1
Capsella bursa‐pastoris L. Medik. (shepherd’s purse) myxospermous seed mucilage mechanically stabilises clay soil Methods: Seeds were washed in d.H 2 0 (1:10 [w/v]) with shaking, 8h. A>er centrifugaBon (5000 rpm, 20 min), the mucilage‐containing supernatant was freeze‐dried. Mucilage was added to soil (a Ca‐ montmorillonite (clay) at 0, 0.5 and 1 % [w/w], at soil water contents ranging from 140 ‐ 200 % [w/w] of clay weight. Shear stress (τ) was applied ( 0.1 ‐ 10000 Pa @ Temp. = 20 °C ; frequency = 0.5 Hz; gap = 2 mm). Results Wenni Deng 1,2,3,* , Dong‐Sheng Jeng 1 , Peter Toorop 4 , Paul D. Halle\ 3 , Geoffrey R. Squire 3 , Pietro P.M. Ianne\a 3 1 Division of Civil Engineering, University of Dundee, Dundee DD1 4HN, Scotland UK 2 Centre for Environmental Change and Human Resilience (CECHR), University of Dundee 3 The James HuFon InsHtute, Invergowrie, Dundee DD2 5DA, Scotland UK 4 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK Email: wenni.deng@hu@on.ac.uk Figure 3. (a) typical flow curve of an ‘oscillatory stress sweep test’. (b) – (f) Plots of rheology parameters : loss factor, shear modulus, viscosity, yield stress and flow point stress versus soil water content (%) (respecKvely), for clay soils containing no mucilage (black diamond/solid line), 0.5 % (blue cross/dashed line) and 1 % (pink triangle/do@ed line) mucilage at 20 °C. All experimental data were fi@ed using an exponenKal curve, and errors bars denote the SE of the mean. Acknowledgements: This PhD studentship is funded by the CECHR. PH, GRS and PPMI are supported by the Sco\sh Government. Special thanks are extended to Paul D Halle@. IntroducKon Capsella bursa‐pastoris L. Medik (shepherd’s purse) seeds are myxospermous. That is, they exude mucilage upon hydraBon. Myxospermy appears to be of great ecological importance in water limited environments. The uBlity of the mucilage to improve soil mechanical properBes was invesBgated. Rheology measures assessed the physical properBes of a model (clay) soil, before and a>er the addiBon of extracted seed mucilage. Conclusions Soil rheology parameters (G * , η, τ y f ) decrease as water content increases. The rate of this decrease is reduced when is seed mucilage present. There is less affect of seed mucilage of soil shear modulus and viscosity . The greatest affect of the seed mucilage is seen for yield‐ and flow‐stress (soil sBffness). This influence is greatest at high soil water content, even for only 0.5 [w/w] mucilage . At low water contents 1 % mucilage has greater influence than 0.5 % mucilage. Soil water content and rheology‐measure relaBonships are explained by exponenBal curve fits. Seed mucilage increases soil resistance to mechanical stress, even at low concentraBons This insight will be exploited using mathemaKcal modelling, to facilitate an assessment of the ecosystem services provisions that might be made by myxospermous seeds. Figure 1. Light micrographs of shepherd’s purse seeds visualized a^er: (a) ruthenium red staining and illuminaKon with white light, showing the localisaKon of pecKn; (b) calcofluor and illuminaKon with UV light, showing cellulose. Where ‘m’ denotes the mucilage, and ‘s’ the seed. Note that the mucilage is a bilayer structure comprising pecKn had cellulose ‐ the cellulose concentrated at the inner layer. Scale bar = 500μm. The theory of rheology Rheology is the science of material deformaBon and flow. Materials may range from ideal‐elasBc to ideal‐viscous. The parameters assessed for this study are defined below. Parameter Rheology τ RotaBonal shear stress (Pa), applied force γ Shear strain (1) η Viscosity (Pa∙s), G * Complex shear modulus (Pa), a measure of sBffness, G ' Storage modulus (Pa), represent elasBc behaviour, G " Loss modulus (Pa), represent viscous behaviour, tan δ Loss factor (1), where is the phase shi> angle, τ y Yield stress (Pa), represent a criBcal stress that causes irrecoverable deformaBon τ f Stress at flow point (Pa), where material start to flow Figure 2. (a) freeze dried mucilage; (b) Ca‐montmorillonit; (c) RotaKonal rheometer (c) (a) (b) 1000 10000 100000 140 150 160 170 180 190 200 Shear modulus G*(Pa) Soil water content (%) 100 1000 10000 140 150 160 170 180 190 200 Viscosity η (Pa∙s) Soil water content (%) 10 100 1000 140 150 160 170 180 190 200 Yield stress τy (Pa) Soil water content (%) 0 0.5 1 1.5 2 1 10 100 1000 10000 100000 0.1 1 10 100 1000 tan δ, ‐ G', G'', (Pa) Shear stress, (Pa) τ y τ f G’ G’’ tan δ Flow point Linear ViscoelasBc Range Yield Stress 0 0.05 0.1 0.15 0.2 0.25 0.3 140 150 160 170 180 190 200 Loss factor tan δ Water content (%) (b) (a) (c) (d) (e) (f) 10 100 1000 140 150 160 170 180 190 200 Flow Point stress τf (Pa) Soil water content (%) m m (a) (b) s s Further Reading Ianne@a 2010. Capsella. Springer. ISBN 978‐3‐642‐14870‐5 Penfield et al. 2001. Plant Cell 13: 2777‐2791. Puoci et al. 2008. Amer. J. Agri. Biol. Sci. 3: 299‐314, 200 Van Oudtshoorn, Van Rooyen 1999. Dispersal biology of desert plants. Springer. ISBN 978‐3‐642‐08439‐3

