b  =  5.0  CO2:        K∞  =  5.0,  b  =  6.9      

Pore  network:  Average  pore  size  =  2  nm,  Porosity  =  20%    

y = 3950.5x + 84.295 R² = 0.83745

y = 4840.6x + 85.585 R² = 0.98903

0  

100  

200  

300  

400  

500  

0.02   0.03   0.04   0.05   0.06   0.07  

Perm

eability  (nd)  

Inverse  mean  pressure  (atm-­‐1)  

CH4  CO2  

CH4:        K∞  =  84,  b  =  47  CO2:        K∞  =  85,  b  =  56    

 kg=  k∞(1+b/pm)  

Page 52: Carbon Capture Using Adsorption and Membrane Processes

   •  The  viscosity  increases  with  increasing  

nanotube  size  and  its  value  is  lower  than  that  under  bulk  condiWon  

•  The  noWon  of  viscosity,  as  used  in  classical  conWnuum  mechanics,  may  not  be  truly  applicable  

•  The  computed  values  should  be  considered  as  apparent  viscosity,  as  computed  by  the  Einstein’s  and  Green-­‐Kubo  relaWons  

   

M.  Khademi,  S.  Sahimi,  The  Journal  of  Chemical  Physics  135,  204509  (2011)  

Water  Viscosity  in  Nanotubes  

Dependence  of  water  viscosity  modeled  using  MD  on  the  diameter  

of  CNTs  and  SiC  nanotubes    

204509-3 Pressure-driven water flow in SiC nanotubes J. Chem. Phys. 135, 204509 (2011)

computed by two methods. One was the atom-based methodfor the summation of the all the contributions. The secondmethod that we used was the Ewald summation techniquein order to check the accuracy of the first method. The re-sults with the two methods were in agreement with eachother within their estimated errors. The rest of the termsthat contribute to E take on the standard forms that mostforce fields use. For example, the contribution by the bond-stretching term is given by, Es =

!4i=2[ki(! ! !0)i], and by

the angle-changing term by, E" =!4

i=2[ei(" ! "0)i], whereki is a stretching constant, ! and !0 the length and equilibriumlength of a bond, ei an angle-changing constant, and " and "0

are the angle and equilibrium angle between a pair of bondsthat are joined together at an atom. The numerical values ofall the constants are given by COMPASS.

Single-wall SiC nanotubes of type 1, the zigzag (m, 0)type, were utilized in the MD simulations with m = 6, 9, 12,and 16 and initial diameters of 0.59, 0.89, 1.19, and 1.59 nm,respectively. The length of the nanotubes was 5.3 nm. Thewater molecules were represented by the three-site SPC/Emodel.54 The van der Waals radius of water is still largerthan the SiC ring size. The Nosé-Hoover thermostat was usedto hold the temperature at 298 K. The Parrinello-Rahmanmethod,55 a feature of the commercial simulator with COM-PASS, was used for keeping constant the external pressuresat both ends of the nanotubes. The method was used becauseit allows both the simulation cell’s shape and volume to bemodified. To ensure that the pressures were held constant cor-rectly, we also used the standard Andersen method56 for keep-ing the pressures constant at the nanotubes’ ends. The resultswith the two methods did not differ significantly.

Temperature was held at 298 K. The time step for in-tegrating the equation of motion was 1 fs. Simulations of atleast 50 ps long were needed to establish the flow of water un-der a pressure gradient and to reach steady state, after whichthe first 50 000 time steps were ignored and then the numeri-cal data were collected over a minimum time of 25 ps. Equalnumbers of Si and C atoms were, of course, used.

Water viscosity in the nanotubes was estimated from theEinstein relation,

µ = kBT

3#dDz

, (9)

where T is the temperature, kB the Boltzmann’s constant, d thediameter of water, and Dz its axial diffusivity that is estimatedusing the Green-Kubo relation:

Dz = 1N

N"

i=1

# "

0#vi(t) · vi(0)$dt , (10)

where vi(t) is the axial velocity of molecule i at time t, and Nis the total number of molecules. The bracketed quantity rep-resents the velocity autocorrelation function (ACF). In smallnanotubes the diffusivity Dz is dependent upon the tubes’ di-ameter. We did not assume that the atomistic structure of thenanotubes is rigid, so that the C and Si atoms could movein response to their environment in the presence of the watermolecules and the applied pressure gradient according to theequation of motion.

