30
Carbohydrate Structure FDSC400

Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Carbohydrate Structure

FDSC400

Page 2: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Carbohydrates

• Cx(H2O)y

• 70-80% human energy needs (US~50%)

• >90% dry matter of plants

• Monomers and polymers

• Functional properties

– Sweetness

– Chemical reactivity

– Polymer functionality

Page 3: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Simple Sugars

• Cannot be broken down by mild acid

hydrolysis

• C3-9 (esp. 5 and 6)

• Polyalcohols with aldehyde or ketone

functional group

• Many chiral compounds

• C has tetrahedral bond angles

Page 4: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Nomenclature

Ketone Aldehyde

4 Tetrose Tetrulose

5 Pentose Pentulose

6 Hexose Hexulose

7 Heptose Heptulose

8 Octose Octulose

Num

ber

of

carb

ons

Functional group

Table 1

Page 5: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Chiral Carbons

• A carbon is chiral if it has four different groups

• Chiral compounds have the same composition but

are not superimposable

• Display in Fisher projection

CH2OH

H OH

CHO

CH2OH

OH H

CHO

D-glyceraldehyde L-glyceraldehyde

ENANTIOMERS

Page 6: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Glucose

• Fisher projection

• D-series sugars are built on

D-glyceraldehyde

• 3 additional chiral carbons

• 23 D-series hexosulose

sugars (and 23 L-series

based on L-glyceraldehyde)

H O

H

OHH

HOH

OHH

OHH

OHH

Original D-glyceraldehyde carbon

C-1

C-2

C-3

C-4

C-5

C-6

Page 7: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

D-Fructose

• A ketose sugar

• One less chiral carbon

than the corresponding

aldose

• Sweetest known sugar

CH2

CH

CH

CH

CH

2

OH

OH

OH

OH

O

CH3

Page 8: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

The Rosanoff Projection

H O

H

OHH

HOH

OHH

OHH

OHH

Page 9: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

D-Hexosulose

Isomers

Page 10: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

D-Hexosulose Isomerization

Figure 5

Page 11: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Ring Formation

H O

H

OHH

HOH

OHH

OHH

OHH

O

OH

OH

OH

CH2OH

O H O

CH2OH

OH

OH

OH

OH

Anomeric carbon Figure 7

Page 12: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Anomeric Structures

Page 13: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Acyclic and Cyclic Glucose

Figure 12

H O

H

OHH

HOH

OHH

OHH

OHH

a-D-glucopyranose

b-D-glucopyranose

a-D-glucofuranose

b-D-glucofuranose

~0.02% in solution

38% in solution 62% in solution

Page 14: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Ring Formation

• Intramolecular reaction between alcohol

and carbonyl to form a ring

– 6-membered rings are pyranose

– 5-membered are furanose

• Generates a new a-carbon and two

additional anomers (a- and b-)

Page 15: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Oxidation (or “What does it mean to be a reducing sugar”)

• Aldehydes can be oxidized to corresponding

carboxylic acids

R

H O

R

OH O[O]

Cu(II) Cu(I)

Use as a TEST

Page 16: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Reduction

• Carbonyl groups can be reduced to alcohols (catalytic hydrogenation)

• Sweet but slowly absorbed

• Glucose is reduced to sorbitol (glucitol)

• Xylose can be reduced to xylitol

• Once reduced – less reactive; not absorbed

R

H O[H]

H

R

H OH

Page 17: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Esterification

• An acid chloride or acid anhydride can add

to an alcohol to form an ester

• Frequent way to react with a fatty acids

– A few subsituents to form a surfactants

– 6-8 to form OLESTRA

R OH Cl

O

R

R O

O

Rsugar

Page 18: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Dimerization

• An alcohol can add to the alcohol of a hemiacetal (formed after ring formation) to form an acetal

• Dehydration

• Depending which conformation the hemiacetal is, the link can either be a- or b-, once link is formed it is fixed

R OH

R'

O

H

R

O

R' OH

H

R

O

R' O

H

R''

R'' OH

-H2O

Page 19: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Example Simple Sugars

• Maltose

• Malt sugar, enzymatic degradation product from starch

• Mild sweetness characteristic flavor

• Two glucose pyranose rings linked by an a-1-4 bond

• Ring can open and close so a REDUCING SUGAR

Page 20: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Example Simple Sugars

• Sucrose

• Table sugar

a-glucopyranose and b-fructofuranose in an

a, 1-1 link

• The rings cannot open so NOT a reducing

sugar

• Easily hydrolyzed

• Used to make caramels

Page 21: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Example Simple Sugars • Lactose

• ~5% milk (~50% milk solids). Does not occur elsewhere

• Glucose-galactose linked by 1-4 b glycosidic bond.

• Galactose opens and closes so REDUCING sugar

• Lactase deficiency leads to lactose intolerance. (More resistant than sucrose to acid hydrolysis).

Page 22: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Example Simple Sugars

• Trehalose

• Two glucose molecules with an a 1,1 linkage

• Non reducing, mild sweetness, non-hygroscopic

• Protection against dehydration

Page 23: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Browning Chemistry

• What components are involved? What is

the chemistry?

• Are there any nutritional/safety concerns?

• Are there any positive or negative quality

concerns?

• How can I use processing/ingredients to

control it?

Page 24: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Types of Browning

• Enzymatic

• Caramelization

• Maillard

– Ascorbic acid browning

• (Lipid)

Polymers lead to color – Small molecules to flavor

Page 25: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Caramelization

• Heat to 200°C

– 35 min heating, 4% moisture loss

• Sucrose dehydrated (isosacchrosan)

– 55 min heating, total 9% moisture loss

• Sucrose dimerization and dehydration caramelan

– 55 min heating. Total 14% moisture loss

• Sucrose trimerization and dehydration caramelen

• More heating darker, larger polymers insolubilization

• Flavor

Page 26: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Maillard Browning

• “the sequence of events that begins with

reaction of the amino group of amino acids

with a glycosidic hydroxyl group of sugars;

the sequence terminates with the formation

of brown nitrogenous polymers or

melanoidins”

– John deMan

Page 27: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Maillard Browning

1. Formation of an N-glucosamine Esp LYSINE

2. Amadori Rearrangement

3. (Formation of diketosamine)

4. Degradation of Amadori Product Mild sweet flavor

5. Condensation and polymerization color

Page 28: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Involvement of Protein

-Strecker Degradation-

• Amine can add to dicarbonyl

– Lysine particularly aggressive

• Adduct breaks down to aldehyde

– Nutty/meaty flavors

– Nutritional loss

Page 29: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Nutritional Consequences

• Lysine loss

• Mutagenic/carcinogenic heterocyclics

• Antioxidants

Page 30: Carbohydrate Structure - studentski.net · Carbohydrate Structure FDSC400 . Carbohydrates •C x (H 2 O) y •70-80% human energy needs (US~50%) •>90% dry matter of plants •Monomers

Control Steps

• Rapidly accelerated by temperature

• Significant acceleration at intermediate water activities

• Sugar type

– Pentose>hexose>disaccharide>>polysaccharide

• protein concentration (free amines)

• Inhibited by acid

– amines are protonated

– and used up, pH drops

• Sulfur dioxide