Capsella bursa-pastoris L. Medik. (shepherd’s purse) … · Capsella bursa‐pastoris L. Medik. (shepherd’s purse) myxospermous seed mucilage mechanically stabilises clay soil

Embed Size (px)

Citation preview

Page 1: Capsella bursa-pastoris L. Medik. (shepherd’s purse) … · Capsella bursa‐pastoris L. Medik. (shepherd’s purse) myxospermous seed mucilage mechanically stabilises clay soil

Capsellabursa‐pastorisL.Medik.(shepherd’spurse)myxospermousseedmucilagemechanicallystabilisesclaysoil

Methods:Seedswerewashedind.H20(1:10[w/v])withshaking,8h.A>ercentrifugaBon(5000rpm,20min),themucilage‐containingsupernatantwasfreeze‐dried.Mucilagewasaddedtosoil(aCa‐montmorillonite(clay)at0,0.5and1%[w/w],atsoilwatercontentsrangingfrom140‐200%[w/w]ofclayweight.Shearstress(τ)wasapplied(0.1‐10000Pa@Temp.=20°C;frequency=0.5Hz;gap=2mm).

Results

WenniDeng1,2,3,*,Dong‐ShengJeng1,PeterToorop4,PaulD.Halle\3,GeoffreyR.Squire3,PietroP.M.Ianne\a3

1DivisionofCivilEngineering,UniversityofDundee,DundeeDD14HN,ScotlandUK2CentreforEnvironmentalChangeandHumanResilience(CECHR),UniversityofDundee3TheJamesHuFonInsHtute,Invergowrie,DundeeDD25DA,ScotlandUK4RoyalBotanicGardens,Kew,WakehurstPlace,Ardingly,WestSussexRH176TN,UK

Email:wenni.deng@[email protected]

Figure3.(a)typicalflowcurveofan‘oscillatorystresssweeptest’.(b)–(f)Plotsofrheologyparameters:lossfactor,shearmodulus,viscosity,yieldstressandflowpointstressversussoilwatercontent(%)(respecKvely),forclaysoilscontainingnomucilage(blackdiamond/solidline),0.5%(bluecross/dashedline)and1%(pinktriangle/do@edline)mucilageat20°C.Allexperimentaldatawerefi@edusinganexponenKalcurve,anderrorsbarsdenotetheSEofthemean.

Acknowledgements:ThisPhDstudentshipisfundedbythe

CECHR.PH,GRSandPPMIaresupportedbytheSco\shGovernment.SpecialthanksareextendedtoPaulDHalle@.

IntroducKon• Capsellabursa‐pastorisL.Medik(shepherd’spurse)seedsare

myxospermous.Thatis,theyexudemucilageuponhydraBon.