FIG. 2. Axial velocity autocorrelation function in the smallest and largestSiC nanotubes that were studied.

IV. RESULTS AND DISCUSSION

Figure 2 presents the axial velocity ACF in the smallestand largest nanotubes that we simulated. It declines sharplyafter a short time, and then varies very little around zero. Aspointed out by Rahman and Stillinger,57 for liquids a diffusivemotion is present that destroys rapidly any oscillatory motion.Thus, the velocity ACF may exhibit one much damped oscil-lation (one major minimum) before decaying rapidly to zero,a description that is consistent with Fig. 2. Moreover, it hasbeen illustrated that damping in MD calculation does not af-fect the dynamic properties of a system to within the statisticaluncertainty.58 Fast dissipating behavior, similar to what we re-port, has also been commonly observed and used to calculatethe properties of water in the CNTs.

Figure 3 presents the computed viscosity µ of water andits dependence on the nanotubes’ diameter. For comparison,

FIG. 3. Dependence of water viscosity on the diameter of SiC nanotubes.For comparison the viscosity of water in CNTs (Ref. 47) is also given.

Downloaded 03 May 2012 to 171.67.34.69. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Page 53: Carbon Capture Using Adsorption and Membrane Processes

•   The  dimensions  of  the  system  modeled  are  ~  10  x  10  x  10  nm    •   3-­‐D  molecular  pore  network  model  based  on  the  Voronoi  tessellaWon  method    •   To  generate  the  molecular  pore  network  model:    

-­‐  Create  a  3-­‐D  simulaWon  box    of  structural  atoms  corresponding  to    porous  structure    -­‐  Tessellate  the  atomic    structural  box    

•   The  pore  space  is  created  by  specifying  the  desired  porosity  and  #  polyhedra  →  total  volume  fracWon  =  specified  porosity    

-­‐  pore  space  consists  of  interconnected  pores  of  various  shapes  and  sizes  

3-­‐D  Pore  Network  Model  

Page 54: Carbon Capture Using Adsorption and Membrane Processes

Modeling  Transport  with  MD  

•   The  pore  network  model  previously  described  will  be  used    •   Non-­‐equilibrium  molecular  dynamics  (NEMD)  simulaWons  are  carried  out  

•   The  system  (pore  network)  is  exposed  to  an  external  driving  force  (chemical  potenWal  or  pressure  gradient)  in  a    specified  direcWon  

•   Flux  and  permeability  predicWons  are  carried  out  

Page 55: Carbon Capture Using Adsorption and Membrane Processes

Permeability  of  N2/CO2  and  CH4/CO2  Mixtures    

Permeability  of  N2  /  CO2  (lec)  and  CH4  /  CO2  (right)  mixtures  with  average  pore  diameter  of    1.2  nm  and  20%,  25%,  30%  and  35%  porosi9es    

 

0

1

2

3

4

5

6

7

8

10 15 20 25 30 35 40

Permeability

((grmole.cm)/(min.cm2 .atm))x10

-7

Porosity

0.88 N20.12 CO20.75 N20.25 CO20.5 N20.5 CO20.25 N20.75 CO2

0

1

2

3

4

5

6

7

8

9

10 15 20 25 30 35 40 Porosity

0.75 CH4

0.25 CO2

0.50 CH4

0.50 CO2

0.25 CH4

0.75 CO2

•  With  mixtures  of  N2,  at  high  CO2  concentraWons,  permeability  is  lower  below  a  30%  porosity  •  With  mixtures  of  N2,  25%  CO2  has  the  greatest  permeability    •  In  gas  mixtures  of  N2  and  CH4,  CO2  is  always  the  more  permeable  species  in  1.2  nm  pores  

Page 56: Carbon Capture Using Adsorption and Membrane Processes

Acknowledgements  

•  CollaboraWons  with  Mark  Zoback  and  Tony  Kovsceck  (shale  research)  •  CollaboraWons  with  Dan  Stack  and  Zhenan  Bao  (sorbent  research)    Funding:  •  Membrane:  NSF  Eager,  Catalysis  Division;  EPA  P3  (high-­‐T  furnace);  Army  

Research  Office  •  Sorp3on:  BP;  DOE-­‐NETL;  GCEP  •  GCMC;  MD:  Stanford  Center  for  ComputaWonal  Earth  &  Environmental  

Science  •  DFT:  NSF  Teragrid,  UT  AusWn    

Ques3ons?