• Myxospermyappearstobeofgreatecologicalimportancein

waterlimitedenvironments.

• TheuBlityofthemucilagetoimprovesoilmechanicalproperBes

wasinvesBgated.

• RheologymeasuresassessedthephysicalproperBesofamodel

(clay)soil,beforeanda>ertheaddiBonofextractedseedmucilage.

Conclusions• Soilrheologyparameters(G*,η,τy,τf)decreaseaswatercontentincreases.

• Therateofthisdecreaseisreducedwhenisseedmucilagepresent.

• Thereislessaffectofseedmucilageofsoilshearmodulusandviscosity.

• Thegreatestaffectoftheseedmucilageisseenforyield‐andflow‐stress(soilsBffness).

• Thisinfluenceisgreatestathighsoilwatercontent,evenforonly0.5[w/w]mucilage.

• Atlowwatercontents1%mucilagehasgreaterinfluencethan0.5%mucilage.

• Soilwatercontentandrheology‐measurerelaBonshipsareexplainedbyexponenBalcurvefits.

• Seedmucilageincreasessoilresistancetomechanicalstress,evenatlowconcentraBons

• ThisinsightwillbeexploitedusingmathemaKcalmodelling,tofacilitateanassessmentofthe

ecosystemservicesprovisionsthatmightbemadebymyxospermousseeds.

Figure1.Lightmicrographsofshepherd’spurseseedsvisualizeda^er:(a)rutheniumredstainingandilluminaKonwithwhitelight,showingthelocalisaKonofpecKn;(b)calcofluorandilluminaKonwithUVlight,showingcellulose.Where‘m’denotesthemucilage,and‘s’theseed.NotethatthemucilageisabilayerstructurecomprisingpecKnhadcellulose‐thecelluloseconcentratedattheinnerlayer.Scalebar=500μm.

Thetheoryofrheology• RheologyisthescienceofmaterialdeformaBonandflow.

• Materialsmayrangefromideal‐elasBctoideal‐viscous.

• Theparametersassessedforthisstudyaredefinedbelow.

Parameter Rheologyτ RotaBonalshearstress(Pa),appliedforceγ Shearstrain(1)η Viscosity(Pa∙s),G* Complexshearmodulus(Pa),ameasureofsBffness,G' Storagemodulus(Pa),representelasBcbehaviour,G" Lossmodulus(Pa),representviscousbehaviour,

tanδ Lossfactor(1),whereisthephaseshi>angle,

τyYieldstress(Pa),representacriBcalstressthatcauses

irrecoverabledeformaBon

τf Stressatflowpoint(Pa),wherematerialstarttoflow

Figure2.(a)freezedriedmucilage;(b)Ca‐montmorillonit;(c)RotaKonalrheometer

(c)(a) (b)

1000

10000

100000

140 150 160 170 180 190 200

Shearmod

ulusG*(Pa)

Soilwatercontent(%)

100

1000

10000

140 150 160 170 180 190 200Viscosity

η(P

a∙s)

Soilwatercontent(%)

10

100

1000

140 150 160 170 180 190 200

Yieldstressτy(Pa)

Soilwatercontent(%)

0

0.5

1

1.5

2

1

10

100

1000

10000

100000

0.1 1 10 100 1000

tanδ,‐

G',G'',(P

a)

Shearstress,(Pa)τy τf

G’

G’’

tanδ

Flowpoint

LinearViscoelasBcRange YieldStress

0

0.05

0.1

0.15

0.2

0.25

0.3

140 150 160 170 180 190 200

Lossfactorta

Watercontent(%)

(b)(a)

(c) (d)

(e) (f)

10

100

1000

140 150 160 170 180 190 200

Flow

Pointstressτf(P

a)

Soilwatercontent(%)

m m

(a) (b)

s s

[email protected]‐3‐642‐14870‐5Penfieldetal.2001.PlantCell13:2777‐2791.Puocietal.2008.Amer.J.Agri.Biol.Sci.3:299‐314,200VanOudtshoorn,VanRooyen1999.Dispersalbiologyofdesertplants.Springer.ISBN978‐3‐642‐08439‐3